1
|
Min T, Yang C, Zhang M, Hu P, Shi J. Mild Magnetothermal Immunotherapy for Malignant Pleural Effusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407734. [PMID: 39648567 DOI: 10.1002/smll.202407734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/05/2024] [Indexed: 12/10/2024]
Abstract
Malignant pleural effusion (MPE) is one of the most difficult complications of cancer to cure, usually indicating poor prognosis in late-stage cancer patients. Due to the presence of a large number of tumor-associated immune cells with the tumor promoting phenotype in MPE and pleural tumors, current clinical therapy offers limited effectiveness. Here, a mild magnetothermal regulation strategy is proposed based on a magnetic nanocatlytic nanoplatform ZCMF@PEG-AF (ZCMF-AF) constructed by surface-modifying anti-F4/80 antibody (AF) on ZnCoFe2O4@ZnMnFe2O4 magnetic nanoparticles (ZCMF) to target and polarize tumor-associated macrophages. Under alternating magnetic field-induced hyperthermia (41-42 °C), ZCMF-AF exhibits in situ nanocatalytic production of hydroxyl radicals via released iron ions under acidic cellular environment, which induces repolarization from the immunosuppressed M2 phenotype to the M1 phenotype. More importantly, the tumor cell damage induced by M1 macrophages and magnetic hyperthermia promote the maturation of dendritic cells, which subsequently awakens cytotoxic T lymphocytes to combat tumor cells. The integrated innate and adaptive immunity activations based on ZCMF-AF nano-immunomedicine through intrapleural administration elicit substantially regulated immune microenvironment of MPE and pleural tumors. Moreover, the interpleural magnetic nanoparticle-based immunotherapy effectively reduced the MPE volume and inhibited tumor growth in the pleural cavity, significantly prolonging the survival of the MPE-bearing mice.
Collapse
Affiliation(s)
- Tao Min
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Chunzheng Yang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Minghui Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Ping Hu
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| |
Collapse
|
2
|
Arafa SS, Badr El-Din S, Hewedy OA, Abdelsattar S, Hamam SS, Sharif AF, Elkholy RM, Shebl GZ, Al-Zahrani M, Salama RAA, Abdelkader A. Flubendiamide provokes oxidative stress, inflammation, miRNAs alteration, and cell cycle deregulation in human prostate epithelial cells: The attenuation impact of synthesized nano-selenium using Trichodermaaureoviride. CHEMOSPHERE 2024; 365:143305. [PMID: 39260595 DOI: 10.1016/j.chemosphere.2024.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro-inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alleviative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3',4'-trimethyl ether. T-SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating activity of eco-friendly synthesized T-SeNPs.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Egypt.
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Egypt
| | - Omar A Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt
| | - Sanaa S Hamam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa F Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Reem Mohsen Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Ghada Zaghloul Shebl
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Egypt
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rasha Aziz Attia Salama
- Department of Community and Public Health, Kasr El Aini Faculty of Medicine, Cairo University, Egypt; Department of Community Medicine, Ras Al Khaimah Medical and Health Science University, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
3
|
Rahman R, Rahaman MH, Hanson AR, Choo N, Xie J, Townley SL, Shrestha R, Hassankhani R, Islam S, Ramm S, Simpson KJ, Risbridger GP, Best G, Centenera MM, Balk SP, Kichenadasse G, Taylor RA, Butler LM, Tilley WD, Conn SJ, Lawrence MG, Wang S, Selth LA. CDK9 inhibition inhibits multiple oncogenic transcriptional and epigenetic pathways in prostate cancer. Br J Cancer 2024; 131:1092-1105. [PMID: 39117800 PMCID: PMC11405875 DOI: 10.1038/s41416-024-02810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 9 (CDK9) stimulates oncogenic transcriptional pathways in cancer and CDK9 inhibitors have emerged as promising therapeutic candidates. METHODS The activity of an orally bioavailable CDK9 inhibitor, CDKI-73, was evaluated in prostate cancer cell lines, a xenograft mouse model, and patient-derived tumor explants and organoids. Expression of CDK9 was evaluated in clinical specimens by mining public datasets and immunohistochemistry. Effects of CDKI-73 on prostate cancer cells were determined by cell-based assays, molecular profiling and transcriptomic/epigenomic approaches. RESULTS CDKI-73 inhibited proliferation and enhanced cell death in diverse in vitro and in vivo models of androgen receptor (AR)-driven and AR-independent models. Mechanistically, CDKI-73-mediated inhibition of RNA polymerase II serine 2 phosphorylation resulted in reduced expression of BCL-2 anti-apoptotic factors and transcriptional defects. Transcriptomic and epigenomic approaches revealed that CDKI-73 suppressed signaling pathways regulated by AR, MYC, and BRD4, key drivers of dysregulated transcription in prostate cancer, and reprogrammed cancer-associated super-enhancers. These latter findings prompted the evaluation of CDKI-73 with the BRD4 inhibitor AZD5153, a combination that was synergistic in patient-derived organoids and in vivo. CONCLUSION Our work demonstrates that CDK9 inhibition disrupts multiple oncogenic pathways and positions CDKI-73 as a promising therapeutic agent for prostate cancer, particularly aggressive, therapy-resistant subtypes.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Muhammed H Rahaman
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Adrienne R Hanson
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Nicholas Choo
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Jianling Xie
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Scott L Townley
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Raj Shrestha
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia
| | - Ramin Hassankhani
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Susanne Ramm
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Gail P Risbridger
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Giles Best
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Margaret M Centenera
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ganessan Kichenadasse
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Department of Medical Oncology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, South Australia
| | - Renea A Taylor
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Simon J Conn
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Mitchell G Lawrence
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia.
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
5
|
Fieni C, Sorrentino C, Ciummo SL, Fontana A, Lotti LV, Scialis S, Calvo Garcia D, Caulo M, Di Carlo E. Immunoliposome-based targeted delivery of the CRISPR/Cas9gRNA-IL30 complex inhibits prostate cancer and prolongs survival. Exp Mol Med 2024; 56:2033-2051. [PMID: 39232121 PMCID: PMC11447253 DOI: 10.1038/s12276-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
The development of selective and nontoxic immunotherapy targeting prostate cancer (PC) is challenging. Interleukin (IL)30 plays immunoinhibitory and oncogenic roles in PC, and its tumor-specific suppression may have significant clinical implications. CRISPR/Cas9-mediated IL30 gene deletion in PC xenografts using anti-PSCA antibody-driven lipid nanocomplexes (Cas9gRNA-hIL30-PSCA NxPs) revealed significant genome editing efficiency and circulation stability without off-target effects or organ toxicity. Biweekly intravenous administration of Cas9gRNA-hIL30-PSCA NxPs to PC-bearing mice inhibited tumor growth and metastasis and improved survival. Mechanistically, Cas9gRNA-hIL30-PSCA NxPs suppressed ANGPTL 1/2/4, IL1β, CCL2, CXCL1/6, SERPINE1-F1, EFNB2, PLG, PF4, VEGFA, VEGFD, ANG, TGFβ1, EGF and HGF expression in human PC cells while upregulated CDH1, DKK3 and PTEN expression, leading to low proliferation and extensive ischemic necrosis. In the syngeneic PC model, IL30-targeting immunoliposomes downregulated NFKB1 expression and prevented intratumoral influx of CD11b+Gr-1+MDCs, Foxp3+Tregs, and NKp46+RORγt+ILC3, and prolonged host survival by inhibiting tumor progression. This study serves as a proof of principle that immunoliposome-based targeted delivery of Cas9gRNA-IL30 represent a potentially safe and effective strategy for PC treatment.
Collapse
Affiliation(s)
- Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UDA-TECHLAB Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Sofia Scialis
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Darien Calvo Garcia
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
6
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
7
|
Ebrahimi S, Erfani B, Alalikhan A, Ghorbani H, Farzadnia M, Afshari AR, Mashkani B, Hashemy SI. The In Vitro Pro-inflammatory Functions of the SP/NK1R System in Prostate Cancer: a Focus on Nuclear Factor-Kappa B (NF-κB) and Its Pro-inflammatory Target Genes. Appl Biochem Biotechnol 2023; 195:7796-7807. [PMID: 37093533 DOI: 10.1007/s12010-023-04495-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Prostate cancer is one of the main global health threats for men which is in close association with chronic inflammation. Neuropeptide substance P (SP), acting through neurokinin receptor (NK-1R), induces various pro-inflammatory responses which are strongly involved in the pathogenesis of several diseases as well as cancer. Therefore, we aimed to investigate the pro-inflammatory functions of the SP/NK1R complex in prostate cancer and the therapeutic effects of its inhibition by NK-1R antagonist, aprepitant, in vitro. MTT assay was conducted for the cytotoxicity assessment of aprepitant in prostate cancer cells. The protein expression levels were evaluated by Western blot assay. Quantitative real-time PCR (qRT-PCR) was applied to measure mRNA expression levels of pro-inflammatory cytokines. Concurrently, the protein concentrations of pro-inflammatory cytokines were also analyzed by enzyme-linked immunosorbent assay. We observed that SP increased the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), while treatment with aprepitant reduced the effects of SP. We also indicated that SP increased the protein levels of nuclear factor-kappa B (NF-κB), as the main regulator of inflammatory processes, and also an NF-κB target gene, cyclooxygenase 2 (COX-2) in prostate cancer cells, while treatment with aprepitant reversed these effects. Taken together, our findings highlight the importance of the SP/NK1R system in the modulation of pro-inflammatory responses in prostate cancer cells and suggest that aprepitant may be developed as a novel anti-inflammatory agent for the management of cancer-associated inflammation.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Erfani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Ghorbani
- Kidney Transplantation Complication Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Farzadnia
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - BaratAli Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
9
|
Mu H, Sun Y, Yuan B, Wang Y. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia 2023; 169:105617. [PMID: 37479118 DOI: 10.1016/j.fitote.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound, which can be obtained by separation, chemical synthesis and biotransformation. BA has excellent biological activities, especially its role in the treatment of breast cancer deserves attention. Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway. In addition, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects. This article reviews the application and possible mechanism of BA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuli Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
10
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
11
|
Rossetto I, Santos F, Kido L, Lamas C, Montico F, Cagnon V. Tempol differential effect on prostate cancer inflammation: In vitro and in vivo evaluation. Prostate 2023; 83:403-415. [PMID: 36546327 DOI: 10.1002/pros.24473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tempol is a redox-cycling nitroxide that acts directly on inflammation. However, few studies have reported the use of tempol in prostate cancer (PCa). The present study investigated the effects of tempol on inflammation related to NF-κB signaling, using hormone-dependent or hormone-independent cell lines and the transgenic adenocarcinoma of the mouse prostate PCa animal model in the early and late stages of cancer progression. METHODS PC-3 and LnCaP cells were exposed to different tempol doses in vitro, and cell viability assays were performed. The optimal treatment dose was chosen for subsequent analysis using western blotting. Five experimental groups were evaluated in vivo to test for tempol effects in the early (CT12 and TPL12 groups) and late stages (CT20, TPL20-I, and TLP20-II) of PCa development. The TPL groups were treated with 50 or 100 mg/kg tempol. All control groups received water as the vehicle. The ventral lobe of the prostate was collected and subjected to immunohistochemical and western blot analysis. RESULTS Tempol treatment reduced cellular proliferation in vitro and improved prostatic morphology in vivo, thereby decreasing tumor progression. Tempol reduced inflammation in preclinical models, and downregulated the initial inflammatory signaling through toll-like receptors, not always mediated by the MyD88 pathway. In addition, it upregulated iκB-α and iκB -β levels, leading to a decrease in NF-κB, TNF-α, and other inflammatory markers. Tempol also influenced cell survival markers. CONCLUSIONS Tempol can be considered a beneficial therapy for PCa treatment owing to its anti-inflammatory and antiproliferative effects. Nevertheless, the action of tempol was different depending on the degree of the prostatic lesion in vivo and hormone reliance in vitro. This indicates that tempol plays a multifaceted role in the prostatic tissue environment.
Collapse
Affiliation(s)
- Isabela Rossetto
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Felipe Santos
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Kido
- Department of Food and Nutrition, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Celina Lamas
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fábio Montico
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria Cagnon
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Gogola S, Rejzer M, Bahmad HF, Alloush F, Omarzai Y, Poppiti R. Anti-Cancer Stem-Cell-Targeted Therapies in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15051621. [PMID: 36900412 PMCID: PMC10000420 DOI: 10.3390/cancers15051621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Prostate cancer (PCa) is the second-most commonly diagnosed cancer in men around the world. It is treated using a risk stratification approach in accordance with the National Comprehensive Cancer Network (NCCN) in the United States. The main treatment options for early PCa include external beam radiation therapy (EBRT), brachytherapy, radical prostatectomy, active surveillance, or a combination approach. In those with advanced disease, androgen deprivation therapy (ADT) is considered as a first-line therapy. However, the majority of cases eventually progress while receiving ADT, leading to castration-resistant prostate cancer (CRPC). The near inevitable progression to CRPC has spurred the recent development of many novel medical treatments using targeted therapies. In this review, we outline the current landscape of stem-cell-targeted therapies for PCa, summarize their mechanisms of action, and discuss avenues of future development.
Collapse
Affiliation(s)
- Samantha Gogola
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael Rejzer
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: or ; Tel.: +1-305-674-2277
| | - Ferial Alloush
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Yumna Omarzai
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Robert Poppiti
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
13
|
Inflammation and Prostate Cancer: Pathological Analysis from Pros-IT CNR 2. Cancers (Basel) 2023; 15:cancers15030630. [PMID: 36765589 PMCID: PMC9913270 DOI: 10.3390/cancers15030630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Extensive research effort has been devoted to investigating the link between inflammation and PCa. However, this relationship remains unclear and controversial. The aim of our multi-center study was to investigate this association by histologically evaluating the distribution of PI and PCA in prostate biopsy cores from patients of eight referral centers in Italy. RESULTS We evaluated 2220 cores from 197 patients; all the frustules were re-evaluated by dedicated pathologists retrospectively. Pathologists assigned IRANI scores and determined the positions of PIs; pathologists also re-evaluated the presence of PCa and relative ISUP grade. PCa was recorded in 749/2220 (33.7%). We divided this sample into a PCa PI group (634/749 cores [84.7%]) and a non-PCa + PI group (1157/1471 cores [78.7%]). We observed a statistically significant difference in the presence of inflammation among cores with cancer (p < 0.01). Moreover, periglandular inflammation was higher in the cores with neoplasia, while stromal inflammation was higher in cores without neoplasia (38.5% vs. 31.1% and 55.4% vs. 63.5% p < 0.01). CONCLUSIONS In our experience, there is evidence of an association between PI and PCa at a tissue level. Further studies are needed to confirm our findings and to identify patients who might benefit from target therapies to prevent PCa occurrence and/or progression.
Collapse
|
14
|
Li BH, Yan SY, Luo LS, Zeng XT, Wang YB, Wang XH. Ten interleukins and risk of prostate cancer. Front Oncol 2023; 13:1108633. [PMID: 36733309 PMCID: PMC9887118 DOI: 10.3389/fonc.2023.1108633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Background Interleukins (ILs) have been reported to be related to prostate cancer. The aims of this study were to estimate the levels for several key interleukins in prostate cancer and the causal effects between them. Methods We conducted a bi-directional two-sample Mendelian randomization (MR) study to assess the causal associations between ILs and prostate cancer. Genetic instruments and summary-level data for 10 ILs were obtained from three genome-wide association meta-analyses. Prostate cancer related data were obtained from the PRACTICAL (79,148 cases and 61,106 controls), UK Biobank (7,691 cases and 169,762 controls) and FinnGen consortium (10,414 cases and 124,994 controls), respectively. Results The odds ratio of prostate cancer was 0.92 (95% confidence interval (CI), 0.89, 0.96; P=1.58×10-05) and 1.12 (95% CI, 1.07, 1.17; P=6.61×10-07) for one standard deviation increase in genetically predicted IL-1ra and IL-6 levels, respectively. Genetically predicted levels of IL-1ß, IL-2a, IL-6ra, IL-8, IL-16, IL-17, IL-18, and IL-27 were not associated with the risk of prostate cancer. Reverse MR analysis did not find the associations between genetic liability to prostate cancer and higher levels of IL-1ra (β, -0.005; 95% CI, -0.010, 0.001; P=0.111) and IL-6 (β, 0.002; 95% CI, -0.011, 0.014; P=0.755). Conclusion This MR study suggests that long-term IL-6 may increase the risk of prostate cancer and IL-1ra may reduce it.
Collapse
Affiliation(s)
- Bing-Hui Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Si-Yu Yan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li-Sha Luo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong-Bo Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xing-Huan Wang, ; Yong-Bo Wang,
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xing-Huan Wang, ; Yong-Bo Wang,
| |
Collapse
|
15
|
Dong X, Jiang J, Lin Z, Wen R, Zou L, Luo T, Guan Z, Li X, Wang L, Lu L, Li H, Huang Y, Yang Z, Wang J, Ye X, Hong X, Wang L, Xian S, Chen Z. Nuanxinkang protects against ischemia/reperfusion-induced heart failure through regulating IKKβ/IκBα/NF-κB-mediated macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154093. [PMID: 35447422 DOI: 10.1016/j.phymed.2022.154093] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Heart failure (HF) is a leading cause of death worldwide. Nuanxinkang (NXK) is an effective Chinese herbal formula used in treating HF, but its underlying potential mechanisms have not been fully elucidated. PURPOSE To explore the protective activities of NXK in ischemia/reperfusion (IR)-induced HF through modulating the ratio of proinflammatory (M1) and anti-inflammatory (M2) macrophage populations and leading to the alleviation of inflammation. MATERIALS AND METHODS In vivo, mice were subjected to myocardial IR to generate HF mouse models. Mice in the NXK group were treated with NXK for 28 days. Cardiac function was detected by echocardiography. Major lesions on mouse hearts were determined by hematoxylin-eosin (HE) staining, Masson staining, and TUNEL staining. Inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and qPCR examination. Flow cytometric analyses and qPCR examination were utilized for monitoring the temporal dynamics of macrophage infiltration following IR. In vitro, two polarized models were established by stimulating RAW264.7 cells with 200 ng/ml lipopolysaccharide (LPS) or 20 ng/ml interleukin-4 (IL-4). The RAW264.7 cells with nuclear factor-κB (NF-κB) overexpression was generated by transient transfection of NF-κB plasmids, and NXK intervention was conducted on this cell model to further clarify the involvement of NF-κB signaling in the NXK-mediated HF process. RESULTS In the present study, NXK was found to significantly contribute the cardiac function and ameliorate cardiac fibrosis and apoptosis after myocardial IR injury in vivo, which may be partially due to a decrease in inflammation. We therefore hypothesized that NXK reduced inflammatory damage by modulating subtypes of macrophages. And the results demonstrated that the percentage of proinflammatory macrophages infiltrated in the post-IR period was reduced with NXK treatment, and thereby blunting the wave of proinflammatory response and shifting the peak of the anti-inflammatory macrophage-mediated wound healing process towards an earlier time point. The further investigation showed that macrophage polarization was mediated by NXK through inhibiting the phosphorylation and the nuclear translocation of NF-κB. Besides, the phosphorylated IKKβ and IκBα, upstream mediators of the NF-κB pathway, also decreased by NXK. Moreover, the overexpression of NF-κB partially reversed the NXK-induced favorable activities; and successfully compensated the suppressive effect on inflammation and the phosphorylation of NF-κB. CONCLUSION In conclude, our results demonstrated that NXK induced the cardioprotective effects against IR injury through a regulatory axis of IKKβ/IκBα/NF-κB-mediated macrophage polarization. The information gained from this study provide a possible natural strategy for anti-inflammatory treatment of HF.
Collapse
Affiliation(s)
- Xin Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Jialin Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhijun Lin
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Ruijia Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Ling Zou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China; Huizhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Tong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhuoji Guan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Xuan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Linhai Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Xiaohan Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China; Dongguan Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Xiaohua Hong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China; Huizhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| |
Collapse
|
16
|
Modulation of Inflammation by Plant-Derived Nutraceuticals in Tendinitis. Nutrients 2022; 14:nu14102030. [PMID: 35631173 PMCID: PMC9143056 DOI: 10.3390/nu14102030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tendinitis (tendinopathy) is a pro-inflammatory and painful tendon disease commonly linked with mechanical overuse and associated injuries, drug abuse, and lifestyle factors (including poor diet and physical inactivity) that causes significant healthcare expenditures due to its high incidence. Nuclear factor kappa B (NF-κB) is one of the major pro-inflammatory transcription factors, along with other inflammation signaling pathways, triggered by a variety of stimuli, including cytokines, endotoxins, physical and chemical stressors, hypoxia, and other pro-inflammatory factors. Their activation is known to regulate the expression of a multitude of genes involved in inflammation, degradation, and cell death. The pathogenesis of tendinitis is still poorly understood, whereas efficient and sustainable treatment is missing. Targeting drug suppression of the key inflammatory regulators represents an effective strategy for tendinitis therapy, but requires a comprehensive understanding of their principles of action. Conventional monotherapies are often ineffective and associated with severe side effects in patients. Therefore, agents that modulate multiple cellular targets represent therapeutic treatment potential. Plant-derived nutraceuticals have been shown to act as multi-targeting agents against tendinitis via various anti-oxidant and anti-inflammatory mechanisms, whereat they were able to specifically modulate numerous signaling pathways, including NF-κB, p38/MAPK, JNK/STAT3, and PI3K/Akt, thus down-regulating inflammatory processes. This review discusses the utility of herbal nutraceuticals that have demonstrated safety and tolerability as anti-inflammatory agents for the prevention and treatment of tendinitis through the suppression of catabolic signaling pathways. Limitations associated with the use of nutraceuticals are also described.
Collapse
|
17
|
Gu P, Zhang M, Zhu J, He X, Yang D. Suppression of CDCA3 inhibits prostate cancer progression via NF‑κB/cyclin D1 signaling inactivation and p21 accumulation. Oncol Rep 2022; 47:42. [PMID: 34970697 PMCID: PMC8759108 DOI: 10.3892/or.2021.8253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of the cell cycle contributes to tumor progression. Cell division cycle‑associated 3 (CDCA3) is a known trigger of mitotic entry and has been demonstrated to be constitutively upregulated in tumors. It is therefore associated with carcinogenic properties reported in various cancers. However, the role of CDCA3 in prostate cancer is unclear. In the present study, western blotting and analysis of gene expression profiling datasets determined that CDCA3 expression was upregulated in prostate cancer and was associated with a poor prognosis. CDCA3 knockdown in DU145 and PC‑3 cells led to decreased cell proliferation and increased apoptosis, with increased protein expression levels of cleaved‑caspase3. Further experiments demonstrated that downregulated CDCA3 expression levels induced G0/G1 phase arrest, which was attributed to increased p21 protein expression levels and decreased cyclin D1 expression levels via the regulation of NF‑κB signaling proteins (NFκB‑p105/p50, IKKα/β, and pho‑NFκB‑p65). In conclusion, these results indicated that CDCA3 may serve a crucial role in prostate cancer and consequently, CDCA3 knockdown may be used as a potential therapeutic target.
Collapse
Affiliation(s)
- Peng Gu
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
- Department of Urology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214000, P.R. China
| | - Minhao Zhang
- Department of Urology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214000, P.R. China
| | - Jin Zhu
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaoliang He
- Department of Urology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214000, P.R. China
| | - Dongrong Yang
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
18
|
Bagherian Z, Mirshafiey A, Mohsenzadegan M, Farajollahi MM. Evaluation of G2013 (α-L-guluronic acid) efficacy on PC-3 cells through inhibiting the expression of inflammatory factors. Clin Exp Pharmacol Physiol 2021; 49:254-263. [PMID: 34699087 DOI: 10.1111/1440-1681.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
Given multiple treatment strategies for prostate cancer, its mortality rate is still high; therefore, novel treatment strategies seem necessary. G2013 or α-L-guluronic acid is a new patented drug with immunomodulatory and anti-inflammatory properties. This study aimed to evaluate the property of G2013 on inflammatory molecules involved in tumorigenesis of prostate cancer. MTT assay was used to assess the effect of the drug on the proliferation of PC-3 cells. Expression of interleukin 8 (IL-8), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), myeloid differentiation factor 88 (MYD-88), cyclooxygenase 2 (COX-2), matrix metalloproteinase-2 (MMP-2), and MMP-9 genes were studied in the PC-3 cells treated with 25 (low dose) or 50 (high dose) µg/mL of G2013 for 24 h using quantitative real-time polymerase chain reaction (qRT-PCR) technique. Protein expression of NF-κB and protein activities of MMP-2 and MMP-9 were assayed using flow cytometry and gelatin zymography, respectively. The expression of COX-2 (p = 0.007 at low dose), MMP-2 (p = 0.023 at low dose, p = 0.002 at high dose), NF-κB (p = 0.004 at low dose) and IL-8 (p < 0.0001 in both doses) genes, NF-κB protein (p < 0.0001 in both doses), and MMP-2 activity (p < 0.0001 in both doses) were significantly reduced in the presence of G2013 as compared to the control group. Cancer cell proliferation was also inhibited under 10-500 µg/mL G2013 treatment. Our results revealed that G2013 has the potential to inhibit PC-3 cell proliferation and reduce the expression of tumour-promoting mediators, COX-2, MMP-2, NF-κB, and IL-8 involved in the progression and metastasis of prostate cancer.
Collapse
Affiliation(s)
- Zahra Bagherian
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Guner E, Danacioglu YO, Arikan Y, Seker KG, Polat S, Baytekin HF, Simsek A. The presence of chronic inflammation in positive prostate biopsy is associated with upgrading in radical prostatectomy. Arch Ital Urol Androl 2021; 93:280-284. [PMID: 34839632 DOI: 10.4081/aiua.2021.3.280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study aimed to determine the predictive effect of the presence of chronic prostatitis associated with prostate cancer (PCa) in prostate biopsy on Gleason score upgrade (GSU) in radical prostatectomy (RP) specimens. MATERIALS AND METHODS The data of 295 patients who underwent open or robotic RP with a diagnosis of localized PCa following biopsy were retrospectively analyzed. Patients were divided into two groups with and without GSU following RP. Predictive factors affecting GSU on biopsy were determined. The impact of chronic prostatitis associated with prostate cancer on GSU was examined via logistic regression analysis. RESULTS Out of 224 patients with Gleason 3+3 scores on biopsy, 145 (64.7%) had Gleason upgrade, and 79 (35.2%) had no upgrade. Whilst comparing the two groups with and without Gleason upgrade in terms of patient age, prostate-specific antigen (PSA) value, PSA density (PSAD), prostate volume (PV), neutrophil/lymphocyte (N/L) ratio, number of positive cores, percentage of positive cores, and Prostate Imaging Reporting and Data System version 2 score, no statistically significant difference was detected. The presence of chronic prostatitis associated with PCa was higher in the patient cohort with GSU in contrast to the other group (p < 0.001). According to the univariate logistic regression analysis, the presence of chronic prostatitis was identified to be an independent marker for GSU. CONCLUSIONS Pathologists and urologists should be careful regarding the possibility of a more aggressive tumor in the presence of chronic inflammation associated with PCa because inflammation within PCa was revealed to be linked with GSU after RP.
Collapse
Affiliation(s)
- Ekrem Guner
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Yavuz Onur Danacioglu
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Yusuf Arikan
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Kamil Gokhan Seker
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| | - Salih Polat
- Amasya University Medical Faculty, Department of Urology, Amasya.
| | - Halil Firat Baytekin
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Pathology, Istanbul.
| | - Abdulmuttalip Simsek
- University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Urology, Istanbul.
| |
Collapse
|
20
|
Kwon W, Choi SK, Kim D, Kim HG, Park JK, Han JE, Cho GJ, Yun S, Yu W, Han SH, Ha YS, Lee JN, Kwon TG, Cho DH, Yi JK, Kim MO, Ryoo ZY, Park S. ZNF507 affects TGF-β signaling via TGFBR1 and MAP3K8 activation in the progression of prostate cancer to an aggressive state. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:291. [PMID: 34537073 PMCID: PMC8449443 DOI: 10.1186/s13046-021-02094-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Background The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state. Methods We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells. Results We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function–based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-β signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state. Conclusions Our findings suggest that ZNF507 is a novel key regulator of TGF-β signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02094-3.
Collapse
Affiliation(s)
- Wookbong Kwon
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea. .,Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| | - Daehwan Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea.,School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, Korea
| | - Hyeon-Gyeom Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Sungho Yun
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Se-Hyeon Han
- School of Media Communication, Hanyang University, Wangsimni-ro 222, Seongdong- gu, Seoul, South Korea.,Department of News-team, SBS (Seoul Broadcasting System), Mokdongseo-ro 161, Yangcheon-gu, Seoul, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dong-Hyung Cho
- School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, 41566, Daegu, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research institute, Yeongju, South Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, 37224, Sangju, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, Korea.
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea. .,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
21
|
Abstract
Although some effective therapies have been available for cancer, it still poses a great threat to human health and life due to its drug resistance and low response in patients. Here, we develop a ferroptosis-based therapy by combining iron nanoparticles and cancer-specific gene interference. The expression of two iron metabolic genes (FPN and LCN2) was selectively knocked down in cancer cells by Cas13a or microRNA controlled by a NF-κB-specific promoter. Cells were simultaneously treated by iron nanoparticles. As a result, a significant ferroptosis was induced in a wide variety of cancer cells. However, the same treatment had little effect on normal cells. By transferring genes with adeno-associated virus and iron nanoparticles, the significant tumor growth inhibition and durable cure were obtained in mice with the therapy. In this work, we thus show a cancer therapy based on gene interference-enhanced ferroptosis.
Collapse
Affiliation(s)
- Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.
| |
Collapse
|
22
|
Khoobchandani M, Khan A, Katti KK, Thipe VC, Al-Yasiri AY, MohanDoss DKD, Nicholl MB, Lugão AB, Hans CP, Katti KV. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep 2021; 11:16797. [PMID: 34408231 PMCID: PMC8373987 DOI: 10.1038/s41598-021-96224-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Men with castration-resistant prostate cancer (CRPC) face poor prognosis and increased risk of treatment-incurred adverse effects resulting in one of the highest mortalities among patient population globally. Immune cells act as double-edged sword depending on the tumor microenvironment, which leads to increased infiltration of pro-tumor (M2) macrophages. Development of new immunomodulatory therapeutic agents capable of targeting the tumor microenvironment, and hence orchestrating the transformation of pro-tumor M2 macrophages to anti-tumor M1, would substantially improve treatment outcomes of CRPC patients. We report, herein, Mangiferin functionalized gold nanoparticulate agent (MGF-AuNPs) and its immunomodulatory characteristics in treating prostate cancer. We provide evidence of immunomodulatory intervention of MGF-AuNPs in prostate cancers through observations of enhanced levels of anti-tumor cytokines (IL-12 and TNF-α) with concomitant reductions in the levels of pro-tumor cytokines (IL-10 and IL-6). In the MGF-AuNPs treated groups, IL-12 was elevated to ten-fold while TNF-α was elevated to about 50-fold, while IL-10 and IL-6 were reduced by two-fold. Ability of MGF-AuNPs to target splenic macrophages is invoked via targeting of NF-kB signaling pathway. Finally, therapeutic efficacy of MGF-AuNPs, in treating prostate cancer in vivo in tumor bearing mice, is described taking into consideration various immunomodulatory interventions triggered by this green nanotechnology-based nanomedicine agent.
Collapse
Affiliation(s)
- Menka Khoobchandani
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Aslam Khan
- Department of Biochemistry, University of Missouri, Columbia, MO, 65212, USA
| | - Kavita K Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
| | - Velaphi C Thipe
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Butantã, São Paulo, SP, Brasil
| | - Amal Y Al-Yasiri
- Nuclear Science and Engineering Institute (NSEI), University of Missouri, Columbia, MO, 65211, USA
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Darsha K D MohanDoss
- Dhanvantari Nano Ayushadi Pvt Ltd, No. 8/34, Neelakanta Mehta Street, T. Nagar, Chennai, 600017, India
| | | | - Ademar B Lugão
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Butantã, São Paulo, SP, Brasil
| | - Chetan P Hans
- Department of Medicine-Cardiology, University of Missouri, Columbia, MO, 65212, USA
| | - Kattesh V Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA.
- Department of Physics, University of Missouri, Columbia, MO, 65212, USA.
- University of Missouri Research Reactor (MURR), University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
23
|
Choi SY, Lim B, Chi BH, Lee W, Kim JH, Kyung YS, You D, Kim CS. The curative effect of androgen deprivation therapy alone is insufficient in high-risk prostate cancer. Medicine (Baltimore) 2021; 100:e26833. [PMID: 34397848 PMCID: PMC8341274 DOI: 10.1097/md.0000000000026833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/18/2021] [Indexed: 01/04/2023] Open
Abstract
To compare the outcomes of patients with high-risk prostate cancer treated by primary radical prostatectomy (RP) and primary androgen deprivation therapy (ADT).The study included patients with high-risk or very high-risk prostate cancer. Patients treated with definitive radiation therapy and those with clinical N1 and M1 disease were excluded. The RP group was divided into sub-cohorts of patients treated with ADT and those who received ADT after biochemical recurrence post-RP. Cancer-specific survival (CSS) and overall survival (OS) were analyzed using the Kaplan-Meier method and the Cox proportional hazards model.The study analyzed 859 patients divided into the RP group (n = 654) and ADT group (n = 205). Castration-resistant prostate cancer was detected in 23 (3.5%) patients in the RP group and 43 (21.0%) patients in the ADT group. Mortality cases included 63 (9.6%) patients in the RP group and 91 (44.4%) patients in the ADT group. CSS (P = .0002) and OS (P < .0001) were significantly higher in the RP group than in the ADT group. In the sub-cohort, CSS did not differ significantly between the RP and ADT groups, whereas OS was significantly higher in the RP group than in the ADT group (P < .0001). In the multivariate analysis, primary ADT increased CSS (hazard ratio, 2.068; P = .0498) and OS (hazard ratio, 3.218; P < .0001) compared with RP.In clinically localized high-risk prostate cancer patients, primary RP was associated with better CSS and OS than primary ADT. Comprehensive counseling in this cohort of patients will help the selection of treatment.
Collapse
Affiliation(s)
- Se Young Choi
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Bumjin Lim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Byung Hoon Chi
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Wonchul Lee
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Jung Hoon Kim
- Department of Urology, Hanil General Hospital, Seoul, Republic of Korea
| | - Yoon Soo Kyung
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Dalsan You
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
24
|
Yu G, Mu H, Zhou H, Fang F, Cui Y, Wu Q, Xiong Q, Li H. MicroRNA-361 suppresses the biological processes of hepatic stellate cells in HBV-relative hepatic fibrosis by NF-kappaB p65. Cells Dev 2021; 167:203711. [PMID: 34216805 DOI: 10.1016/j.cdev.2021.203711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/22/2020] [Accepted: 06/17/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND This research study explores the effect of miR-361 on the activation of immortalized human and mice hepatic stallate cells (HSCs). METHODS 10 liver specimens from healthy volunteers and 20 HBV-relevant HCC tissues from patients. The expressions of miR-361 in HCC patients, HBx transgenic mice, HCC cell lines expressing HBx, and human and mouse HSCs were detected. The influences of miR-361 on the biological processes of HSCs were explored. The target of miR-361 and the effects of p65 on miR-361 were also verified and analyzed. RESULTS Microarray analysis and quantitative real-time PCR (Q-PCR) indicated that miR-361 was decreased in HBV-relevant HCC tissues, HBx transgenic mice, HBx-transfected HepG2 cells, human and mice HSCs. Bio-informatics prediction and dual-luciferase reporter assay (DLRA) suggested that nuclear factor kappa B subunit p65 gene was a target of miR-361. Furthermore, this study showed that p65 expression was upregulated in the HBV-relevant HCC tissues, HBx transgenic mice, HBx-transfected HepG2 cells. MiR-361 upregulation also caused a reduction in p65 expression in both human and mice HSCs. In addition, p65 overexpression counteracted the effect of miR-361 in human and mice HSCs' biological processes. These findings reveal a latent mechanism underlying p65 modulation by miR-361 which is capable of initiating HSC growth and migration. CONCLUSION miR-361 is potentially functioning as a potent marker for HBV-relevant HCC development or liver fibrosis (LF) progression.
Collapse
Affiliation(s)
- Ge Yu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Han Mu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Hongyuan Zhou
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Feng Fang
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China.
| | - Huikai Li
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China.
| |
Collapse
|
25
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
26
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
27
|
Zhou L, Jiang Z, Gu J, Gu W, Han S. B7-H3 and digestive system cancers. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers (DSC) are the most common cancers worldwide and often associated with poor prognosis because of their characteristics of invasive and metastatic. Thus, it is particularly necessary to find novel molecular targets for early diagnosis, as well as targeted treatment of DSC. B7-H3, which was previously referred to as a modulatory ligand that regulate T-cell-mediated immune reaction, is a B7-family member of co-stimulatory biomolecules, and in recent years it was found that its concentration was remarkably up modulated in serum, as well as tissues of DSC patients. Numerous studies have documented that B7-H3 has a vital function in the DSC. Herein, we summarize the current literature on diagnosis and prognosis potential of B7-H3 in DSC including those of the esophagus, gastric, liver, pancreas, and colon.
Collapse
Affiliation(s)
- Liyun Zhou
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Zhenhua Jiang
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Jing Gu
- Department of Dermatology, Henan Honliv Hospital, Changyuan
| | - Wenhui Gu
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Shuangyin Han
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| |
Collapse
|
28
|
Torrealba N, Vera R, Fraile B, Martínez-Onsurbe P, Paniagua R, Royuela M. TGF-β/PI3K/AKT/mTOR/NF-kB pathway. Clinicopathological features in prostate cancer. Aging Male 2020; 23:801-811. [PMID: 30973040 DOI: 10.1080/13685538.2019.1597840] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer is one of the most common cancers in the male population. The objective of this investigation was to study the relationship of components of transforming growth factor-B (TGF-β)/phosphoinositide-3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR)/nuclear factor kappa B (NF-kB) transduction pathway with clinical-pathological markers. By immunohistochemical methods, we determined the expression of several factors [TGF-β, Transforming Growth Factor B Receptor I (TGFBRI), TGFBRII, PI3K, AKT-Ser, AKT-Thr, mTOR, p-mTOR, inhibitor kB kinase (IKK), pIKK, inhibitor kB (IkB), pIkB, NF-kBp50, and NF-kBp65]. To know their relationship with established classical markers (Preoperative serum prostate specific antigen, pathological tumor stage, clinical tumor stage, Gleason score, perineural invasion, node involvement, positive surgical margins, biochemical progression, and survival) and their importance in the prognosis of biochemical progression, Spearman test, survival analysis, Log-rang test, Kaplan-Meier curves, univariate and multivariate Cox proportional Hazard regression analyses were performed. Spearman analysis showed that there was at least one correlation between TGF-β, TGFBRI, PI3K, pAKT-Thr, p-mTOR, NF-kBp50, and classical markers. Cox multivariate analysis between the prognostic variables (pathological tumor stage, Gleason score, and node involvement) and inmunohistochemical parameters confirmed TGFBR1 and PI3K as a prognostic and independent marker of biochemical progression in prostate cancer. Our results suggest that TGFBR1 and PI3K could be used as useful biomarkers for early diagnosis and prognoses for biochemical recurrence in prostate cancer after radical prostatectomy.
Collapse
Affiliation(s)
- Norelia Torrealba
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | - Raúl Vera
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | - Benito Fraile
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | | | - Ricardo Paniagua
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, Madrid, Spain
| |
Collapse
|
29
|
Alshyarba M, Otifi H, Al Fayi M, A Dera A, Rajagopalan P. Thymoquinone inhibits IL-7-induced tumor progression and metastatic invasion in prostate cancer cells by attenuating matrix metalloproteinase activity and Akt/NF-κB signaling. Biotechnol Appl Biochem 2020; 68:1403-1411. [PMID: 33128273 DOI: 10.1002/bab.2062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/24/2020] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-7 acts via the IL-7 receptor in metastatic tumor progression in prostate cancer (PC). The current study aimed to evaluate thymoquinone (Tq), an active constituent from Nigella sativa against IL-7-driven tumor progression and metastatic invasion in PC cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess the proliferation of PC cells. Enzyme-linked immunosorbent assay was used to detect the expression of IL-7 and matrix metalloproteinases (MMPs). Tumor-cell transendothelial, scratch wound and cell scatter assays were performed to mimic metastasis. Western immunoblotting was used to measure the level of proteins. Tq effectively controlled the proliferation of DU-145, PC-3, and LNCaP cells with GI50 of 10.18, 12.40, and 16.78 µM, respectively. IL-7 and IL-7R were natively expressed in all PC types, while maximal expression was detected in DU-145. IL-7 promoted metastatic events, such as transendothelial migration, cell scatter, and cell invasion of DU-145 cells in a dose-dependent manner that was inhibited by Tq. Furthermore, Tq also downregulated p-Akt and NF-κB in DU-145 cells induced by IL-7 antibody and reduced the levels of MMP-3 and MMP-7 in these cells in a dose-dependent manner. Collectively, Tq has excellent efficacy in controlling tumor progression, migration, and invasion of DU-145 cells that were driven by the activation of MMPs through IL-7/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Mishari Alshyarba
- Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
30
|
Jadli M, Thakur K, Aggarwal N, Chhokar A, Bibban R, Singh T, Bhat A, Bharti AC. Delineating role of NF-κB and interacting cytokines during prostate cancer-induced osteoclastogenesis. J Cell Biochem 2020; 122:259-276. [PMID: 33053226 DOI: 10.1002/jcb.29856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
Abstract
Prostate cancer (PCa) frequently metastasizes to the bone leading to devastating complications such as severe pain and fracture. However, the mechanisms by which PCa cells cause bone loss remain less understood. We investigated the role and mechanisms by which PCa cells induce osteoclastogenesis using cultured monocytic osteoclast precursors. Treatment of RAW264.7 cells with PCa cell lines: DU145, LNCaP, PC-3, or their conditioned media led to the formation of distinct multinucleated, TRAP+ osteoclasts. This phenomenon was associated with the increased activation of transcription factor nuclear factor-kB (NF-κB). High transcript level of receptor activator of nuclear factor-kB ligand (RANKL), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were detected in PCa cells. TNF-α and LT-α augmented, whereas IL-6 reduced the RANKL-induced osteoclast formation in RAW264.7 cultures. Our results also demonstrated that PCa cells-induced osteoclastogenesis involved the activation of the TRAF6-IKK-p65-NF-κB signaling cascade. Together, our study demonstrates that PCa cells produce RANKL and several other pro-inflammatory cytokines known to influence osteoclastogenesis, by targeting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
31
|
Montes M, MacKenzie L, McAllister MJ, Roseweir A, McCall P, Hatziieremia S, Underwood MA, Boyd M, Paul A, Plevin R, MacKay SP, Edwards J. Determining the prognostic significance of IKKα in prostate cancer. Prostate 2020; 80:1188-1202. [PMID: 33258506 DOI: 10.1002/pros.24045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND As the survival of castration-resistant prostate cancer (CRPC) remains poor, and the nuclear factor-κB (NF-κB) pathways play key roles in prostate cancer (PC) progression, several studies have focused on inhibiting the NF-κB pathway through generating inhibitory κB kinase subunit α (IKKα) small molecule inhibitors. However, the identification of prognostic markers able to discriminate which patients could benefit from IKKα inhibitors is urgently required. The present study investigated the prognostic value of IKKα, IKKα phosphorylated at serine 180 (p-IKKα S180) and threonine 23 (p-IKKα T23), and their relationship with the androgen receptor (AR) and Ki67 proliferation index to predict patient outcome. METHODS A cohort of 115 patients with hormone-naïve PC (HNPC) and CRPC specimens available were used to assess tumor cell expression of proteins within both the cytoplasm and the nucleus by immunohistochemistry. The expression levels were dichotomized (low vs high) to determine the associations between IKKα, AR, Ki67, and patients'Isurvival. In addition, an analysis was performed to assess potential IKKα associations with clinicopathological and inflammatory features, and potential IKKα correlations with other cancer pathways essential for CRPC growth. RESULTS High levels of cytoplasmic IKKα were associated with a higher cancer-specific survival in HNPC patients with low AR expression (hazards ratio [HR], 0.33; 95% confidence interval [CI] log-rank, 0.11-0.98; P = .04). Furthermore, nuclear IKKα (HR, 2.60; 95% CI, 1.27-5.33; P = .01) and cytoplasmic p-IKKα S180 (HR, 2.10; 95% CI, 1.17-3.76; P = .01) were associated with a lower time to death from recurrence in patients with CRPC. In addition, high IKKα expression was associated with high levels of T-cells (CD3+ P = .01 and CD8+ P = .03) in HNPC; however, under castration conditions, high IKKα expression was associated with high levels of CD68+ macrophages (P = .04), higher Gleason score (P = .01) and more prostate-specific antigen concentration (P = .03). Finally, we identified crosstalk between IKKα and members of the canonical NF-κB pathway in the nucleus of HNPC. Otherwise, IKKα phosphorylated by noncanonical NF-κB and Akt pathways correlated with members of the canonical NF-κB pathway in CRPC. CONCLUSION The present study reports that patients with CRPC expressing high levels of nuclear IKKα or cytoplasmic p-IKKα S180, which associated with a lower time to death from recurrence, may benefit from IKKα inhibitors.
Collapse
Affiliation(s)
- Melania Montes
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Lewis MacKenzie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Milly J McAllister
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Antonia Roseweir
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow, UK
| | - Pamela McCall
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Sophia Hatziieremia
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Mark A Underwood
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Simon P MacKay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Joanne Edwards
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| |
Collapse
|
32
|
Gan QX, Wang J, Hu J, Lou GH, Xiong HJ, Peng CY, Huang QW. Modulation of Apoptosis by Plant Polysaccharides for Exerting Anti-Cancer Effects: A Review. Front Pharmacol 2020; 11:792. [PMID: 32536869 PMCID: PMC7267062 DOI: 10.3389/fphar.2020.00792] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer has become a significant public health problem with high disease burden and mortality. At present, radiotherapy and chemotherapy are the main means of treating cancer, but they have shown serious safety problems. The severity of this problem has caused further attention and research on effective and safe cancer treatment methods. Polysaccharides are natural products with anti-cancer activity that are widely present in a lot of plants, and many studies have found that inducing apoptosis of cancer cells is one of their important mechanisms. Therefore, this article reviews the various ways in which plant polysaccharides promote apoptosis of cancer cells. The major apoptotic pathways involved include the mitochondrial pathway, the death receptor pathway, and their upstream signal transduction such as MAPK pathway, PI3K/AKT pathway, and NF-κB pathway. Moreover, the paper has also been focused on the absorption and toxicity of plant polysaccharides with reference to extant literature, making the research more scientific and comprehensive. It is hoped that this review could provide some directions for the future development of plant polysaccharides as anticancer drugs in pharmacological experiments and clinical researches.
Collapse
Affiliation(s)
- Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Jun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-Yi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Ma Y, Ren X, Patel N, Xu X, Wu P, Liu W, Zhang K, Goodin S, Li D, Zheng X. Nobiletin, a citrus polymethoxyflavone, enhances the effects of bicalutamide on prostate cancer cells via down regulation of NF-κB, STAT3, and ERK activation. RSC Adv 2020; 10:10254-10262. [PMID: 35498570 PMCID: PMC9050343 DOI: 10.1039/c9ra10020b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products have shown potential to be combined with current cancer therapies to improve patient outcomes. Nobiletin (NBT) is a citrus polymethoxyflavone and has been shown to exert an anticancer effect in various cancer cells. We investigated the effects and mechanisms of NBT in combination with bicalutamide (BCT), a commonly used anti-androgen drug in prostate cancer therapy, on prostate cancer cells. Our results demonstrate that the combined treatment with NBT and BCT produces an enhanced inhibitory effect on the growth of prostate cancer cells compared to either compound alone. The synergistic action of NBT and BCT was confirmed using isobologram analysis. Moreover, this study has shown that NBT and BCT synergistically inhibited colony formation and migration as well as induced apoptosis. Mechanistic studies demonstrate that NBT and BCT combination reduced key cellular signaling regulators including: p-Erk/Erk, p-STAT3/STAT3 and NF-κB. Overall, these results suggest that NBT combination with BCT may be an effective treatment for prostate cancer.
Collapse
Affiliation(s)
- Yuran Ma
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 China
| | - Xiang Ren
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 China
| | - Nandini Patel
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey 164 Frelinghuysen Road Piscataway NJ 08854 USA +1-732-445-0687 +1-848-445-8069
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 China
- International Healthcare Innovation Institute (Jiangmen) Jiangmen 529020 Guangdong China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 China
- International Healthcare Innovation Institute (Jiangmen) Jiangmen 529020 Guangdong China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 China
- International Healthcare Innovation Institute (Jiangmen) Jiangmen 529020 Guangdong China
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey New Brunswick NJ 08903 USA
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 China
- International Healthcare Innovation Institute (Jiangmen) Jiangmen 529020 Guangdong China
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey 164 Frelinghuysen Road Piscataway NJ 08854 USA +1-732-445-0687 +1-848-445-8069
- Rutgers Cancer Institute of New Jersey New Brunswick NJ 08903 USA
| |
Collapse
|
34
|
Dai W, Wu J, Wang D, Wang J. Cancer gene therapy by NF-κB-activated cancer cell-specific expression of CRISPR/Cas9 targeting telomeres. Gene Ther 2020; 27:266-280. [DOI: 10.1038/s41434-020-0128-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
|
35
|
Ding Y, He P, Li Z. MicroRNA-9119 regulates cell viability of granulosa cells in polycystic ovarian syndrome via mediating Dicer expression. Mol Cell Biochem 2020; 465:187-197. [PMID: 31894528 DOI: 10.1007/s11010-019-03678-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/14/2019] [Indexed: 02/05/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age. Although much is understood concerning the pathology of PCOS, further investigation into the influence of microribonucleic acids (miRNAs) on the proliferation of ovarian granulosa cells (GCs) is needed. This study investigated the role of specific miRNAs in ovarian dysfunction of PCOS and its effect on the proliferation of GCs. Initially, miRNA profiling was performed on the ovarian cortexes of 15 rats in which PCOS had been induced and 15 rats without PCOS (non-PCOS). This mechanical study was performed on ovarian GCs extracted from human chorionic gonadotrophin (hCG)-induced rats. Insulin was used to treat GCs to establish the PCOS cell model. Increased Equus caballus mir-9119 expression was observed and confirmed in the insulin-induced model of PCOS in GCs (GC-PCOS) as well as in the hCG-induced rats when compared to non-PCOS rats and cells. Observation and confirmation were carried out through both miRNA array and quantitative PCR. In contrast, downregulation of the nuclear factor kappa B (NFκB) p65 was observed in the PCOS cell model. Additionally, annexin V, FITC, and propidium iodide flow cytometry showed overexpression of miR-9119-induced apoptosis. In this study, we revealed that miR-9119 inhibition regulates p65 expression levels in insulin-treated GCs by binding to the 3'-untranslated of p65. Additionally, regulation of p65 expression was positively correlated with the expression of the double-stranded RNA endoribonuclease DICER. Moreover, RNA silencing/overexpression of p65 affected the functional role of miR-9119. In conclusion, GCs of PCOS, the expression of miR-9119, and targeted NFκB/p65-DICER axis are upregulated in order to maintain cell viability and prevent apoptosis, thereby promoting Anti-Müllerian hormone production in GCs. This study may provide a new understanding of the mechanism of GC dysfunction.
Collapse
Affiliation(s)
- Yang Ding
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Pei He
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Zhiling Li
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
36
|
Tanaka K, Tanaka T, Nakano T, Hozumi Y, Yanagida M, Araki Y, Iwazaki K, Takagi M, Goto K. Knockdown of DEAD-box RNA helicase DDX5 selectively attenuates serine 311 phosphorylation of NF-κB p65 subunit and expression level of anti-apoptotic factor Bcl-2. Cell Signal 2020; 65:109428. [DOI: 10.1016/j.cellsig.2019.109428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
37
|
Clusterin Silencing in Prostate Cancer Induces Matrix Metalloproteinases by an NF- κB-Dependent Mechanism. JOURNAL OF ONCOLOGY 2019; 2019:4081624. [PMID: 31885575 PMCID: PMC6925831 DOI: 10.1155/2019/4081624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/31/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
Clusterin (CLU) is a stress-activated glycoprotein, whose expression is altered both in inflammation and cancer. Previously, we showed that abrogation of CLU expression in cancer-prone mice (TRAMP) results in the enhancement of tumor spreading and homing, concomitant with an enhanced expression of NF-κB. In the present paper, we carried out an extensive experimental work by utilizing microarray gene expression data, as well as in vitro and in vivo models of prostate cancer (PCa). Our results demonstrated that (i) CLU expression is significantly downregulated in human PCa and inversely correlates with the expression of p65 in metastases; (ii) CLU overexpression in PCa cells reduces the Ser536 phosphorylation of p65, inhibits NF-κB nuclear translocation, and reduces the transcription of matrix metalloproteinase-9 and metalloproteinase-2 (MMP-9 and MMP-2). Conversely, CLU silencing promotes NF-κB activation and transcriptional upregulation of MMP-9; and (iii) expression and activity of MMP-2 and MMP-9 are increased in CLU−/− mice (CLUKO) and in TRAMP/CLUKO mice in comparison to their relative Clu+/+ littermates. Taken together, our data support the hypothesis that CLU downregulation, an early and relevant event in PCa onset, may inhibit NF-κB activation and limit the execution of a transcriptional program that favor the disease progression towards a metastatic stage.
Collapse
|
38
|
Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20236091. [PMID: 31816863 PMCID: PMC6929142 DOI: 10.3390/ijms20236091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a significant health concern throughout the world. Standard therapy for advanced disease consists of anti-androgens, however, almost all prostate tumors become castration resistant (CRPC). Progression from androgen-sensitive PCa to CRPC is promoted by inflammatory signaling through cyclooxygenase-2 (COX-2) expression and ErbB family receptors/AKT activation, compensating androgen receptor inactivity. METHODS Making use of CRPC cell lines, we investigated the effects of the anti-inflammatory drug celecoxib. Biochemical data obtained using immunoblotting, enzyme-linked immunosorbent assay (ELISA), invasion, and xenografts were further integrated by bioinformatic analyses. RESULTS Celecoxib reduced cell growth and induced apoptosis through AKT blockade, cleavage of poly (ADP-ribose) polymerase-1 (PARP-1), and proteasomal degradation of the anti-apoptotic protein Mcl-1. Epidermal growth factor receptor (EGFR), ErbB2, and ErbB3 degradation, and heterogeneous nuclear ribonucleoprotein K (hnRNP K) downregulation, further amplified the inhibition of androgen signaling. Celecoxib reduced the invasive phenotype of CRPC cells by modulating NF-κB activity and reduced tumor growth in mice xenografts when administered in association with the anti-EGFR receptor antibody cetuximab. Bioinformatic analyses on human prostate cancer datasets support the relevance of these pathways in PCa progression. CONCLUSIONS Signaling nodes at the intersection of pathways implicated in PCa progression are simultaneously modulated by celecoxib treatment. In combination therapies with cetuximab, celecoxib could represent a novel therapeutic strategy to curb signal transduction during CRPC progression.
Collapse
|
39
|
Wa Q, Huang S, Pan J, Tang Y, He S, Fu X, Peng X, Chen X, Yang C, Ren D, Huang Y, Liao Z, Huang S, Zou C. miR-204-5p Represses Bone Metastasis via Inactivating NF-κB Signaling in Prostate Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:567-579. [PMID: 31678733 PMCID: PMC6838892 DOI: 10.1016/j.omtn.2019.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/13/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
The prime issue derived from prostate cancer (PCa) is its high prevalence to metastasize to bone. MicroRNA-204-5p (miR-204-5p) has been reported to be involved in the development and metastasis in a variety of cancers. However, the clinical significance and biological functions of miR-204-5p in bone metastasis of PCa are still not reported yet. In this study, we find that miR-204-5p expression is reduced in PCa tissues and serum sample with bone metastasis compared with that in PCa tissues and serum sample without bone metastasis, which is associated with advanced clinicopathological characteristics and poor bone metastasis-free survival in PCa patients. Moreover, upregulation of miR-204-5p inhibits the migration and invasion of PCa cells in vitro, and importantly, upregulating miR-204-5p represses bone metastasis of PCa cells in vivo. Our results further demonstrated that miR-204-5p suppresses invasion, migration, and bone metastasis of PCa cells via inactivating nuclear factor κB (NF-κB) signaling by simultaneously targeting TRAF1, TAB3, and MAP3K3. In clinical PCa samples, miR-204-5p expression negatively correlates with TRAF1, TAB3, and MAP3K3 expression and NF-κB signaling activity. Therefore, our findings reveal a new mechanism underpinning the bone metastasis of PCa, as well as provide evidence that miR-204-5p might serve as a novel serum biomarker in bone metastasis of PCa. This study identifies a novel functional role of miR-204-5p in bone metastasis of prostate cancer and supports the potential clinical value of miR-204-5p as a serum biomarker in bone metastasis of PCa.
Collapse
Affiliation(s)
- Qingde Wa
- Department of Orthopaedic Surgery, The Affiliated Hospital of Zunyi Medical College, 563003 Zunyi, China
| | - Sheng Huang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Nanchang University, 563003 Zunyi, China
| | - Jincheng Pan
- Department of Urology Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080 Guangzhou, China
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Xiaodong Fu
- School of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182 Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080 Guangzhou, China
| | - Chunxiao Yang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dong Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Zhuangwen Liao
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260 Guangzhou, China.
| | - Changye Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China.
| |
Collapse
|
40
|
Extracellular Vesicles from Human Advanced-Stage Prostate Cancer Cells Modify the Inflammatory Response of Microenvironment-Residing Cells. Cancers (Basel) 2019; 11:cancers11091276. [PMID: 31480312 PMCID: PMC6769894 DOI: 10.3390/cancers11091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) progression is strictly associated with microenvironmental conditions, which can be modified by cancer-released extracellular vesicles (EVs), important mediators of cell-cell communication. However, the role of EVs in the inflammatory cross-talk between cancer cells and microenvironment-residing cells remains largely unknown. To evaluate the role of EVs in the tumour microenvironment, we treated the non-cancerous prostate cell line PNT2 with EVs isolated from advanced-stage prostate cancer PC3 (PC3-EVs). Caspase-1-mediated IL-1β maturation was evaluated after 24 h incubation with EVs. Moreover, the effect of PC3-EVs on differentiated macrophagic THP-1 cells was assessed by analyzing cytokine expression and PC3 cells migration and proliferation profiles. We illustrated that PC3 cells contain active NLRP3-inflammasome cascade and secrete IL-1β. PC3-EVs affect the PNT2 inflammatory response, inducing caspase-1-mediated IL-1β maturation via ERK1/2-mediated lysosomal destabilization and cathepsin B activation. We also verified that PC3-EVs induce a functional TAM-like polarization in differentiated THP-1 cells. Our results demonstrated that cancer-derived EVs induce an inflammatory response in non-cancerous prostate cells, while inducing an immunomodulatory phenotype in immune cells. These apparently contradictory effects are both committed to strengthening the tumour-promoting microenvironment
Collapse
|
41
|
Hayashi T, Fujita K, Matsushita M, Nonomura N. Main Inflammatory Cells and Potentials of Anti-Inflammatory Agents in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081153. [PMID: 31408948 PMCID: PMC6721573 DOI: 10.3390/cancers11081153] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most common type of cancer and the leading cause of cancer deaths among men in many countries. Preventing progression is a major concern for prostate cancer patients on active surveillance, patients with recurrence after radical therapies, and patients who acquired resistance to systemic therapies. Inflammation, which is induced by various factors such as infection, microbiome, obesity, and a high-fat diet, is the major etiology in the development of prostate cancer. Inflammatory cells play important roles in tumor progression. Various immune cells including tumor-associated neutrophils, tumor-infiltrating macrophages, myeloid-derived suppressor cells, and mast cells promote prostate cancer via various intercellular signaling. Further basic studies examining the relationship between the inflammatory process and prostate cancer progression are warranted. Interventions by medications and diets to control systemic and/or local inflammation might be effective therapies for prostate cancer progression. Epidemiological investigations and basic research using human immune cells or mouse models have revealed that non-steroidal anti-inflammatory drugs, metformin, statins, soy isoflavones, and other diets are potential interventions for preventing progression of prostate cancer by suppressing inflammation. It is essential to evaluate appropriate indications and doses of each drug and diet.
Collapse
Affiliation(s)
- Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Cai T, Santi R, Tamanini I, Galli IC, Perletti G, Bjerklund Johansen TE, Nesi G. Current Knowledge of the Potential Links between Inflammation and Prostate Cancer. Int J Mol Sci 2019; 20:ijms20153833. [PMID: 31390729 PMCID: PMC6696519 DOI: 10.3390/ijms20153833] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation is inherent in prostatic diseases and it is now accepted that it may facilitate cellular proliferation in both benign and malignant conditions. The strong relationship between prostatic inflammation and pathogenesis of benign prostatic hyperplasia (BPH) is supported by epidemiologic, histopathologic and molecular evidence. Contrariwise, the role of inflammation in prostate carcinogenesis is still controversial, although current data indicate that the inflammatory microenvironment can regulate prostate cancer (PCa) growth and progression. Knowledge of the complex molecular landscape associated with chronic inflammation in the context of PCa may lead to the introduction and optimization of novel targeted therapies. In this perspective, evaluation of the inflammatory component in prostate specimens could be included in routine pathology reports.
Collapse
Affiliation(s)
- Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | | | - Irene Tamanini
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | | | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, 21100 Busto Arsizio, Italy
| | | | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy.
| |
Collapse
|
43
|
Han IH, Kim JH, Jang KS, Ryu JS. Inflammatory mediators of prostate epithelial cells stimulated with Trichomonas vaginalis promote proliferative and invasive properties of prostate cancer cells. Prostate 2019; 79:1133-1146. [PMID: 31050003 DOI: 10.1002/pros.23826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Trichomonas vaginalis (Tv) is the most common sexually transmitted parasite. It is detected in prostatic tissue of benign prostatic hyperplasia, prostatitis, and prostate cancer (PCa) and has been suggested to cause chronic prostatitis. Moreover, up to 20% of all cancers worldwide are associated with chronic inflammation. Here, we investigated whether inflammatory mediators produced by normal human prostate epithelial cells (RWPE-1) stimulated with Tv could promote growth and invasiveness of PCa cells. METHODS Conditioned medium of RWPE-1 cells was prepared by stimulating them with Tv (trichomonad-conditioned medium [TCM]) and without Tv (conditioned medium [CM]). Promotion of PCa cells (PC3, DU145, and LNCaP) was assessed by wound healing, proliferation, and invasion assays. RESULTS We observed that the production of interleukin (IL)-1β, IL-6, CCL2, CXCL8, prostaglandin-E2 (PGE2 ), and COX2 by RWPE-1 cells was increased by stimulating them with Tv. When PCa cells were incubated with TCM, their proliferation, invasion, and migration increased. Moreover, they showed increased epithelial-mesenchymal transition (EMT)-related markers by a reduction in epithelial markers and an increase in mesenchymal markers. In vivo, xenograft tumor tissues injected with TCM also showed increased expression of cyclin D1 and proliferating cell nuclear antigen, as well as induction of EMT. Receptors and signal molecules of PCa cells increased in response to exposure to TCM, and blocking receptors (CXCR1, CXCR2, C-C chemokine receptor 2, glycoprotein 130, EP2, and EP4) reduced the proliferation of PCa cells with decreased production of cytokines (CCL2, IL-6, and CXCL8) and PGE2 , and expression of NF-κB and Snail1. CONCLUSIONS Our results suggest that Tv infection may be one of the factors creating the supportive microenvironment to promote proliferation and invasiveness of PCa cells.
Collapse
Affiliation(s)
- Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Ki-Seok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell Tissue Res 2019; 378:255-265. [DOI: 10.1007/s00441-019-03054-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
|
45
|
CK2 Pro-Survival Role in Prostate Cancer Is Mediated via Maintenance and Promotion of Androgen Receptor and NFκB p65 Expression. Pharmaceuticals (Basel) 2019; 12:ph12020089. [PMID: 31197122 PMCID: PMC6631211 DOI: 10.3390/ph12020089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
The prosurvival protein kinase CK2, androgen receptor (AR), and nuclear factor kappa B (NFκB) interact in the function of prostate cells, and there is evidence of crosstalk between these signals in the pathobiology of prostate cancer (PCa). As CK2 is elevated in PCa, and AR and NFκB are involved in the development and progression of prostate cancer, we investigated their interaction in benign and malignant prostate cells in the presence of altered CK2 expression. Our results show that elevation of CK2 levels caused increased levels of AR and NFκB p65 in prostate cells of different phenotypes. Analysis of TCGA PCa data indicated that AR and CK2α RNA expression are strongly correlated. Small molecule inhibition or molecular down-regulation of CK2 caused reduction in AR mRNA expression and protein levels in PCa cells and in orthotopic xenograft tumors by various pathways. Among these, regulation of AR protein stability plays a unifying role in CK2 maintenance of AR protein levels. Our results show induction of various endoplasmic reticulum stress signals after CK2 inhibition, which may play a role in the PCa cell death response. Of note, CK2 inhibition caused loss of cell viability in both parental and enzalutamide-resistant castrate-resistant PCa cells. The present work elucidates the specific link of CK2 to the pathogenesis of PCa in association with AR and NFκB expression; further, the observation that inhibition of CK2 can exert a growth inhibitory effect on therapy-resistant PCa cells emphasizes the potential utility of CK2 inhibition in patients who are on enzalutamide treatment for advanced cancer.
Collapse
|
46
|
Zou W, Yin P, Shi Y, Jin N, Gao Q, Li J, Liu F. A Novel Biological Role of α-Mangostin via TAK1-NF-κB Pathway against Inflammatory. Inflammation 2019; 42:103-112. [PMID: 30132203 DOI: 10.1007/s10753-018-0876-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The oxysterone α-mangostin is isolated from mangosteen husks and is widely used in the treatment of abdominal pain, diarrhea, and dysentery. In this study, we established a lipopolysaccharide (LPS)-induced inflammatory model of rat intestinal epithelial cells (IEC-6 cells), at the same time we used differently concentration α-mangostin to detect its anti-inflammatory activity. We applied doses of α-mangostin (2.5, 5, and 10 μM) and detected apoptosis by flow cytometry, and the Griess reagent and the enzyme-linked immunosorbent assay (ELISA) method detected inflammatory factors such as nitric oxide (NO), prostaglandin (PG) E2, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. We also used quantitative real-time PCR (Q-PCR) to examine inflammatory factors and western blotting to examine the activation of transforming growth factor-activated kinase (TAK)-1-nuclear factor (NF)-κB signaling pathway-related proteins. Finally, we used laser confocal microscopy to detect the effect of the 10 μM α-mangostin on the nuclear import of NF-κB-p65. The results showed that α-mangostin treatment significantly reduced the apoptosis of LPS-stimulated IEC-6 cells, the production of inflammatory factors, the activation of TAK1-NF-κB signaling pathway-related proteins, and the entry of p65 into the nucleus. In conclusion, α-mangostin exerts its anti-inflammatory effects by inhibiting the activation of TAK1-NF-κB and it may be a potential choice for the treatment of inflammation diseases.
Collapse
Affiliation(s)
- Wenshu Zou
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, People's Republic of China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, NO.1 Beichen West Road, Beijing, People's Republic of China
| | - Yaran Shi
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, People's Republic of China
| | - Na Jin
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, People's Republic of China
| | - Qian Gao
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, People's Republic of China
| | - Jiandong Li
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, People's Republic of China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing, People's Republic of China.
| |
Collapse
|
47
|
Rao Z, Cao H, Shi B, Liu X, Luo J, Zeng N. Inhibitory Effect of Jing-Fang Powder n-Butanol Extract and Its Isolated Fraction D on Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells. J Pharmacol Exp Ther 2019; 370:62-71. [DOI: 10.1124/jpet.118.255893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
|
48
|
DeRycke MS, Larson MC, Nair AA, McDonnell SK, French AJ, Tillmans LS, Riska SM, Baheti S, Fogarty ZC, Larson NB, O’Brien DR, Cheville JC, Wang L, Schaid DJ, Thibodeau SN. An expanded variant list and assembly annotation identifies multiple novel coding and noncoding genes for prostate cancer risk using a normal prostate tissue eQTL data set. PLoS One 2019; 14:e0214588. [PMID: 30958860 PMCID: PMC6453468 DOI: 10.1371/journal.pone.0214588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/17/2019] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PrCa) is highly heritable; 284 variants have been identified to date that are associated with increased prostate cancer risk, yet few genes contributing to its development are known. Expression quantitative trait loci (eQTL) studies link variants with affected genes, helping to determine how these variants might regulate gene expression and may influence prostate cancer risk. In the current study, we performed eQTL analysis on 471 normal prostate epithelium samples and 249 PrCa-risk variants in 196 risk loci, utilizing RNA sequencing transcriptome data based on ENSEMBL gene definition and genome-wide variant data. We identified a total of 213 genes associated with known PrCa-risk variants, including 141 protein-coding genes, 16 lncRNAs, and 56 other non-coding RNA species with differential expression. Compared to our previous analysis, where RefSeq was used for gene annotation, we identified an additional 130 expressed genes associated with known PrCa-risk variants. We detected an eQTL signal for more than half (n = 102, 52%) of the 196 loci tested; 52 (51%) of which were a Group 1 signal, indicating high linkage disequilibrium (LD) between the peak eQTL variant and the PrCa-risk variant (r2>0.5) and may help explain how risk variants influence the development of prostate cancer.
Collapse
Affiliation(s)
- Melissa S. DeRycke
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Melissa C. Larson
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Asha A. Nair
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Shannon K. McDonnell
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Amy J. French
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Lori S. Tillmans
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Shaun M. Riska
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Saurabh Baheti
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Zachary C. Fogarty
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Nicholas B. Larson
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Daniel R. O’Brien
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - John C. Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| |
Collapse
|
49
|
Peng P, Chen T, Wang Q, Zhang Y, Zheng F, Huang S, Tang Y, Yang C, Ding W, Ren D, Huang Z, Guo Y. Decreased miR-218-5p Levels as a Serum Biomarker in Bone Metastasis of Prostate Cancer. Oncol Res Treat 2019; 42:165-185. [PMID: 30870834 DOI: 10.1159/000495473] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND miR-218-5p is an extensively studied microRNA (miRNA) in prostate cancer (PCa). However, the clinical significance and biological role of miR-218-5p in bone metastasis of PCa remain unclear. MATERIALS AND METHODS miR-218-5p expression was evaluated in 38 bone metastatic and 115 non-bone metastatic PCa tissues and serum samples. Clinical correlation of miR-218-5p expression with clinicopathological characteristics was analyzed. The biological roles of miR-218-5p in bone metastasis of PCa were investigated in vitro by invasion and migration assays. Bioinformatics analysis, real-time polymerase chain reaction, western blot, and luciferase reporter assay were applied to discern and examine the relationship between miR-218-5p and its potential targets. RESULTS miR-218-5p expression was reduced in bone metastatic PCa tissue and serum samples, which positively correlated with poor clinicopathological characteristics and bone metastasis-free survival in PCa patients. Upregulating miR-218-5p repressed PCa cell invasion and migration. Furthermore, miR-218-5p inhibited NF-κB signaling via simultaneously targeting TRAF1, TRAF2, and TRAF5, which suppressed the invasion and migration abilities of PCa cells. ROC curve analysis of miR-218-5p in the serum of PCa patients exhibited an area under the curve of 0.86 (95% confidence interval 0.80-0.92, p < 0.001). CONCLUSION Our findings indicate that miR-218-5p might represent a novel serum biomarker for bone metastasis of PCa.
Collapse
Affiliation(s)
- Peng Peng
- Department of Orthopedic Surgery, Zhuhai Second People's Hospital, Zhuhai, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China
| | - Qing Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yixi Zhang
- Department of Ophthalmology, Zhuhai Second People's Hospital, Zhuhai, China
| | - Fangfang Zheng
- Department of Pediatrics, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China
| | - Shuai Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxiao Yang
- Department of Clinical Cytogenetics, Suzhou Precision Medicine Scientific Ltd., Suzhou, China
| | - Wenqing Ding
- Department of Orthopedic Surgery, Zhuhai Second People's Hospital, Zhuhai, China
| | - Dong Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongwen Huang
- Department of Orthopedic Surgery, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China,
| | - Yuanqing Guo
- Department of Orthopedic Surgery, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
50
|
Xiao L, Luo Y, Tai R, Zhang N. Estrogen receptor β suppresses inflammation and the progression of prostate cancer. Mol Med Rep 2019; 19:3555-3563. [PMID: 30864712 PMCID: PMC6472045 DOI: 10.3892/mmr.2019.10014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/11/2019] [Indexed: 01/03/2023] Open
Abstract
Previous studies demonstrated that estrogen receptor β (ERβ) signaling alleviates systemic inflammation in animal models, and suggested that ERβ-selective agonists may deactivate microglia and suppress T cell activity via downregulation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). In the present study, the role of ERβ in lipopolysaccharide (LPS)-induced inflammation and association with NF-κB activity were investigated in PC-3 and DU145 prostate cancer cell lines. Cells were treated with LPS to induce inflammation, and ELISA was performed to determine the expression levels of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein 1 (MCP-1), interleukin (IL)-1β and IL-6. MTT and Transwell assays, and Annexin V/propidium iodide staining were conducted to measure cell viability, apoptosis and migration, respectively. Protein expression was determined via western blot analysis. LPS-induced inflammation resulted in elevated expression levels of TNF-α, IL-1β, MCP-1 and IL-6 compared with controls. ERβ overexpression significantly inhibited the LPS-induced production of TNF-α, IL-1β, MCP-1 and IL-6. In addition, the results indicated that ERβ suppressed viability and migration, and induced apoptosis in prostate cancer cells, which was further demonstrated by altered expression of proliferating cell nuclear antigen, B-cell lymphoma 2-associated X protein, caspase-3, E-cadherin and matrix metalloproteinase-2. These effects were reversed by treatment with the ERβ antagonist PHTPP or ERβ-specific short interfering RNA. ERβ overexpression reduced the expression levels of p65 and phosphorylated NF-κB inhibitor α (IκBα), but not total IκBα expression in LPS-treated cells. In conclusion, ERβ suppressed the viability and migration of the PC-3 and DU145 prostate cancer cell lines and induced apoptosis. Furthermore, it reduced inflammation and suppressed the activation of the NF-κB pathway, suggesting that ERβ may serve roles as an anti-inflammatory and anticancer agent in prostate cancer.
Collapse
Affiliation(s)
- Long Xiao
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| | - Yaohui Luo
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| | - Rongfen Tai
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| | - Ningnan Zhang
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650041, P.R. China
| |
Collapse
|