1
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
2
|
Robinson BP, Bass NR, Bhakt P, Spiliotis ET. Septin-coated microtubules promote maturation of multivesicular bodies by inhibiting their motility. J Cell Biol 2024; 223:e202308049. [PMID: 38668767 PMCID: PMC11046855 DOI: 10.1083/jcb.202308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Collapse
Affiliation(s)
| | - Naomi R. Bass
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
3
|
Chaiamarit T, Verhelle A, Chassefeyre R, Shukla N, Novak SW, Andrade LR, Manor U, Encalada SE. Mutant Prion Protein Endoggresomes are Hubs for Local Axonal Organelle-Cytoskeletal Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533383. [PMID: 36993610 PMCID: PMC10055262 DOI: 10.1101/2023.03.19.533383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Dystrophic axons comprising misfolded mutant prion protein (PrP) aggregates are a characteristic pathological feature in the prionopathies. These aggregates form inside endolysosomes -called endoggresomes-, within swellings that line up the length of axons of degenerating neurons. The pathways impaired by endoggresomes that result in failed axonal and consequently neuronal health, remain undefined. Here, we dissect the local subcellular impairments that occur within individual mutant PrP endoggresome swelling sites in axons. Quantitative high-resolution light and electron microscopy revealed the selective impairment of the acetylated vs tyrosinated microtubule cytoskeleton, while micro-domain image analysis of live organelle dynamics within swelling sites revealed deficits uniquely to the MT-based active transport system that translocates mitochondria and endosomes toward the synapse. Cytoskeletal and defective transport results in the retention of mitochondria, endosomes, and molecular motors at swelling sites, enhancing mitochondria-Rab7 late endosome contacts that induce mitochondrial fission via the activity of Rab7, and render mitochondria dysfunctional. Our findings point to mutant Pr Pendoggresome swelling sites as selective hubs of cytoskeletal deficits and organelle retention that drive the remodeling of organelles along axons. We propose that the dysfunction imparted locally within these axonal micro-domains spreads throughout the axon over time, leading to axonal dysfunction in prionopathies.
Collapse
|
4
|
Ebke LA, Sinha S, Pauer GJT, Hagstrom SA. Photoreceptor Compartment-Specific TULP1 Interactomes. Int J Mol Sci 2021; 22:ijms22158066. [PMID: 34360830 PMCID: PMC8348715 DOI: 10.3390/ijms22158066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Photoreceptors are highly compartmentalized cells with large amounts of proteins synthesized in the inner segment (IS) and transported to the outer segment (OS) and synaptic terminal. Tulp1 is a photoreceptor-specific protein localized to the IS and synapse. In the absence of Tulp1, several OS-specific proteins are mislocalized and synaptic vesicle recycling is impaired. To better understand the involvement of Tulp1 in protein trafficking, our approach in the current study was to physically isolate Tulp1-containing photoreceptor compartments by serial tangential sectioning of retinas and to identify compartment-specific Tulp1 binding partners by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Our results indicate that Tulp1 has two distinct interactomes. We report the identification of: (1) an IS-specific interaction between Tulp1 and the motor protein Kinesin family member 3a (Kif3a), (2) a synaptic-specific interaction between Tulp1 and the scaffold protein Ribeye, and (3) an interaction between Tulp1 and the cytoskeletal protein microtubule-associated protein 1B (MAP1B) in both compartments. Immunolocalization studies in the wild-type retina indicate that Tulp1 and its binding partners co-localize to their respective compartments. Our observations are compatible with Tulp1 functioning in protein trafficking in multiple photoreceptor compartments, likely as an adapter molecule linking vesicles to molecular motors and the cytoskeletal scaffold.
Collapse
Affiliation(s)
- Lindsey A. Ebke
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Satyabrata Sinha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Gayle J. T. Pauer
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
| | - Stephanie A. Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (L.A.E.); (S.S.); (G.J.T.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
5
|
Katrukha EA, Jurriens D, Salas Pastene DM, Kapitein LC. Quantitative mapping of dense microtubule arrays in mammalian neurons. eLife 2021; 10:e67925. [PMID: 34313224 PMCID: PMC8416025 DOI: 10.7554/elife.67925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/24/2021] [Indexed: 11/13/2022] Open
Abstract
The neuronal microtubule cytoskeleton underlies the polarization and proper functioning of neurons, amongst others by providing tracks for motor proteins that drive intracellular transport. Different subsets of neuronal microtubules, varying in composition, stability, and motor preference, are known to exist, but the high density of microtubules has so far precluded mapping their relative abundance and three-dimensional organization. Here, we use different super-resolution techniques (STED, Expansion Microscopy) to explore the nanoscale organization of the neuronal microtubule network in rat hippocampal neurons. This revealed that in dendrites acetylated microtubules are enriched in the core of the dendritic shaft, while tyrosinated microtubules are enriched near the plasma membrane, thus forming a shell around the acetylated microtubules. Moreover, using a novel analysis pipeline we quantified the absolute number of acetylated and tyrosinated microtubules within dendrites and found that they account for 65-75% and ~20-30% of all microtubules, respectively, leaving only few microtubules that do not fall in either category. Because these different microtubule subtypes facilitate different motor proteins, these novel insights help to understand the spatial regulation of intracellular transport.
Collapse
Affiliation(s)
- Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Desiree M Salas Pastene
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
6
|
Abstract
Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China.,The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
7
|
Abstract
Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a 'septin code' for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function.
Collapse
|
8
|
Manka SW, Moores CA. Pseudo-repeats in doublecortin make distinct mechanistic contributions to microtubule regulation. EMBO Rep 2020; 21:e51534. [PMID: 33051979 PMCID: PMC7726794 DOI: 10.15252/embr.202051534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Doublecortin (DCX) is a neuronal microtubule-associated protein (MAP) indispensable for brain development. Its flexibly linked doublecortin (DC) domains-NDC and CDC-mediate microtubule (MT) nucleation and stabilization, but it is unclear how. Using high-resolution time-resolved cryo-EM, we mapped NDC and CDC interactions with tubulin at different MT polymerization stages and studied their functional effects on MT dynamics using TIRF microscopy. Although coupled, each DC repeat within DCX appears to have a distinct role in MT nucleation and stabilization: CDC is a conformationally plastic module that appears to facilitate MT nucleation and stabilize tubulin-tubulin contacts in the nascent MT lattice, while NDC appears to be favored along the mature lattice, providing MT stabilization. Our structures of MT-bound DC domains also explain in unprecedented detail the DCX mutation-related brain defects observed in the clinic. This modular composition of DCX reflects a common design principle among MAPs where pseudo-repeats of tubulin/MT binding elements chaperone or stabilize distinct conformational transitions to regulate distinct stages of MT dynamic instability.
Collapse
Affiliation(s)
- Szymon W Manka
- Institute of Structural and Molecular BiologyDepartment of Biological Sciences, BirkbeckUniversity of LondonLondonUK
| | - Carolyn A Moores
- Institute of Structural and Molecular BiologyDepartment of Biological Sciences, BirkbeckUniversity of LondonLondonUK
| |
Collapse
|
9
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Pietrantoni G, Ibarra-Karmy R, Arriagada G. Microtubule Retrograde Motors and Their Role in Retroviral Transport. Viruses 2020; 12:v12040483. [PMID: 32344581 PMCID: PMC7232228 DOI: 10.3390/v12040483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Following entry into the host cell, retroviruses generate a dsDNA copy of their genomes via reverse transcription, and this viral DNA is subsequently integrated into the chromosomal DNA of the host cell. Before integration can occur, however, retroviral DNA must be transported to the nucleus as part of a ‘preintegration complex’ (PIC). Transporting the PIC through the crowded environment of the cytoplasm is challenging, and retroviruses have evolved different mechanisms to accomplish this feat. Within a eukaryotic cell, microtubules act as the roads, while the microtubule-associated proteins dynein and kinesin are the vehicles that viruses exploit to achieve retrograde and anterograde trafficking. This review will examine the various mechanisms retroviruses have evolved in order to achieve retrograde trafficking, confirming that each retrovirus has its own strategy to functionally subvert microtubule associated proteins.
Collapse
|
11
|
Kelliher MT, Saunders HA, Wildonger J. Microtubule control of functional architecture in neurons. Curr Opin Neurobiol 2019; 57:39-45. [PMID: 30738328 DOI: 10.1016/j.conb.2019.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/20/2023]
Abstract
Neurons are exquisitely polarized cells whose structure and function relies on microtubules. Microtubules in signal-receiving dendrites and signal-sending axons differ in their organization and microtubule-associated proteins. These differences, coupled with microtubule post-translational modifications, combine to locally regulate intracellular transport, morphology, and function. Recent discoveries provide new insight into the regulation of non-centrosomal microtubule arrays in neurons, the relationship between microtubule acetylation and mechanosensation, and the spatial patterning of microtubules that regulates motor activity and cargo delivery in axons and dendrites. Together, these new studies bring us closer to understanding how microtubule function is locally tuned to match the specialized tasks associated with signal reception and transmission.
Collapse
Affiliation(s)
- Michael T Kelliher
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Harriet Aj Saunders
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Manka SW, Moores CA. Microtubule structure by cryo-EM: snapshots of dynamic instability. Essays Biochem 2018; 62:737-751. [PMID: 30315096 PMCID: PMC6281474 DOI: 10.1042/ebc20180031] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023]
Abstract
The development of cryo-electron microscopy (cryo-EM) allowed microtubules to be captured in their solution-like state, enabling decades of insight into their dynamic mechanisms and interactions with binding partners. Cryo-EM micrographs provide 2D visualization of microtubules, and these 2D images can also be used to reconstruct the 3D structure of the polymer and any associated binding partners. In this way, the binding sites for numerous components of the microtubule cytoskeleton-including motor domains from many kinesin motors, and the microtubule-binding domains of dynein motors and an expanding collection of microtubule associated proteins-have been determined. The effects of various microtubule-binding drugs have also been studied. High-resolution cryo-EM structures have also been used to probe the molecular basis of microtubule dynamic instability, driven by the GTPase activity of β-tubulin. These studies have shown the conformational changes in lattice-confined tubulin dimers in response to steps in the tubulin GTPase cycle, most notably lattice compaction at the longitudinal inter-dimer interface. Although work is ongoing to define a complete structural model of dynamic instability, attention has focused on the role of gradual destabilization of lateral contacts between tubulin protofilaments, particularly at the microtubule seam. Furthermore, lower resolution cryo-electron tomography 3D structures are shedding light on the heterogeneity of microtubule ends and how their 3D organization contributes to dynamic instability. The snapshots of these polymers captured using cryo-EM will continue to provide critical insights into their dynamics, interactions with cellular components, and the way microtubules contribute to cellular functions in diverse physiological contexts.
Collapse
Affiliation(s)
- Szymon W Manka
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, U.K.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, U.K
| |
Collapse
|
13
|
Santander VS, Campetelli AN, Monesterolo NE, Rivelli JF, Nigra AD, Arce CA, Casale CH. Tubulin-Na + , K + -ATPase interaction: Involvement in enzymatic regulation and cellular function. J Cell Physiol 2018; 234:7752-7763. [PMID: 30378111 DOI: 10.1002/jcp.27610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
A new function for tubulin was described by our laboratory: acetylated tubulin forms a complex with Na+ ,K + -ATPase (NKA) and inhibits its activity. This process was shown to be a regulatory factor of physiological importance in cultured cells, human erythrocytes, and several rat tissues. Formation of the acetylated tubulin-NKA complex is reversible. We demonstrated that in cultured cells, high concentrations of glucose induce translocation of acetylated tubulin from cytoplasm to plasma membrane with a consequent inhibition of NKA activity. This effect is reversed by adding glutamate, which is coctransported to the cell with Na + . Another posttranslational modification of tubulin, detyrosinated tubulin, is also involved in the regulation of NKA activity: it enhances the NKA inhibition induced by acetylated tubulin. Manipulation of the content of these modifications of tubulin could work as a new strategy to maintain homeostasis of Na + and K + , and to regulate a variety of functions in which NKA is involved, such as osmotic fragility and deformability of human erythrocytes. The results summarized in this review show that the interaction between tubulin and NKA plays an important role in cellular physiology, both in the regulation of Na + /K + homeostasis and in the rheological properties of the cells, which is mechanically different from other roles reported up to now.
Collapse
Affiliation(s)
- Veronica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Juan F Rivelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ayelen D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Carlos A Arce
- entro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
14
|
Plaud C, Joshi V, Kajevu N, Poüs C, Curmi PA, Burgo A. Functional differences of short and long isoforms of spastin harboring missense mutation. Dis Model Mech 2018; 11:11/9/dmm033704. [PMID: 30213879 PMCID: PMC6177001 DOI: 10.1242/dmm.033704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
Mutations of the SPG4 (SPAST) gene encoding for spastin protein are the main causes of hereditary spastic paraplegia. Spastin binds to microtubules and severs them through the enzymatic activity of its AAA domain. Several missense mutations located in this domain lead to stable, nonsevering spastins that decorate a subset of microtubules, suggesting a possible negative gain-of-function mechanism for these mutants. Of the two main isoforms of spastin, only mutations of the long isoform, M1, are supposed to be involved in the onset of the pathology, leaving the role of the ubiquitously expressed shorter one, M87, not fully investigated and understood. Here, we show that two isoforms of spastin harboring the same missense mutation bind and bundle different subsets of microtubules in HeLa cells, and likely stabilize them by increasing the level of acetylated tubulin. However, only mutated M1 has the ability to interact with wild-type M1, and decorates a subset of perinuclear microtubules associated with the endoplasmic reticulum that display higher resistance to microtubule depolymerization and increased intracellular ionic strength, compared with those decorated by mutated M87. We further show that only mutated M1 decorates microtubules of proximal axons and dendrites, and strongly impairs axonal transport in cortical neurons through a mechanism likely independent of the microtubule-severing activity of this protein. Summary: Long and short isoforms of spastin (SPG4) harboring the same missense mutation show different intracellular localization, resistance to pharmacological treatments and effects on axonal cargo transport.
Collapse
Affiliation(s)
- Clément Plaud
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Vandana Joshi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Natallie Kajevu
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Christian Poüs
- INSERM UMR-S 1193, Faculty of Pharmacy, Univirsité Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Patrick A Curmi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Andrea Burgo
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| |
Collapse
|
15
|
Karasmanis EP, Phan CT, Angelis D, Kesisova IA, Hoogenraad CC, McKenney RJ, Spiliotis ET. Polarity of Neuronal Membrane Traffic Requires Sorting of Kinesin Motor Cargo during Entry into Dendrites by a Microtubule-Associated Septin. Dev Cell 2018; 46:204-218.e7. [PMID: 30016622 DOI: 10.1016/j.devcel.2018.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/04/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
Neuronal function requires axon-dendrite membrane polarity, which depends on sorting of membrane traffic during entry into axons. Due to a microtubule network of mixed polarity, dendrites receive vesicles from the cell body without apparent capacity for directional sorting. We found that, during entry into dendrites, axonally destined cargos move with a retrograde bias toward the cell body, while dendritically destined cargos are biased in the anterograde direction. A microtubule-associated septin (SEPT9), which localizes specifically in dendrites, impedes axonal cargo of kinesin-1/KIF5 and boosts kinesin-3/KIF1 motor cargo further into dendrites. In neurons and in vitro single-molecule motility assays, SEPT9 suppresses kinesin-1/KIF5 and enhances kinesin-3/KIF1 in a manner that depends on a lysine-rich loop of the kinesin motor domain. This differential regulation impacts partitioning of neuronal membrane proteins into axons-dendrites. Thus, polarized membrane traffic requires sorting during entry into dendrites by a septin-mediated mechanism that bestows directional bias on microtubules of mixed orientation.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Cat-Thi Phan
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Ilona A Kesisova
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Kelliher MT, Yue Y, Ng A, Kamiyama D, Huang B, Verhey KJ, Wildonger J. Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts. J Cell Biol 2018; 217:2531-2547. [PMID: 29728423 PMCID: PMC6028532 DOI: 10.1083/jcb.201708096] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarity relies on the axon- or dendrite-specific localization of cargo by molecular motors such as kinesin-1. This study shows how autoinhibition regulates both kinesin-1 activity and localization to keep dendritic Golgi outposts from entering axons. Neuronal polarity relies on the selective localization of cargo to axons or dendrites. The molecular motor kinesin-1 moves cargo into axons but is also active in dendrites. This raises the question of how kinesin-1 activity is regulated to maintain the compartment-specific localization of cargo. Our in vivo structure–function analysis of endogenous Drosophila melanogaster kinesin-1 reveals a novel role for autoinhibition in enabling the dendrite-specific localization of Golgi outposts. Mutations that disrupt kinesin-1 autoinhibition result in the axonal mislocalization of Golgi outposts. Autoinhibition also regulates kinesin-1 localization. Uninhibited kinesin-1 accumulates in axons and is depleted from dendrites, correlating with the change in outpost distribution and dendrite growth defects. Genetic interaction tests show that a balance of kinesin-1 inhibition and dynein activity is necessary to localize Golgi outposts to dendrites and keep them from entering axons. Our data indicate that kinesin-1 activity is precisely regulated by autoinhibition to achieve the selective localization of dendritic cargo.
Collapse
Affiliation(s)
- Michael T Kelliher
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI.,Biochemistry Department, University of Wisconsin-Madison, Madison, WI
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ashley Ng
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI.,Biochemistry Scholars Program, University of Wisconsin-Madison, Madison, WI
| | - Daichi Kamiyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
17
|
Spiliotis ET. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases. J Cell Sci 2018; 131:jcs207555. [PMID: 29326311 PMCID: PMC5818061 DOI: 10.1242/jcs.207555] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin and microtubule cytoskeletons comprise a variety of networks with distinct architectures, dynamics and protein composition. A fundamental question in eukaryotic cell biology is how these networks are spatially and temporally controlled, so they are positioned in the right intracellular places at the right time. While significant progress has been made in understanding the self-assembly of actin and microtubule networks, less is known about how they are patterned and regulated in a site-specific manner. In mammalian systems, septins are a large family of GTP-binding proteins that multimerize into higher-order structures, which associate with distinct subsets of actin filaments and microtubules, as well as membranes of specific curvature and lipid composition. Recent studies have shed more light on how septins interact with actin and microtubules, and raised the possibility that the cytoskeletal topology of septins is determined by their membrane specificity. Importantly, new functions have emerged for septins regarding the generation, maintenance and positioning of cytoskeletal networks with distinct organization and biochemical makeup. This Review presents new and past findings, and discusses septins as a unique regulatory module that instructs the local differentiation and positioning of distinct actin and microtubule networks.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Drexel University, Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Tas RP, Chazeau A, Cloin BMC, Lambers MLA, Hoogenraad CC, Kapitein LC. Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport. Neuron 2017; 96:1264-1271.e5. [PMID: 29198755 PMCID: PMC5746200 DOI: 10.1016/j.neuron.2017.11.018] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
Abstract
Microtubules are essential for polarized transport in neurons, but how their organization guides motor proteins to axons or dendrites is unclear. Because different motors recognize distinct microtubule properties, we used optical nanoscopy to examine the relationship between microtubule orientations, stability, and modifications. Nanometric tracking of motors to super-resolve microtubules and determine their polarity revealed that in dendrites, stable and acetylated microtubules are mostly oriented minus-end out, while dynamic and tyrosinated microtubules are oriented oppositely. In addition, microtubules with similar orientations and modifications form bundles that bias transport. Importantly, because the plus-end-directed Kinesin-1 selectively interacts with acetylated microtubules, this organization guides this motor out of dendrites and into axons. In contrast, Kinesin-3 prefers tyrosinated microtubules and can enter both axons and dendrites. This separation of distinct microtubule subsets into oppositely oriented bundles constitutes a key architectural principle of the neuronal microtubule cytoskeleton that enables polarized sorting by different motor proteins. Motor-based nanoscopy enables direct observation of microtubule (MT) polarity In neurons, MTs organize into polarized bundles that locally bias transport In dendrites, bundles of opposite orientation differ in stability and composition Dendritic MTs bias Kinesin-1 transport toward the soma, ensuring axon selectivity
Collapse
Affiliation(s)
- Roderick P Tas
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Anaël Chazeau
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Bas M C Cloin
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Maaike L A Lambers
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Lukas C Kapitein
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
19
|
Jenkins BV, Saunders HAJ, Record HL, Johnson-Schlitz DM, Wildonger J. Effects of mutating α-tubulin lysine 40 on sensory dendrite development. J Cell Sci 2017; 130:4120-4131. [PMID: 29122984 PMCID: PMC5769580 DOI: 10.1242/jcs.210203] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Microtubules are essential for neuronal structure and function. Axonal and dendritic microtubules are enriched in post-translational modifications that impact microtubule dynamics, transport and microtubule-associated proteins. Acetylation of α-tubulin lysine 40 (K40) is a prominent and conserved modification of neuronal microtubules. However, the cellular role of microtubule acetylation remains controversial. To resolve how microtubule acetylation might affect neuronal morphogenesis, we mutated endogenous α-tubulin in vivo using a new Drosophila strain that facilitates the rapid knock-in of designer αTub84B alleles (the predominant α-tubulin-encoding gene in flies). Leveraging our new strain, we found that microtubule acetylation, as well as polyglutamylation and (de)tyrosination, is not essential for survival. However, we found that dendrite branch refinement in sensory neurons relies on α-tubulin K40. Mutagenesis of K40 reveals moderate yet significant changes in dendritic lysosome transport, microtubule polymerization and Futsch protein distribution in dendrites but not in axons. Our studies point to an unappreciated role for α-tubulin K40 and acetylation in dendrite morphogenesis. While our results are consistent with the idea that acetylation tunes microtubule function within neurons, they also suggest there may be an acetylation-independent requirement for α-tubulin K40. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Neurons are enriched in post-translationally modified microtubules. Targeted mutagenesis of endogenous α-tubulin in flies reveals that dendrite branch refinement is altered by acetylation-blocking mutations.
Collapse
Affiliation(s)
- Brian V Jenkins
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Harriet A J Saunders
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Helena L Record
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci U S A 2017; 114:E2955-E2964. [PMID: 28320970 DOI: 10.1073/pnas.1616363114] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.
Collapse
|
21
|
Britt DJ, Farías GG, Guardia CM, Bonifacino JS. Mechanisms of Polarized Organelle Distribution in Neurons. Front Cell Neurosci 2016; 10:88. [PMID: 27065809 PMCID: PMC4814528 DOI: 10.3389/fncel.2016.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.
Collapse
Affiliation(s)
- Dylan J Britt
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Ginny G Farías
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
22
|
Bai X, Karasmanis EP, Spiliotis ET. Septin 9 interacts with kinesin KIF17 and interferes with the mechanism of NMDA receptor cargo binding and transport. Mol Biol Cell 2016; 27:897-906. [PMID: 26823018 PMCID: PMC4791134 DOI: 10.1091/mbc.e15-07-0493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Kinesin motor interactions with cargo and their regulation are not well understood. Septin 9 (SEPT9) interacts directly with kinesin KIF17 and interferes with binding of the cargo adaptor/scaffold mLin-10/Mint1, which links the NMDA receptor subunit 2B (NR2B) to KIF17. SEPT9 down-regulates NR2B transport without affecting the motile properties of KIF17. Intracellular transport involves the regulation of microtubule motor interactions with cargo, but the underlying mechanisms are not well understood. Septins are membrane- and microtubule-binding proteins that assemble into filamentous, scaffold-like structures. Septins are implicated in microtubule-dependent transport, but their roles are unknown. Here we describe a novel interaction between KIF17, a kinesin 2 family motor, and septin 9 (SEPT9). We show that SEPT9 associates directly with the C-terminal tail of KIF17 and interacts preferentially with the extended cargo-binding conformation of KIF17. In developing rat hippocampal neurons, SEPT9 partially colocalizes and comigrates with KIF17. We show that SEPT9 interacts with the KIF17 tail domain that associates with mLin-10/Mint1, a cargo adaptor/scaffold protein, which underlies the mechanism of KIF17 binding to the NMDA receptor subunit 2B (NR2B). Significantly, SEPT9 interferes with binding of the PDZ1 domain of mLin-10/Mint1 to KIF17 and thereby down-regulates NR2B transport into the dendrites of hippocampal neurons. Measurements of KIF17 motility in live neurons show that SEPT9 does not affect the microtubule-dependent motility of KIF17. These results provide the first evidence of an interaction between septins and a nonmitotic kinesin and suggest that SEPT9 modulates the interactions of KIF17 with membrane cargo.
Collapse
Affiliation(s)
- Xiaobo Bai
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
23
|
Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 2016; 35:302-18. [PMID: 26758546 DOI: 10.15252/embj.201592929] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023] Open
Abstract
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule-binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin-3 (KIF1) and kinesin-4 (KIF21) subfamily that can also target dendrites. We found that microtubule-binding protein doublecortin-like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1-dependent dense-core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule-binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.
Collapse
Affiliation(s)
- Joanna Lipka
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Lukas C Kapitein
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Farías GG, Guardia CM, Britt DJ, Guo X, Bonifacino JS. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone. Cell Rep 2015; 13:1221-1232. [PMID: 26527003 PMCID: PMC5410646 DOI: 10.1016/j.celrep.2015.09.074] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 08/19/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023] Open
Abstract
Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS) is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ). Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.
Collapse
Affiliation(s)
- Ginny G Farías
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Carlos M Guardia
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Dylan J Britt
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Yang R, Bentley M, Huang CF, Banker G. Analyzing kinesin motor domain translocation in cultured hippocampal neurons. Methods Cell Biol 2015; 131:217-232. [PMID: 26794516 DOI: 10.1016/bs.mcb.2015.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal microtubules are subject to extensive posttranslational modifications and are bound by MAPs, tip-binding proteins, and other accessory proteins. All of these features, which are difficult to replicate in vitro, are likely to influence the translocation of kinesin motors. Here we describe assays for evaluating the translocation of a population of fluorescently labeled kinesin motor domains, based on their accumulation in regions of the cell enriched in microtubule plus ends. Neurons lend themselves to these experiments because of their microtubule organization. In axons, microtubules are oriented with their plus ends out; dendrites contain a mixed population of microtubules, but those near the tips are also plus end out. The assays involve the expression of constitutively active kinesins that can walk processively, but that lack the autoinhibitory domain in the tail that normally prevents their binding to microtubules until they attach to vesicles. The degree to which such motor domains accumulate at neurite tips serves as a measure of the efficiency of their translocation. Although these assays cannot provide the kind of quantitative kinetic information obtained from in vitro assays, they offer a simple way to examine kinesin translocation in living neurons. They can be used to compare the translocation efficiency of different kinesin motors and to evaluate how mutations or posttranslational modifications within the motor domain influence kinesin translocation. Changes to motor domain accumulation in these assays can also serve as readout for changes in the microtubule cytoskeleton that affect kinesin translocation.
Collapse
Affiliation(s)
- Rui Yang
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Marvin Bentley
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Chung-Fang Huang
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
26
|
Scarabelli G, Grant BJ. Kinesin-5 allosteric inhibitors uncouple the dynamics of nucleotide, microtubule, and neck-linker binding sites. Biophys J 2015; 107:2204-13. [PMID: 25418105 PMCID: PMC4223232 DOI: 10.1016/j.bpj.2014.09.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/27/2022] Open
Abstract
Kinesin motor domains couple cycles of ATP hydrolysis to cycles of microtubule binding and conformational changes that result in directional force and movement on microtubules. The general principles of this mechanochemical coupling have been established; however, fundamental atomistic details of the underlying allosteric mechanisms remain unknown. This lack of knowledge hampers the development of new inhibitors and limits our understanding of how disease-associated mutations in distal sites can interfere with the fidelity of motor domain function. Here, we combine unbiased molecular-dynamics simulations, bioinformatics analysis, and mutational studies to elucidate the structural dynamic effects of nucleotide turnover and allosteric inhibition of the kinesin-5 motor. Multiple replica simulations of ATP-, ADP-, and inhibitor-bound states together with network analysis of correlated motions were used to create a dynamic protein structure network depicting the internal dynamic coordination of functional regions in each state. This analysis revealed the intervening residues involved in the dynamic coupling of nucleotide, microtubule, neck-linker, and inhibitor binding sites. The regions identified include the nucleotide binding switch regions, loop 5, loop 7, α4-α5-loop 13, α1, and β4-β6-β7. Also evident were nucleotide- and inhibitor-dependent shifts in the dynamic coupling paths linking functional sites. In particular, inhibitor binding to the loop 5 region affected β-sheet residues and α1, leading to a dynamic decoupling of nucleotide, microtubule, and neck-linker binding sites. Additional analyses of point mutations, including P131 (loop 5), Q78/I79 (α1), E166 (loop 7), and K272/I273 (β7) G325/G326 (loop 13), support their predicted role in mediating the dynamic coupling of distal functional surfaces. Collectively, our results and approach, which we make freely available to the community, provide a framework for explaining how binding events and point mutations can alter dynamic couplings that are critical for kinesin motor domain function.
Collapse
Affiliation(s)
- Guido Scarabelli
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Barry J Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
27
|
Kaul N, Soppina V, Verhey KJ. Effects of α-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys J 2015; 106:2636-43. [PMID: 24940781 DOI: 10.1016/j.bpj.2014.05.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022] Open
Abstract
Long-range transport in cells is achieved primarily through motor-based transport along a network of microtubule tracks. Targeted transport by kinesin motors can be correlated with posttranslational modifications (PTMs) of the tubulin subunits in specific microtubules. To directly examine the influence of specific PTMs on kinesin-1 motility, we generated tubulin subunits that were either enriched in or lacking acetylation of α-tubulin lysine 40 (K40) or detyrosination of the α-tubulin C-terminal tail. We show that K40 acetylation does not result in significant changes in kinesin-1's landing rate or motility parameters (velocity and run length) across experimental conditions. In contrast, detyrosination causes a moderate increase in kinesin-1's landing rate. The fact that the effects of detyrosination are dampened by prior K40 acetylation indicates that the combination of PTMs may be an important aspect of the functional output of microtubule heterogeneity. Importantly, our results indicate that the moderate influences that single PTMs have on kinesin-1 in vitro do not explain the strong correlation between specific PTMs and kinesin-1 transport in cells. Thus, additional mechanisms for regulating kinesin-1 transport in cells must be explored in future work.
Collapse
Affiliation(s)
- Neha Kaul
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Virupakshi Soppina
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Grati M, Chakchouk I, Ma Q, Bensaid M, Desmidt A, Turki N, Yan D, Baanannou A, Mittal R, Driss N, Blanton S, Farooq A, Lu Z, Liu XZ, Masmoudi S. A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation. Hum Mol Genet 2015; 24:2482-91. [PMID: 25601850 DOI: 10.1093/hmg/ddv009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/13/2015] [Indexed: 11/12/2022] Open
Abstract
Hearing loss is the most common sensory deficit in humans. We show that a point mutation in DCDC2 (DCDC2a), a member of doublecortin domain-containing protein superfamily, causes non-syndromic recessive deafness DFNB66 in a Tunisian family. Using immunofluorescence on rat inner ear neuroepithelia, DCDC2a was found to localize to the kinocilia of sensory hair cells and the primary cilia of nonsensory supporting cells. DCDC2a fluorescence is distributed along the length of the kinocilium with increased density toward the tip. DCDC2a-GFP overexpression in non-polarized COS7 cells induces the formation of long microtubule-based cytosolic cables suggesting a role in microtubule formation and stabilization. Deafness mutant DCDC2a expression in hair cells and supporting cells causes cilium structural defects, such as cilium branching, and up to a 3-fold increase in length ratios. In zebrafish, the ortholog dcdc2b was found to be essential for hair cell development, survival and function. Our results reveal DCDC2a to be a deafness gene and a player in hair cell kinocilia and supporting cell primary cilia length regulation likely via its role in microtubule formation and stabilization.
Collapse
Affiliation(s)
- M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Imen Chakchouk
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | - Qi Ma
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mariem Bensaid
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | | | - Nouha Turki
- Service Otorhinolaryngologie, Hôpital Universitaire Mahdia, Mahdia, Tunisie
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aissette Baanannou
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nabil Driss
- Service Otorhinolaryngologie, Hôpital Universitaire Mahdia, Mahdia, Tunisie
| | - Susan Blanton
- Dr John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33146, USA and
| | - Amjad Farooq
- Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhongmin Lu
- Department of Biology, University of Miami, Miami, FL 33146, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA,
| | - Saber Masmoudi
- Laboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie,
| |
Collapse
|
29
|
Fernandez J, Portilho DM, Danckaert A, Munier S, Becker A, Roux P, Zambo A, Shorte S, Jacob Y, Vidalain PO, Charneau P, Clavel F, Arhel NJ. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J Biol Chem 2014; 290:4631-4646. [PMID: 25505242 DOI: 10.1074/jbc.m114.613133] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.
Collapse
Affiliation(s)
- Juliette Fernandez
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Débora M Portilho
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Sandie Munier
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Andreas Becker
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Pascal Roux
- Imagopole, Institut Pasteur, 75015 Paris, France
| | - Anaba Zambo
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Yves Jacob
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, CNRS UMR3569, Institut Pasteur, 75015 Paris, France, and
| | - Pierre Charneau
- the Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France
| | - François Clavel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Nathalie J Arhel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France,.
| |
Collapse
|
30
|
Semenova I, Ikeda K, Resaul K, Kraikivski P, Aguiar M, Gygi S, Zaliapin I, Cowan A, Rodionov V. Regulation of microtubule-based transport by MAP4. Mol Biol Cell 2014; 25:3119-32. [PMID: 25143402 PMCID: PMC4196864 DOI: 10.1091/mbc.e14-01-0022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2-dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2-based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2-dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.
Collapse
Affiliation(s)
- Irina Semenova
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Kazuho Ikeda
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan
| | - Karim Resaul
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Pavel Kraikivski
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Mike Aguiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada-Reno, Reno, NV 89557
| | - Ann Cowan
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Vladimir Rodionov
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|