1
|
Gabriel F, Spriestersbach L, Fuhrmann A, Jungnickel KEJ, Mostafavi S, Pardon E, Steyaert J, Löw C. Structural basis of thiamine transport and drug recognition by SLC19A3. Nat Commun 2024; 15:8542. [PMID: 39358356 PMCID: PMC11447181 DOI: 10.1038/s41467-024-52872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Thiamine (vitamin B1) functions as an essential coenzyme in cells. Humans and other mammals cannot synthesise this vitamin de novo and thus have to take it up from their diet. Eventually, every cell needs to import thiamine across its plasma membrane, which is mainly mediated by the two specific thiamine transporters SLC19A2 and SLC19A3. Loss of function mutations in either of these transporters lead to detrimental, life-threatening metabolic disorders. SLC19A3 is furthermore a major site of drug interactions. Many medications, including antidepressants, antibiotics and chemotherapeutics are known to inhibit this transporter, with potentially fatal consequences for patients. Despite a thorough functional characterisation over the past two decades, the structural basis of its transport mechanism and drug interactions has remained elusive. Here, we report seven cryo-electron microscopy (cryo-EM) structures of the human thiamine transporter SLC19A3 in complex with various ligands. Conformation-specific nanobodies enable us to capture different states of SLC19A3's transport cycle, revealing the molecular details of thiamine recognition and transport. We identify seven previously unknown drug interactions of SLC19A3 and present structures of the transporter in complex with the inhibitors fedratinib, amprolium and hydroxychloroquine. These data allow us to develop an understanding of the transport mechanism and ligand recognition of SLC19A3.
Collapse
Affiliation(s)
- Florian Gabriel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Lea Spriestersbach
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Antonia Fuhrmann
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Katharina E J Jungnickel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Siavash Mostafavi
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| |
Collapse
|
2
|
Couto B, Galosi S, Steel D, Kurian MA, Friedman J, Gorodetsky C, Lang AE. Severe Acute Motor Exacerbations (SAME) across Metabolic, Developmental and Genetic Disorders. Mov Disord 2024; 39:1446-1467. [PMID: 39119747 DOI: 10.1002/mds.29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Acute presentation of severe motor disorders is a diagnostic and management challenge. We define severe acute motor exacerbations (SAME) as acute/subacute motor symptoms that persist for hours-to-days with a severity that compromise vital signs (temperature, breath, and heart rate) and bulbar function (swallowing/dysphagia). Phenomenology includes dystonia, choreoathetosis, combined movement disorders, weakness, and hemiplegic attacks. SAME can develop in diverse diseases and can be preceded by triggers or catabolic states. Recent descriptions of SAME in complex neurodevelopmental and epileptic encephalopathies have broadened appreciation of this presentation beyond inborn errors of metabolism. A high degree of clinical suspicion is required to identify appropriately targeted investigations and management. We conducted a comprehensive literature analysis of etiologies. Reported triggers are described and classified as per pathophysiological mechanism. A video of six cases displaying multiple SAME with diverse outcomes is provided. We identified 50 different conditions that manifest SAME, some associated with developmental regression. Etiologies include disorders of metabolism: energy substrate, amino acids, complex molecules, vitamins/cofactors, minerals, and neurotransmitters/synaptic vesicle cycling. Non-metabolic neurodegenerative and genetic disorders that present with movement disorders and epilepsy can additionally manifest SAME. A limited number of triggers are grouped here, together with an approach to investigations and general management strategies. Several neurogenetic and neurometabolic disorders manifest SAME. Identifying triggers can help in certain cases narrow the differential diagnosis and guide the expeditious application of targeted therapies to minimize adverse developmental and neurological consequences. This process may inform pathogenesis and eventually improve our understanding of the mechanisms that lead to the development of SAME. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Instituto de Neurociencia Cognitiva y Traslacional, INECO-Favaloro-CONICET, Buenos Aires, Argentina
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego, San Diego, California, USA
- Division of Neurology, Rady Children's Hospital; Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Carolina Gorodetsky
- Division of Neurology, Pediatric Deep Brain Stimulation Program, Movement Disorder and Neuromodulation Program at the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Neurology, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wen A, Zhu Y, Yee SW, Park BI, Giacomini KM, Greenberg AS, Newman JW. The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thiamine Distribution and Brain Metabolism in the Mouse. Metabolites 2023; 13:885. [PMID: 37623829 PMCID: PMC10456376 DOI: 10.3390/metabo13080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
The Thiamine Transporter 2 (THTR2) encoded by SLC19A3 plays an ill-defined role in the maintenance of tissue thiamine, thiamine monophosphate, and thiamine diphosphate (TDP) levels. To evaluate the impact of THTR2 on tissue thiamine status and metabolism, we expressed the human SLC19A3 transgene in the intestine of total body Slc19a3 knockout (KO) mice. Male and female wildtype (WT) and transgenic (TG) mice were fed either 17 mg/kg (1×) or 85 mg/kg (5×) thiamine hydrochloride diet, while KOs were only fed the 5× diet. Thiamine vitamers in plasma, red blood cells, duodenum, brain, liver, kidney, heart, and adipose tissue were measured. Untargeted metabolomics were performed on the brain tissues of groups with equivalent plasma thiamine. KO mice had ~two- and ~three-fold lower plasma and brain thiamine levels than WT on the 5× diet. Circulating vitamers were sensitive to diet and equivalent in TG and WT mice. However, TG had 60% lower thiamine but normal brain TDP levels regardless of diet, with subtle differences in the heart and liver. The loss of THTR2 reduced levels of nucleic acid and amino acid derivatives in the brain. Therefore, mutation or inhibition of THTR2 may alter the brain metabolome and reduce the thiamine reservoir for TDP biosynthesis.
Collapse
Affiliation(s)
- Anita Wen
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | - Ying Zhu
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Brian I. Park
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Andrew S. Greenberg
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - John W. Newman
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
- USDA Western Human Nutrition Research Center, Davis, CA 95616, USA
| |
Collapse
|
4
|
Burgunder JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol 2023:10.1038/s41582-023-00811-4. [PMID: 37202496 DOI: 10.1038/s41582-023-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Neurological diseases associated with pathogenic variants in a specific gene, or even with a specific pathogenic variant, can show profound phenotypic variation with regard to symptom presentation, age at onset and disease course. Highlighting examples from a range of neurogenetic disorders, this Review explores emerging mechanisms that are involved in this variability, including environmental, genetic and epigenetic factors that influence the expressivity and penetrance of pathogenic variants. Environmental factors, some of which can potentially be modified to prevent disease, include trauma, stress and metabolic changes. Dynamic patterns of pathogenic variants might explain some of the phenotypic variations, for example, in the case of disorders caused by DNA repeat expansions such as Huntington disease (HD). An important role for modifier genes has also been identified in some neurogenetic disorders, including HD, spinocerebellar ataxia and X-linked dystonia-parkinsonism. In other disorders, such as spastic paraplegia, the basis for most of the phenotypic variability remains unclear. Epigenetic factors have been implicated in disorders such as SGCE-related myoclonus-dystonia and HD. Knowledge of the mechanisms underlying phenotypic variation is already starting to influence management strategies and clinical trials for neurogenetic disorders.
Collapse
|
5
|
Indika NLR, Frye RE, Rossignol DA, Owens SC, Senarathne UD, Grabrucker AM, Perera R, Engelen MPKJ, Deutz NEP. The Rationale for Vitamin, Mineral, and Cofactor Treatment in the Precision Medical Care of Autism Spectrum Disorder. J Pers Med 2023; 13:252. [PMID: 36836486 PMCID: PMC9964499 DOI: 10.3390/jpm13020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Children with autism spectrum disorder may exhibit nutritional deficiencies due to reduced intake, genetic variants, autoantibodies interfering with vitamin transport, and the accumulation of toxic compounds that consume vitamins. Importantly, vitamins and metal ions are essential for several metabolic pathways and for neurotransmitter functioning. The therapeutic benefits of supplementing vitamins, minerals (Zinc, Magnesium, Molybdenum, and Selenium), and other cofactors (coenzyme Q10, alpha-lipoic acid, and tetrahydrobiopterin) are mediated through their cofactor as well as non-cofactor functions. Interestingly, some vitamins can be safely administered at levels far above the dose typically used to correct the deficiency and exert effects beyond their functional role as enzyme cofactors. Moreover, the interrelationships between these nutrients can be leveraged to obtain synergistic effects using combinations. The present review discusses the current evidence for using vitamins, minerals, and cofactors in autism spectrum disorder, the rationale behind their use, and the prospects for future use.
Collapse
Affiliation(s)
- Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Richard E. Frye
- Autism Discovery and Research Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| | - Daniel A. Rossignol
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
| | - Susan C. Owens
- Autism Oxalate Project at the Autism Research Institute, San Diego, CA 92116, USA
| | - Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Kareem O, Nisar S, Tanvir M, Muzaffer U, Bader GN. Thiamine deficiency in pregnancy and lactation: implications and present perspectives. Front Nutr 2023; 10:1080611. [PMID: 37153911 PMCID: PMC10158844 DOI: 10.3389/fnut.2023.1080611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
During pregnancy, many physiologic changes occur in order to accommodate fetal growth. These changes require an increase in many of the nutritional needs to prevent long-term consequences for both mother and the offspring. One of the main vitamins that are needed throughout the pregnancy is thiamine (vitamin B1) which is a water-soluble vitamin that plays an important role in many metabolic and physiologic processes in the human body. Thiamine deficiency during pregnancy can cause can have many cardiac, neurologic, and psychological effects on the mother. It can also dispose the fetus to gastrointestinal, pulmonological, cardiac, and neurologic conditions. This paper reviews the recently published literature about thiamine and its physiologic roles, thiamine deficiency in pregnancy, its prevalence, its impact on infants and subsequent consequences in them. This review also highlights the knowledge gaps within these topics.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Ozaifa Kareem, ,
| | - Sobia Nisar
- Department of Medicine, Government Medical College, Srinagar, India
| | - Masood Tanvir
- Department of Medicine, Government Medical College, Srinagar, India
| | - Umar Muzaffer
- Department of Medicine, Government Medical College, Srinagar, India
| | - G. N. Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- G. N. Bader,
| |
Collapse
|
7
|
Alsini H, Alnozha A, Asmat Z, Hundallah K, Alfadhel M, Tabarki B. Beyond the caudate nucleus: Early atypical neuroimaging findings in biotin-thiamine- responsive basal ganglia disease. Brain Dev 2022; 44:618-622. [PMID: 35811190 DOI: 10.1016/j.braindev.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a treatable neurometabolic disease caused by variants in SLC19A3. Typical imaging features include symmetrical involvement of the caudate nuclei and putamina. OBJECTIVE The study sought to explore classical BTBGD without caudate nucleus involvement, to highlight the importance of recognizing this new pattern early in the disease. METHODS Individuals with genetically confirmed BTBGD who harbored the same homozygous variant: NM_025243.4 (SLC19A3): c.1264A > G (p.Thr422Ala) and had atypical neuroimaging were recruited. RESULTS Nine patients with BTBGD had atypical neuroimaging findings on the first MRI scan. The median age at symptom onset was 3 years. All patients presented with classical clinical features of subacute encephalopathy, dystonia, ataxia, and seizures. During the acute crisis, MRI revealed bilateral and symmetric involvement of the putamina in all patients; one showed small caudate nuclei involvement. In addition, the thalami, cerebellum, and brain stem were involved in six patients, seven patients, and three patients, respectively. Treatment included a combination of high doses of thiamine and biotin. One patient died; he did not receive any vitamin supplementation. Two patients who were treated late had severe neurological sequelae, including generalized dystonia and quadriplegia. Six patients treated early had good outcomes with minimal sequelae, including mild dystonia and dysarthria. Two patients showed the classical chronic atrophic and necrotic changes already described. CONCLUSION The early atypical neuroimaging pattern of BTBGD described here, particularly the lack of caudate nucleus involvement, should not dissuade the clinician and radiologist from considering a diagnosis of BTBGD.
Collapse
Affiliation(s)
- Hanin Alsini
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Aisha Alnozha
- Department of Pediatrics, Children Hospital, AL-Madinah Al-Munawarah, Saudi Arabia
| | - Zeeshan Asmat
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Al-Anezi A, Sotirova-Koulli V, Shalaby O, Ibrahim A, Abdulmotagalli N, Youssef R, Hossam El-Din M. Biotin-thiamine responsive basal ganglia disease in the era of COVID-19 outbreak diagnosis not to be missed: A case report. Brain Dev 2022; 44:303-307. [PMID: 34953623 PMCID: PMC8696467 DOI: 10.1016/j.braindev.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Biotin-thiamine-responsive basal ganglia disease (BTRBGD) is a rare treatable autosomal recessive neurometabolic disorder characterized by progressive encephalopathy that eventually leads to severe disability and death if not treated with biotin and thiamine. BTRBGD is caused by mutations in the SLC19A3 gene on chromosome 2q36.6, encoding human thiamine transporter 2 (hTHTR2). Episodes of BTRBGD are often triggered by febrile illness. CASE REPORT The patient was 2 years 10 months old male child presented with fever and progressive acute encephalopathy associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus infection. MRI revealed bilateral symmetrical high signal involving both basal ganglia and medial thalami which is swollen with central necrosis, initially diagnosed as acute necrotizing encephalomyelitis with increased severity. Genetic analysis revealed BTRBGD. CONCLUSION BTRBGD requires high index of suspicion in any patient presenting with acute encephalopathy, characteristic MRI findings (that are difficult to differentiate from necrotizing encephalopathy), regardless of the existence of a proven viral infection.
Collapse
Affiliation(s)
| | | | | | - Ahmed Ibrahim
- Department of Pediatrics, Al-Jahra Hospital, Kuwait.
| | | | - Ramy Youssef
- Department of Pediatrics, Al-Jahra Hospital, Kuwait
| | | |
Collapse
|
9
|
Wesół-Kucharska D, Greczan M, Kaczor M, Pajdowska M, Piekutowska-Abramczuk D, Ciara E, Halat-Wolska P, Kowalski P, Jurkiewicz E, Rokicki D. Early treatment of biotin-thiamine-responsive basal ganglia disease improves the prognosis. Mol Genet Metab Rep 2021; 29:100801. [PMID: 34631424 PMCID: PMC8488057 DOI: 10.1016/j.ymgmr.2021.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background Biotin–thiamine–responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder associated with pathogenic variants in SLC19A3 gene. The clinical picture includes symptoms of subacute encephalopathy (e.g. confusion, dysphagia, dysarthria, and seizures), which respond very well to early treatment with thiamine and biotin. Method A retrospective review of clinical characteristics, magnetic resonance imaging and molecular findings in 3 patients with BTBGD. Results The first symptoms in all patients occurred at 12–24 months of age and they had subacute encephalopathy, ataxia and dystonia. The baseline magnetic resonance imaging demonstrated abnormal signal intensity in the basal ganglia with atrophy and necrosis of the basal ganglia during follow-up in two patients. One patient was diagnosed and the treatment was initiated after a long period from symptoms onset and he is currently severely affected, with dystonia, quadriparesis and seizures. The other two patients were diagnosed early in life and are currently stable on treatment, without the clinical symptoms. Genetic testing demonstrated pathogenic variants in SLC19A3 gene. Conclusion To avoid diagnostic errors and delayed or incorrect treatment, BTBGD must be recognized early. Adequate prompt treatment gives the chance of significant clinical improvement. Unexplained encephalopathy and MRI abnormalities including bilateral abnormal signal in the basal ganglia should alert the clinician to consider BTBGD in the differential, and the treatment with biotin and thiamine should be introduced immediately.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Pajdowska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Paweł Kowalski
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
10
|
Wang J, Wang J, Han X, Liu Z, Ma Y, Chen G, Zhang H, Sun D, Xu R, Liu Y, Zhang Y, Wen Y, Bao X, Chen Q, Fang F. Report of the Largest Chinese Cohort With SLC19A3 Gene Defect and Literature Review. Front Genet 2021; 12:683255. [PMID: 34276785 PMCID: PMC8281341 DOI: 10.3389/fgene.2021.683255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Thiamine metabolism dysfunction syndrome 2 (THMD2) is a rare metabolic disorder caused by SLC19A3 mutations, inherited in autosomal recessive pattern. As a treatable disease, early diagnosis and therapy with vitamin supplementation is important to improve the prognosis. So far, the reported cases were mainly from Saudi Arab regions, and presented with relatively simple clinical course because of the hot spot mutation (T422A). Rare Chinese cases were described until now. In this study, we investigated 18 Chinese THMD2 patients with variable phenotypes, and identified 23 novel SLC19A3 mutations, which expanded the genetic and clinical spectrum of the disorder. Meanwhile, we reviewed all 146 reported patients from different countries. Approximately 2/3 of patients presented with classical BTBGD, while 1/3 of patients manifested as much earlier onset and poor prognosis, including infantile Leigh-like syndrome, infantile spasms, neonatal lactic acidosis and infantile BTBGD. Literature review showed that elevated lactate in blood and CSF, as well as abnormal OXPHOS activities of muscle or skin usually correlated with infantile phenotypes, which indicated poor outcome. Brainstem involvement on MRI was more common in deceased cases. Thiamine supplementation is indispensable in the treatment of THMD2, whereas combination of biotin and thiamine is not superior to thiamine alone. But biotin supplementation does work in some patients. Genotypic-phenotypic correlation remains unclear which needs further investigation, and biallelic truncated mutations usually led to more severe phenotype.
Collapse
Affiliation(s)
- Jiaping Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junling Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaodi Han
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhimei Liu
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanli Ma
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Guohong Chen
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Haoya Zhang
- Department of Neurology, Wuhan Children's Hospital, Wuhan, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Wuhan, China
| | - Ruifeng Xu
- Department of Neurology, Gansu Maternal and Children's Hospital, Lanzhou, China
| | - Yi Liu
- Jinan Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Yongxin Wen
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China
| | - Qian Chen
- Department of Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Saini AG, Sharma S. Biotin-Thiamine-Responsive Basal Ganglia Disease in Children: A Treatable Neurometabolic Disorder. Ann Indian Acad Neurol 2021; 24:173-177. [PMID: 34220059 PMCID: PMC8232498 DOI: 10.4103/aian.aian_952_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease is a rare, autosomal recessive, treatable, neurometabolic disorder associated with biallelic pathogenic variations in the SLC19A3 gene. The condition may present as an early-childhood encephalopathy, an early-infantile lethal encephalopathy with lactic acidosis, with or without infantile spasms, or a late-onset Wernicke-like encephalopathy. The key radiological features are bilateral, symmetrical lesions in the caudate, putamen, and medial thalamus, with variable extension into the brain stem, cerebral cortex, and cerebellum. Treatment is life long and includes initiation of high dose biotin and thiamine. Genetic testing confirms the diagnosis. The prognosis depends on the time from diagnosis to the time of vitamin supplementation. The genotype-phenotype correlations are not clear yet, but the early infantile phenotype portends a poorer prognosis. We provide a brief overview of the disorder and emphasize the initiation of high-dose biotin and thiamine in infants and children with unexplained encephalopathy and basal ganglia involvement.
Collapse
Affiliation(s)
- Arushi G. Saini
- Pediatric Neurology, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
12
|
Pacei F, Tesone A, Laudi N, Laudi E, Cretti A, Pnini S, Varesco F, Colombo C. The Relevance of Thiamine Evaluation in a Practical Setting. Nutrients 2020; 12:nu12092810. [PMID: 32933220 PMCID: PMC7551939 DOI: 10.3390/nu12092810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes. Although thiamine can be obtained from various food sources, some common food groups are deficient in thiamine, and it can be denatured by high temperature and pH. Additionally, different drugs can alter thiamine metabolism. In addition, the half-life of thiamine in the body is between 1 and 3 weeks. All these factors could provide an explanation for the relatively short period needed to develop thiamine deficiency and observe the consequent clinical symptoms. Thiamine deficiency could lead to neurological and cardiological problems. These clinical conditions could be severe or even fatal. Marginal deficiency too may promote weaker symptoms that might be overlooked. Patients undergoing upper gastrointestinal or pancreatic surgery could have or develop thiamine deficiency for many different reasons. To achieve the best outcome for these patients, we strongly recommend the execution of both an adequate preoperative nutritional assessment, which includes thiamine evaluation, and a close nutritional follow up to avoid a nutrient deficit in the postoperative period.
Collapse
Affiliation(s)
- Federico Pacei
- ASST Nord Milano, UOC Neurologia, Ospedale Bassini, 20092 Cinisello Balsamo, Italy
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
- Correspondence:
| | - Antonella Tesone
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Nazzareno Laudi
- Faculty of Medicine and Surgery, Medizinische Universitat Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria;
| | - Emanuele Laudi
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Anna Cretti
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Shira Pnini
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Fabio Varesco
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Chiara Colombo
- Lombardy Regional Course for General Practitioner, PoliS-Lombardia, Via Taramelli 12/F, 20100 Milano, Italy;
| |
Collapse
|
13
|
Single gene, two diseases, and multiple clinical presentations: Biotin-thiamine-responsive basal ganglia disease. Brain Dev 2020; 42:572-580. [PMID: 32600842 DOI: 10.1016/j.braindev.2020.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
Abstract
AIM To present seven new genetically confirmed cases of biotin-thiamin-responsive basal ganglia disease (BTBGD) with different clinical and brain magnetic resonance imaging (MRI) characteristics. MATERIAL AND METHODS Genetic variants, clinical presentations, brain MRI findings, treatment response, and prognosis of seven selected patients with BTBGD, diagnosed with SLC19A3 mutations were described. RESULTS Among seven patients diagnosed with BTBGD, two had early infantile form, four had classic childhood form, and one was asymptomatic. Four different homozygous variants were found in the SLC19A3. Two patients with early infantile form presented with encephalopathy, dystonia, and refractory seizure in the neonatal period and have different variants. Their MRI findings were similar and pathognomonic for the early infantile form. Three siblings had same variants: one presented seizure and encephalopathy at the age of 4 months, one presented seizure at 14 years, and another was asymptomatic at 20 years. Only one of them had normal MRI findings, and the others MRI findings were similar and suggestive of the classic form. Other two siblings; one of them presented with developmental delay, seizure, and dystonia at 18 months and the other presented with subacute encephalopathy and ataxia at 20 months. Their MRI findings were also similar and suggestive of the classic form. CONCLUSION BTBGD may present with dissimilar clinical characteristics or remain asymptomatic for a long time period even in a family or patients with same variants. Brain MRI patterns may be important for the early diagnosis of BTBGD that would save children's lives.
Collapse
|
14
|
Alfadhel M, Umair M, Almuzzaini B, Alsaif S, AlMohaimeed SA, Almashary MA, Alharbi W, Alayyar L, Alasiri A, Ballow M, AlAbdulrahman A, Alaujan M, Nashabat M, Al-Odaib A, Altwaijri W, Al-Rumayyan A, Alrifai MT, Alfares A, AlBalwi M, Tabarki B. Targeted SLC19A3 gene sequencing of 3000 Saudi newborn: a pilot study toward newborn screening. Ann Clin Transl Neurol 2019; 6:2097-2103. [PMID: 31557427 PMCID: PMC6801173 DOI: 10.1002/acn3.50898] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Biotin–thiamine‐responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder mostly presented in children. The disorder is described as having subacute encephalopathy with confusion, dystonia, and dysarthria triggered by febrile illness that leads to neuroregression and death if untreated. Using biotin and thiamine at an early stage of the disease can lead to significant improvement. Methods BTBGD is a treatable disease if diagnosed at an early age and has been frequently reported in Saudi population. Keeping this in mind, the current study screened 3000 Saudi newborns for the SLC19A3 gene mutations using target sequencing, aiming to determine the carrier frequency in Saudi Population and whether BTBGD is a good candidate to be included in the newborn‐screened disorders. Results Using targeted gene sequencing, DNA from 3000 newborns Saudi was screened for the SLC19A3 gene mutations using standard methods. Screening of the SLC19A3 gene revealed a previously reported heterozygous missense mutation (c.1264A>G (p.Thr422Ala) in six unrelated newborns. No probands having homozygous pathogenic mutations were found in the studied cohort. The variant has been frequently reported previously in homozygous state in Saudi population, making it a hot spot mutation. The current study showed that the carrier frequency of SLC19A3 gene mutation is 1 of 500 in Saudi newborns. Conclusion For the first time in the literature, we determined the carrier frequency of SLC19A3 gene mutation in Saudi population. The estimated prevalence is too rare in Saudi population (at least one in million); therefore, the data are not in favor of including such very rare disorders in newborn screening program at population level. However, a larger cohort is needed for a more accurate estimate.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Saif Alsaif
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Department of Neonatology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Sulaiman A AlMohaimeed
- Pediatric Intensive Care Unit, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Maher A Almashary
- Pediatric Intensive Care Unit, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Wardah Alharbi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Latifah Alayyar
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Abdulrahman Alasiri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Mariam Ballow
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Abdulkareem AlAbdulrahman
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Monira Alaujan
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Division of Pediatric Neurology, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Ahmed Al-Rumayyan
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad T Alrifai
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, Qassim University, Almulyda, Buraydah, Saudi Arabia
| | - Mohammed AlBalwi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Marcé-Grau A, Martí-Sánchez L, Baide-Mairena H, Ortigoza-Escobar JD, Pérez-Dueñas B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J Inherit Metab Dis 2019; 42:581-597. [PMID: 31095747 DOI: 10.1002/jimd.12125] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023]
Abstract
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes within the cytosol, mitochondria, and peroxisomes. Currently, four genetic defects have been described causing impairment of thiamine transport and metabolism: SLC19A2 dysfunction leads to diabetes mellitus, megaloblastic anemia and sensory-neural hearing loss, whereas SLC19A3, SLC25A19, and TPK1-related disorders result in recurrent encephalopathy, basal ganglia necrosis, generalized dystonia, severe disability, and early death. In order to achieve early diagnosis and treatment, biomarkers play an important role. SLC19A3 patients present a profound decrease of free-thiamine in cerebrospinal fluid (CSF) and fibroblasts. TPK1 patients show decreased concentrations of thiamine pyrophosphate in blood and muscle. Thiamine supplementation has been shown to improve diabetes and anemia control in Rogers' syndrome patients due to SLC19A2 deficiency. In a significant number of patients with SLC19A3, thiamine improves clinical outcome and survival, and prevents further metabolic crisis. In SLC25A19 and TPK1 defects, thiamine has also led to clinical stabilization in single cases. Moreover, thiamine supplementation leads to normal concentrations of free-thiamine in the CSF of SLC19A3 patients. Herein, we present a literature review of the current knowledge of the disease including related clinical phenotypes, treatment approaches, update of pathogenic variants, as well as in vitro and in vivo functional models that provide pathogenic evidence and propose mechanisms for thiamine deficiency in humans.
Collapse
Affiliation(s)
- Anna Marcé-Grau
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | - Laura Martí-Sánchez
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Heidy Baide-Mairena
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | | | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
- Centre for Biochemical Research in Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
16
|
Wen YX, Wang JP, Chen Y, Bao XH. [Paroxysmal crying and motor regression for more than two months in an infant]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:399-404. [PMID: 31014436 PMCID: PMC7389214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/13/2019] [Indexed: 08/01/2024]
Abstract
The patient was a male who was found to be abnormal at the age of 4.5 months. He presented with irritability, motor regression and opisthotonus. Brain MRI revealed bilateral abnormality in the lentiform nucleus, thalamus, deutocerebrum and cerebellar hemispheres. Novel compound heterozygous mutations of SLC19A3 gene, c.950G>A(p.G317E) and c.962C>T(p.A321V), were found in the patient. Further study showed that c.950G>A was inherited from his father and c.962C>T came from his mother. Using bioinformatics software analysis, both of the mutations were found to be harmful. His symptoms were improved remarkably after biotin, thiamine and "cocktail" therapy. One month later a brain MRI revealed that the lesions in basal ganglia and cerebellar hemispheres were improved. The patient was definitely diagnosed with biotin-thiamine responsive basal ganglia disease (BTBGD). BTBGD is a treatable autosomal recessive disease and early administration of biotin and thiamine may lead to clinical improvement.
Collapse
Affiliation(s)
- Yong-Xin Wen
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | | | | | |
Collapse
|
17
|
Wen YX, Wang JP, Chen Y, Bao XH. [Paroxysmal crying and motor regression for more than two months in an infant]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:399-404. [PMID: 31014436 PMCID: PMC7389214 DOI: 10.7499/j.issn.1008-8830.2019.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The patient was a male who was found to be abnormal at the age of 4.5 months. He presented with irritability, motor regression and opisthotonus. Brain MRI revealed bilateral abnormality in the lentiform nucleus, thalamus, deutocerebrum and cerebellar hemispheres. Novel compound heterozygous mutations of SLC19A3 gene, c.950G>A(p.G317E) and c.962C>T(p.A321V), were found in the patient. Further study showed that c.950G>A was inherited from his father and c.962C>T came from his mother. Using bioinformatics software analysis, both of the mutations were found to be harmful. His symptoms were improved remarkably after biotin, thiamine and "cocktail" therapy. One month later a brain MRI revealed that the lesions in basal ganglia and cerebellar hemispheres were improved. The patient was definitely diagnosed with biotin-thiamine responsive basal ganglia disease (BTBGD). BTBGD is a treatable autosomal recessive disease and early administration of biotin and thiamine may lead to clinical improvement.
Collapse
Affiliation(s)
- Yong-Xin Wen
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | | | | | |
Collapse
|
18
|
Savasta S, Bassanese F, Buschini C, Foiadelli T, Trabatti C, Efthymiou S, Salpietro V, Houlden H, Simoncelli A, Marseglia GL. Biotin-Thiamine Responsive Encephalopathy: Report of an Egyptian Family with a Novel SLC19A3 Mutation and Review of the Literature. J Pediatr Genet 2018; 8:100-108. [PMID: 31061755 DOI: 10.1055/s-0038-1676603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
Abstract
Biotin-thiamine responsive basal ganglia disease (BTRBGD) is an autosomal recessive neurometabolic disorder with poor genotype-phenotype correlation, caused by mutations in the SLC19A3 gene on chromosome 2q36.6. The disease is characterized by three stages: stage 1 is a sub-acute encephalopathy often triggered by febrile illness; stage 2 is an acute encephalopathy with seizures, loss of motor function, developmental regression, dystonia, external ophthalmoplegia, dysphagia, and dysarthria; stage 3 is represented by chronic or slowly progressive encephalopathy. Clinical and biochemical findings, as well as the magnetic resonance imaging (MRI) pattern, resemble those of Leigh's syndrome, so that BTRBGD can be misdiagnosed as a mitochondrial encephalopathy.Here we report the clinical and radiological phenotypes of two siblings diagnosed with BTRBGD in which a novel SLC19A3 mutation (NM_025243.3: c.548C > T; p.Ala183Val) was found by whole exome sequencing (WES) of the family members.
Collapse
Affiliation(s)
- Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Francesco Bassanese
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Chiara Buschini
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Chiara Trabatti
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | | | - Gian Luigi Marseglia
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Kamaşak T, Havalı C, İnce H, Eyüboğlu İ, Çebi AH, Sahin S, Cansu A, Aydin K. Are diagnostic magnetic resonance patterns life-saving in children with biotin-thiamine-responsive basal ganglia disease? Eur J Paediatr Neurol 2018; 22:1139-1149. [PMID: 30054086 DOI: 10.1016/j.ejpn.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Biotin-thiamine responsive basal ganglia disease (BTBGD) is an autosomal recessive disorder caused by mutations in the SLC19A3 gene and characterized by recurrent sub-acute episodes of encephalopathy that typically starts in early childhood. This study describes characteristic clinical and magnetic resonance imaging (MRI) findings of six cases of BTBGD diagnosed with newly identified mutations and genetically confirmed, with very early and different presentations compared to cases in the previous literature. METHODS Six patients referred from different centers with similar clinical findings were diagnosed with BTBGD with newly identified mutations in the SLC19A3 gene. Two novel mutations in the SLC19A3 gene were identified in two patients at whole exome sequencing analysis. The clinical characteristics, responses to treatment, and electroencephalography (EEG) and MRI findings of these patients were examined. The other four patients presented with similar clinical and cranial MRI findings. These patients were therefore started on high-dose biotin and thiamine therapy, and mutation analysis concerning the SLC19A3 gene was performed. Responses to treatment, clinical courses, EEG findings and follow-up MRI were recorded for all these patients. RESULTS Age at onset of symptoms ranged from 1 to 3 months. The first symptoms were generally persistent crying and restlessness. Seizures occurred in five of the six patients. Cranial magnetic resonance imaging revealed involvement in the basal ganglia, brain stem, and the parietal and frontal regions in general. The first two patients were siblings, and both exhibited a novel mutation of the SLC19A3 gene. The third and fourth patients were also siblings and also exhibited a similar novel mutation of the SLC19A3 gene. The fifth and sixth patients were not related, and a newly identified mutation was detected in both these subjects. Three novel mutations were thus detected in six patients. CONCLUSION BTBGD is a progressive disease that can lead to severe disability and death. Early diagnosis of treatable diseases such as BTBGD is important in order to prevent long-term complications and disability.
Collapse
Affiliation(s)
- Tülay Kamaşak
- Karadeniz Technical University, Department of Pediatric Neurology, Trabzon, Turkey.
| | - Cengiz Havalı
- University of Health Sciences Bursa Training and Research Hospital, Bursa, Turkey.
| | - Hülya İnce
- Bahcesehir University Medical Faculty Hospital, Samsun, Turkey.
| | - İlker Eyüboğlu
- Karadeniz Technical University, Department of Radiology, Trabzon, Turkey.
| | - Alper Han Çebi
- Karadeniz Technical University, Department of Genetic, Trabzon, Turkey.
| | - Sevim Sahin
- Karadeniz Technical University, Department of Pediatric Neurology, Trabzon, Turkey.
| | - Ali Cansu
- Karadeniz Technical University, Department of Pediatric Neurology, Trabzon, Turkey.
| | - Kursad Aydin
- Medipol University of Hospital, İstanbul, Turkey.
| |
Collapse
|
20
|
Novel Homozygous Variant in TTC19 Causing Mitochondrial Complex III Deficiency with Recurrent Stroke-Like Episodes: Expanding the Phenotype. Semin Pediatr Neurol 2018; 26:16-20. [PMID: 29961508 DOI: 10.1016/j.spen.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 7-year-old boy with family history of consanguinity presented with developmental delay and recurrent hemiplegia involving both sides of the body, with variable facial and ocular involvement. Brain MRI showed bilateral striatal necrosis with cystic degeneration and lactate peaks on spectroscopy. Biochemical testing demonstrated mildly elevated lactate and pyruvate. Whole-exome sequencing revealed a novel homozygous pathogenic frameshift mutation in gene TTC19, diagnostic of mitochondrial complex III deficiency.
Collapse
|
21
|
Whitford W, Hawkins I, Glamuzina E, Wilson F, Marshall A, Ashton F, Love DR, Taylor J, Hill R, Lehnert K, Snell RG, Jacobsen JC. Compound heterozygous SLC19A3 mutations further refine the critical promoter region for biotin-thiamine-responsive basal ganglia disease. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001909. [PMID: 28696212 PMCID: PMC5701311 DOI: 10.1101/mcs.a001909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the gene SLC19A3 result in thiamine metabolism dysfunction syndrome 2, also known as biotin-thiamine-responsive basal ganglia disease (BTBGD). This neurometabolic disease typically presents in early childhood with progressive neurodegeneration, including confusion, seizures, and dysphagia, advancing to coma and death. Treatment is possible via supplement of biotin and/or thiamine, with early treatment resulting in significant lifelong improvements. Here we report two siblings who received a refined diagnosis of BTBGD following whole-genome sequencing. Both children inherited compound heterozygous mutations from unaffected parents; a missense single-nucleotide variant (p.G23V) in the first transmembrane domain of the protein, and a 4808-bp deletion in exon 1 encompassing the 5′ UTR and minimal promoter region. This deletion is the smallest promoter deletion reported to date, further defining the minimal promoter region of SLC19A3. Unfortunately, one of the siblings died prior to diagnosis, but the other is showing significant improvement after commencement of therapy. This case demonstrates the power of whole-genome sequencing for the identification of structural variants and subsequent diagnosis of rare neurodevelopmental disorders.
Collapse
Affiliation(s)
- Whitney Whitford
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Isobel Hawkins
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic Service, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Francessa Wilson
- Department of Paediatric Radiology, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Andrew Marshall
- Department of Paediatrics and Child Health, Wellington Hospital, Wellington 6021, New Zealand
| | - Fern Ashton
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Donald R Love
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland 1023, New Zealand
| | - Rosamund Hill
- Department of Neurology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Russell G Snell
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
22
|
Alfadhel M. Early Infantile Leigh-like SLC19A3 Gene Defects Have a Poor Prognosis: Report and Review. J Cent Nerv Syst Dis 2017; 9:1179573517737521. [PMID: 29123435 PMCID: PMC5661663 DOI: 10.1177/1179573517737521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/18/2017] [Indexed: 11/15/2022] Open
Abstract
Solute carrier family 19 (thiamine transporter), member 3 (SCL19A3) gene defect produces an autosomal recessive neurodegenerative disorder associated with different phenotypes and acronyms. One of the common presentations is early infantile lethal Leigh-like syndrome. We report a case of early infantile Leigh-like SLC19A3 gene defects of patients who died at 4 months of age with no response to a high dose of biotin and thiamine. In addition, we report a novel mutation that was not reported previously. Finally, we review the literature regarding early infantile Leigh-like SLC19A3 gene defects and compare the literature with our patient.
Collapse
Affiliation(s)
- Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Alfadhel M, Al-Bluwi A. Psychological Assessment of Patients With Biotin-Thiamine-Responsive Basal Ganglia Disease. Child Neurol Open 2017; 4:2329048X17730742. [PMID: 28944253 PMCID: PMC5604839 DOI: 10.1177/2329048x17730742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 12/02/2022] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease is a devastating autosomal recessive inherited neurological disorder. We conducted a retrospective chart review of all patients with biotin-thiamine-responsive basal ganglia disease who underwent a formal psychological assessment. Six females and 3 males were included. Five patients (56%) had an average IQ, two patients (22%) had mild delay, and two (22%) had severe delay. A normal outcome was directly related to the time of diagnosis and initiation of treatment. Early diagnosis and immediate commencement of treatment were associated with a favorable outcome and vice versa. The most affected domain was visual motor integration, while understanding and mathematical problem-solving were the least affected. In summary, this is the first study discussing the psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. The results of this study alert clinicians to consider prompt initiation of biotin and thiamine in any patient presenting with neuroregression and a basal ganglia lesion on a brain magnetic resonance imaging.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Amal Al-Bluwi
- Division of Mental Health, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Ferreira CR, Whitehead MT, Leon E. Biotin-thiamine responsive basal ganglia disease: Identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated next-generation sequencing data. Am J Med Genet A 2017; 173:1502-1513. [PMID: 28402605 PMCID: PMC10506158 DOI: 10.1002/ajmg.a.38189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/03/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
Biotin-thiamine responsive basal ganglia disease is an inborn error of metabolism caused by mutations in SLC19A3, encoding a transporter of thiamine across the plasma membrane. We report a novel mutation identified in the homozygous state in a patient with typical brain MRI changes. In addition, this patient had markedly elevated CSF pyruvate, a low lactate-to-pyruvate molar ratio, and an abnormal pyruvate peak at 2.4 ppm on brain magnetic resonance spectroscopy. Using aggregated exome sequencing data, we calculate the carrier frequency of mutations in SLC19A3 as 1 in 232 individuals in the general population, for an estimated prevalence of the disease of approximately 1 in 215,000 individuals. The disease is thus more frequent than previously recognized, and the presence of a pyruvate peak on spectroscopy could serve as an important diagnostic clue.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
- The George Washington University School of Medicine, Washington, District of Columbia
| | - Matthew T. Whitehead
- The George Washington University School of Medicine, Washington, District of Columbia
- Division of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, District of Columbia
| | - Eyby Leon
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
| |
Collapse
|
25
|
Zera K, Sweet R, Zastre J. Role of HIF-1α in the hypoxia inducible expression of the thiamine transporter, SLC19A3. Gene 2016; 595:212-220. [PMID: 27743994 PMCID: PMC5097002 DOI: 10.1016/j.gene.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Ensuring continuous intracellular supply of thiamine is essential to maintain metabolism. Cellular homeostasis requires the function of the membrane bound thiamine transporters THTR1 and THTR2. In the absence of increased dietary intake of thiamine, varying intracellular levels to meet metabolic demands during pathophysiological stressors, such as hypoxia, requires adaptive regulatory mechanisms to increase thiamine transport capacity. Previous work has established the up-regulation of SLC19A3 (THTR2) gene expression and activity during hypoxic stress through the activity of the hypoxia inducible transcription factor 1 alpha (HIF-1α). However, it is unknown whether HIF-1α acts directly or indirectly to trans-activate expression of SLC19A3. This work utilized the breast cancer cell line BT-474 treated with 1% O2 or a hypoxia chemical mimetic deferoxamine to determine the minimal promoter region of SLC19A3 responsible for hypoxia responsiveness. In silico sequence analysis determined two contiguous hypoxia responsive elements in close proximity to the transcriptional start site of the SLC19A3 gene. Using a HIF-1α transcriptional factor ELISA assay, HIF-1α was capable of binding to a dsDNA construct of the SLC19A3 minimal promoter. Chromatin immunoprecipitation assay established that SP1 was bound to the SLC19A3 minimal promoter region under normoxic conditions. However, HIF-1α binding to the minimal promoter region occurred during hypoxic treatments, while no SP1 binding was observed under these conditions. This work demonstrates the direct binding and activation of SLC19A3 expression by HIF-1α during hypoxic stress, suggesting an important adaptive regulatory role for HIF-1α in maintaining thiamine homeostasis.
Collapse
Affiliation(s)
- Kristy Zera
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, GA, United States
| | - Rebecca Sweet
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, GA, United States
| | - Jason Zastre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, GA, United States.
| |
Collapse
|
26
|
Algahtani H, Ghamdi S, Shirah B, Alharbi B, Algahtani R, Bazaid A. Biotin–thiamine–responsive basal ganglia disease: catastrophic consequences of delay in diagnosis and treatment. Neurol Res 2016; 39:117-125. [DOI: 10.1080/01616412.2016.1263176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hussein Algahtani
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Saeed Ghamdi
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Bader Shirah
- King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Bader Alharbi
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Raghad Algahtani
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | | |
Collapse
|
27
|
Ortigoza-Escobar JD, Molero-Luis M, Arias A, Martí-Sánchez L, Rodriguez-Pombo P, Artuch R, Pérez-Dueñas B. Treatment of genetic defects of thiamine transport and metabolism. Expert Rev Neurother 2016; 16:755-63. [DOI: 10.1080/14737175.2016.1187562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Department of Child Neurology, Hospital General de Granollers, Barcelona, Spain
| | - Marta Molero-Luis
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Angela Arias
- Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Laura Martí-Sánchez
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Pilar Rodriguez-Pombo
- Departamento de Biología Molecular, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rafael Artuch
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Belén Pérez-Dueñas
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
28
|
Ygberg S, Naess K, Eriksson M, Stranneheim H, Lesko N, Barbaro M, Wibom R, Wang C, Wedell A, Wickström R. Biotin and Thiamine Responsive Basal Ganglia Disease--A vital differential diagnosis in infants with severe encephalopathy. Eur J Paediatr Neurol 2016; 20:457-61. [PMID: 26975589 DOI: 10.1016/j.ejpn.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/22/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED We report two siblings of Swedish origin with infantile Biotin and Thiamine Responsive Basal Ganglia Disease (BTRBG). CASE REPORT Initial symptoms were in both cases lethargia, with reduced contact and poor feeding from the age of 5 weeks. Magnetic resonance imaging showed altered signal in the basal ganglia, along with grey and white matter abnormalities. The diagnosis BTRBG was not recognized in the first sibling who died at the age of 8 weeks. The second sibling was started on biotin and thiamine immediately upon development of symptoms, leading to clinical improvement and partial reversion of the magnetic resonance imaging findings. Genetic analysis of the SLC19A3 gene identified two mutations, c.74dupT and c.1403delA, carried in compound heterozygous form in both boys, each inherited from one parent. COMMENTS The first mutation has previously been described in children with BTRBG, and the second mutation is novel. Although the clinical picture in BTRGB is very severe it is also rather unspecific and the diagnosis may be missed. CONCLUSION This report highlights the importance of considering biotin and thiamine treatment also in a European infant born to non-consanguineous parents, who presents with symptoms of acute/subacute encephalopathy.
Collapse
Affiliation(s)
- Sofia Ygberg
- Unit of Clinical Pediatrics, Dept of Women's and Children's Health, Karolinska Institutet, Sweden.
| | - Karin Naess
- Neuropediatric Unit, Dept of Women's and Children's Health, Karolinska Institutet, Sweden; Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden
| | - Mats Eriksson
- Neuropediatric Unit, Dept of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Henrik Stranneheim
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Sweden
| | - Nicole Lesko
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Michela Barbaro
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Chen Wang
- Dept of Neuroradiology, Karolinska University Hospital, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Sweden
| | - Ronny Wickström
- Neuropediatric Unit, Dept of Women's and Children's Health, Karolinska Institutet, Sweden
| |
Collapse
|
29
|
Ortigoza-Escobar JD, Molero-Luis M, Arias A, Oyarzabal A, Darín N, Serrano M, Garcia-Cazorla A, Tondo M, Hernández M, Garcia-Villoria J, Casado M, Gort L, Mayr JA, Rodríguez-Pombo P, Ribes A, Artuch R, Pérez-Dueñas B. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain 2015; 139:31-8. [PMID: 26657515 DOI: 10.1093/brain/awv342] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/02/2015] [Indexed: 11/13/2022] Open
Abstract
Thiamine transporter-2 deficiency is caused by mutations in the SLC19A3 gene. As opposed to other causes of Leigh syndrome, early administration of thiamine and biotin has a dramatic and immediate clinical effect. New biochemical markers are needed to aid in early diagnosis and timely therapeutic intervention. Thiamine derivatives were analysed by high performance liquid chromatography in 106 whole blood and 38 cerebrospinal fluid samples from paediatric controls, 16 cerebrospinal fluid samples from patients with Leigh syndrome, six of whom harboured mutations in the SLC19A3 gene, and 49 patients with other neurological disorders. Free-thiamine was remarkably reduced in the cerebrospinal fluid of five SLC19A3 patients before treatment. In contrast, free-thiamine was slightly decreased in 15.2% of patients with other neurological conditions, and above the reference range in one SLC19A3 patient on thiamine supplementation. We also observed a severe deficiency of free-thiamine and low levels of thiamine diphosphate in fibroblasts from SLC19A3 patients. Surprisingly, pyruvate dehydrogenase activity and mitochondrial substrate oxidation rates were within the control range. Thiamine derivatives normalized after the addition of thiamine to the culture medium. In conclusion, we found a profound deficiency of free-thiamine in the CSF and fibroblasts of patients with thiamine transporter-2 deficiency. Thiamine supplementation led to clinical improvement in patients early treated and restored thiamine values in fibroblasts and cerebrospinal fluid.
Collapse
Affiliation(s)
| | - Marta Molero-Luis
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Angela Arias
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Alfonso Oyarzabal
- 5 Department of Molecular Biology, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Niklas Darín
- 6 Department of Paediatrics, Sahlgrenska Academy, Gothenburg University, Gothenburg Sweden
| | - Mercedes Serrano
- 1 Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Angels Garcia-Cazorla
- 1 Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Mireia Tondo
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - María Hernández
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Judit Garcia-Villoria
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Mercedes Casado
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Laura Gort
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Johannes A Mayr
- 7 Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg 5020, Austria
| | - Pilar Rodríguez-Pombo
- 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain 5 Department of Molecular Biology, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonia Ribes
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Rafael Artuch
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Belén Pérez-Dueñas
- 1 Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| |
Collapse
|
30
|
Tabarki B, Alfadhel M, AlShahwan S, Hundallah K, AlShafi S, AlHashem A. Treatment of biotin-responsive basal ganglia disease: Open comparative study between the combination of biotin plus thiamine versus thiamine alone. Eur J Paediatr Neurol 2015; 19:547-52. [PMID: 26095097 DOI: 10.1016/j.ejpn.2015.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/28/2015] [Accepted: 05/17/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To compare the combination of biotin plus thiamine to thiamine alone in treating patients with biotin-responsive basal ganglia disease in an open-label prospective, comparative study. METHODS twenty patients with genetically proven biotin-responsive basal ganglia disease were enrolled, and received for at least 30 months a combination of biotin plus thiamine or thiamine alone. The outcome measures included duration of the crisis, number of recurrence/admissions, the last neurological examination, the severity of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and the brain MRI findings during the crisis and after 30 months of follow-up. RESULTS Ten children with a mean age of 6 years(1/2) were recruited in the biotin plus thiamine group (group 1) and ten children (6 females and 4 males) with a mean age of 6 years and 2 months were recruited in the thiamine group (group 2). After 2 years of follow-up treatment, 6 of 20 children achieved complete remission, 10 had minimal sequelae in the form of mild dystonia and dysarthria (improvement of the BFMDRS, mean: 80%), and 4 had severe neurologic sequelae. All these 4 patients had delayed diagnosis and management. Regarding outcome measures, both groups have a similar outcome regarding the number of recurrences, the neurologic sequelae (mean BFMDS score between the groups, p = 0.84), and the brain MRI findings. The only difference was the duration of the acute crisis: group 1 had faster recovery (2 days), versus 3 days in group 2 (p = 0.005). CONCLUSION Our study suggests that over 30 months of treatment, the combination of biotin plus thiamine is not superior to thiamine alone in the treatment of biotin-responsive basal ganglia disease.
Collapse
Affiliation(s)
- Brahim Tabarki
- Divisions of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saad AlShahwan
- Divisions of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Khaled Hundallah
- Divisions of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Shatha AlShafi
- Divisions of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amel AlHashem
- Divisions of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Ortigoza-Escobar JD, Serrano M, Molero M, Oyarzabal A, Rebollo M, Muchart J, Artuch R, Rodríguez-Pombo P, Pérez-Dueñas B. Thiamine transporter-2 deficiency: outcome and treatment monitoring. Orphanet J Rare Dis 2014; 9:92. [PMID: 24957181 PMCID: PMC4099387 DOI: 10.1186/1750-1172-9-92] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/13/2014] [Indexed: 01/14/2023] Open
Abstract
Background The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. Methods We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. Results At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10–40 mg/kg/day) and biotin (1–2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. Conclusions ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Belén Pérez-Dueñas
- Department of Child Neurology, Sant Joan de Déu Hospital, University of Barcelona, Passeig Sant Joan de Déu, 2, Esplugues, Barcelona 08950, Spain.
| |
Collapse
|