1
|
Cheng X, Zhao M, Chen L, Huang C, Xu Q, Shao J, Wang HT, Zhang Y, Li X, Xu X, Yao XP, Lin KJ, Xue H, Wang H, Chen Q, Zhu YC, Zhou JW, Ge WP, Zhu SJ, Liu JY, Chen WJ, Xiong ZQ. Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1. Neuron 2024; 112:3126-3142.e8. [PMID: 39019040 DOI: 10.1016/j.neuron.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.
Collapse
Affiliation(s)
- Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Miao Zhao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China
| | - Chenwei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwu Xu
- Lin Gang Laboratory, Shanghai 201602, China
| | - Jia Shao
- Lin Gang Laboratory, Shanghai 201602, China
| | - Hong-Tao Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuequan Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Xu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Ping Yao
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui Xue
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Chuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia-Wei Zhou
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Shu-Jia Zhu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Yu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Jin Chen
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Strober BJ, Zhang MJ, Amariuta T, Rossen J, Price AL. Fine-mapping causal tissues and genes at disease-associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.01.23297909. [PMID: 37961337 PMCID: PMC10635248 DOI: 10.1101/2023.11.01.23297909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the biologically plausible example of CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.
Collapse
Affiliation(s)
- Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jordan Rossen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Sennfält S, Gustavsson P, Malmgren H, Gilland E, Almqvist H, Oscarson M, Engvall M, Björkhem I, Nilsson D, Lagerstedt-Robinson K, Svenningsson P, Paucar M. Novel findings in a Swedish primary familial brain calcification cohort. J Neurol Sci 2024; 460:123020. [PMID: 38642488 DOI: 10.1016/j.jns.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Brain calcifications are frequent findings on imaging. In a small proportion of cases, these calcifications are associated with pathogenic gene variants, hence termed primary familial brain calcification (PFBC). The clinical penetrance is incomplete and phenotypic variability is substantial. This paper aims to characterize a Swedish PFBC cohort including 25 patients: 20 from seven families and five sporadic cases. METHODS Longitudinal clinical assessment and CT imaging were conducted, abnormalities were assessed using the total calcification score (TCS). Genetic analyses, including a panel of six known PFBC genes, were performed in all index and sporadic cases. Additionally, three patients carrying a novel pathogenic copy number variant in SLC20A2 had their cerebrospinal fluid phosphate (CSF-Pi) levels measured. RESULTS Among the 25 patients, the majority (76%) displayed varying symptoms during the initial assessment including motor (60%), psychiatric (40%), and/or cognitive abnormalities (24%). Clinical progression was observed in most patients (78.6%), but there was no significant difference in calcification between the first and second scans, with mean scores of 27.3 and 32.8, respectively. In three families and two sporadic cases, pathogenic genetic variants were identified, including a novel finding, in the SLC20A2 gene. In the three tested patients, the CSF-Pi levels were normal. CONCLUSIONS This report demonstrates the variable expressivity seen in PFBC and includes a novel pathogenic variant in the SLC20A2 gene. In four families and three sporadic cases, no pathogenic variants were found, suggesting that new PFBC genes remain to be discovered.
Collapse
Affiliation(s)
- Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Hälsovägen 13 R52, 141 86 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Peter Gustavsson
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Eric Gilland
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Blå stråket 7, 413 46 Göteborg, Sweden.
| | - Håkan Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden; Department of Radiology, Capio S:t Goran Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden.
| | - Mikael Oscarson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Anna Steckséns g 47, 171 76 Solna, Sweden.
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Anna Steckséns g 47, 171 76 Solna, Sweden.
| | - Ingemar Björkhem
- Science for Life Laboratory, Stockholm, Tomtebodavägen 23, 171 65 Solna, Sweden.
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Alfred Nobels Allé 8, 141 52 Huddinge, Sweden.
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Karolinska Vägen, 171 76500 Solna, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Hälsovägen 13 R52, 141 86 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, Hälsovägen 13 R52, 141 86 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden.
| |
Collapse
|
4
|
Maheshwari U, Mateos JM, Weber‐Stadlbauer U, Ni R, Tamatey V, Sridhar S, Restrepo A, de Jong PA, Huang S, Schaffenrath J, Stifter SA, Szeri F, Greter M, Koek HL, Keller A. Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol 2023; 33:e13189. [PMID: 37505935 PMCID: PMC10580014 DOI: 10.1111/bpa.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - José M. Mateos
- Center for Microscopy and Image analysisUniversity of ZurichZurichSwitzerland
| | - Ulrike Weber‐Stadlbauer
- Institute of Veterinary Pharmacology and ToxicologyUniversity of Zurich‐Vetsuisse, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Virgil Tamatey
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Doctoral School of BiologyELTE Eotvos Lorand UniversityBudapestHungary
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Alejandro Restrepo
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pim A. de Jong
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sheng‐Fu Huang
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Flora Szeri
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
| | - Melanie Greter
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Huiberdina L. Koek
- Department of Geriatric MedicineUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
D'Onofrio G, Scala M, Severino M, Roberti R, Romano F, De Marco P, Iacomino M, Baldassari S, Uva P, Pavanello M, Gustincich S, Striano P, Zara F, Capra V. Expanding the phenotype associated with biallelic SLC20A2 variants. Eur J Hum Genet 2023; 31:725-729. [PMID: 36977836 PMCID: PMC10326077 DOI: 10.1038/s41431-023-01349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Affiliation(s)
- Gianluca D'Onofrio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy.
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy.
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy.
| | | | - Roberta Roberti
- Science of Health Department, School of Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Ferruccio Romano
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Patrizia De Marco
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Marco Pavanello
- Department of Neurosurgery, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, 16147, Genoa, Italy.
| |
Collapse
|
6
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Jennings ML. Role of transporters in regulating mammalian intracellular inorganic phosphate. Front Pharmacol 2023; 14:1163442. [PMID: 37063296 PMCID: PMC10097972 DOI: 10.3389/fphar.2023.1163442] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
This review summarizes the current understanding of the role of plasma membrane transporters in regulating intracellular inorganic phosphate ([Pi]In) in mammals. Pi influx is mediated by SLC34 and SLC20 Na+-Pi cotransporters. In non-epithelial cells other than erythrocytes, Pi influx via SLC20 transporters PiT1 and/or PiT2 is balanced by efflux through XPR1 (xenotropic and polytropic retrovirus receptor 1). Two new pathways for mammalian Pi transport regulation have been described recently: 1) in the presence of adequate Pi, cells continuously internalize and degrade PiT1. Pi starvation causes recycling of PiT1 from early endosomes to the plasma membrane and thereby increases the capacity for Pi influx; and 2) binding of inositol pyrophosphate InsP8 to the SPX domain of XPR1 increases Pi efflux. InsP8 is degraded by a phosphatase that is strongly inhibited by Pi. Therefore, an increase in [Pi]In decreases InsP8 degradation, increases InsP8 binding to SPX, and increases Pi efflux, completing a feedback loop for [Pi]In homeostasis. Published data on [Pi]In by magnetic resonance spectroscopy indicate that the steady state [Pi]In of skeletal muscle, heart, and brain is normally in the range of 1–5 mM, but it is not yet known whether PiT1 recycling or XPR1 activation by InsP8 contributes to Pi homeostasis in these organs. Data on [Pi]In in cultured cells are variable and suggest that some cells can regulate [Pi] better than others, following a change in [Pi]Ex. More measurements of [Pi]In, influx, and efflux are needed to determine how closely, and how rapidly, mammalian [Pi]In is regulated during either hyper- or hypophosphatemia.
Collapse
|
8
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|
9
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
10
|
Zhao M, Lin XH, Zeng YH, Su HZ, Wang C, Yang K, Chen YK, Lin BW, Yao XP, Chen WJ. Knockdown of myorg leads to brain calcification in zebrafish. Mol Brain 2022; 15:65. [PMID: 35870928 PMCID: PMC9308368 DOI: 10.1186/s13041-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Primary familial brain calcification (PFBC) is a neurogenetic disorder characterized by bilateral calcified deposits in the brain. We previously identified that MYORG as the first pathogenic gene for autosomal recessive PFBC, and established a Myorg-KO mouse model. However, Myorg-KO mice developed brain calcifications until nine months of age, which limits their utility as a facile PFBC model system. Hence, whether there is another typical animal model for mimicking PFBC phenotypes in an early stage still remained unknown. In this study, we profiled the mRNA expression pattern of myorg in zebrafish, and used a morpholino-mediated blocking strategy to knockdown myorg mRNA at splicing and translation initiation levels. We observed multiple calcifications throughout the brain by calcein staining at 2–4 days post-fertilization in myorg-deficient zebrafish, and rescued the calcification phenotype by replenishing myorg cDNA. Overall, we built a novel model for PFBC via knockdown of myorg by antisense oligonucleotides in zebrafish, which could shorten the observation period and replenish the Myorg-KO mouse model phenotype in mechanistic and therapeutic studies.
Collapse
|
11
|
Abstract
Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| |
Collapse
|
12
|
Sakai K, Ishida C, Hayashi K, Tsuji N, Kannon T, Hosomichi K, Takei N, Kakita A, Tajima A, Yamada M. Familial idiopathic basal ganglia calcification with a heterozygous missense variant (c.902C>T/p.P307L) in SLC20A2 showing widespread cerebrovascular lesions. Neuropathology 2022; 42:126-133. [PMID: 35026865 DOI: 10.1111/neup.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
We describe a postmortem case of familial idiopathic basal ganglia calcification (FIBGC) in a 72-year-old Japanese man. The patient showed progressive cognitive impairment with a seven-year clinical course and calcification of the basal ganglia, thalami, and cerebellar dentate nuclei. A novel heterozygous missense variant in SLC20A2 (c.920C>T/p.P307L), a type III sodium-dependent phosphate transporter (PiT-2), was subsequently identified, in addition to typical neuropathological findings of FIBGC, such as capillary calcification of the occipital gray matter, confluent calcification of the basal ganglia and cerebellar white matter, widespread occurrence of vasculopathic changes, cerebrovascular lesions, and vascular smooth muscle cell depletion. Immunohistochemistry for PiT-2 protein revealed no apparent staining in endothelial cells in the basal ganglia and insular cortex; however, the immunoreactivity in endothelial cells of the cerebellum was preserved. Moreover, Western blot analysis identified preserved PiT-2 immunoreactivity signals in the frontal cortex and cerebellum. The variant identified in the present patient could be associated with development of FIBGC and is known to be located at the large intracytoplasmic part of the PiT-2 protein, which has potential phosphorylation sites with importance in the regulation of inorganic phosphate transport activity. The present case is an important example to prove that FIGBC could stem from a missense variant in the large intracytoplasmic loop of the PiT-2 protein. Abnormal clearance of inorganic phosphate in the brain could be related to the development of vascular smooth muscle damage, the formation of cerebrovascular lesions, and subsequent brain calcification in patients with FIBGC with SLC20A2 variants.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Chiho Ishida
- Department of Neurology, National Hospital Organization Iou National Hospital, Kanazawa, Japan
| | - Koji Hayashi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Neurology, National Hospital Organization Iou National Hospital, Kanazawa, Japan
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naotaka Tsuji
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
13
|
Carbone MG, Della Rocca F. Neuropsychiatric Manifestations of Fahr's Disease, Diagnostic and Therapeutic Challenge: A Case Report and a Literature Review. CLINICAL NEUROPSYCHIATRY 2022; 19:121-131. [PMID: 35601245 PMCID: PMC9112992 DOI: 10.36131/cnfioritieditore20220206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective Calcifications in basal ganglia could be an incidental finding up to 20% of asymptomatic patients undergoing computed tomography (CT) or magnetic resonance imaging (MRI) scan. The presence of neuropsychiatric symptomatology associated with basal ganglia calcifications identifies a clinical entity defined as Fahr's Disease. This term is used in presence of calcifications secondary to a specific cause, but the variability of etiology, pathogenesis, and clinical picture underlying this condition have raised the question of the real existence of a syndrome. Several classifications based on the etiology, the location of brain calcifications and the clinical presentation have been proposed. Method In the present study, we describe the case of a 52 years old man with a Bipolar I disorder diagnosis and a recent onset of behavioral disinhibition and alcohol misuse. The patient came to our center, specialized for bipolar disorder, as a consequence of a progressive worsening of the clinical picture associated to behavioral disturbances (sexual disinhibition, episodes of binge-eating, alcohol misuse), initial degrees of deterioration in cognitive function, peculiar psychotic symptoms and a resistance to various psychopharmacological treatment. The patient underwent neuro-psychologic evaluation, laboratory examinations and neuroimaging. Results and Conclusions CT and MRI revealed basal ganglia calcification and, in presence of normal blood tests, a diagnosis of Fahr's syndrome was suggested. During the hospitalization, the patient showed a good clinical response to a psychopharmacological therapy constituted by two mood stabilizers (lithium carbonate and oxcarbazepine) and mild antipsychotics doses (quetiapine and aripiprazole). Finally, we performed a literature review on the complex and multifaceted neuropsychiatric clinical manifestations of Fahr's disease in order to provide useful elements in terms of etiology, clinical manifestation, diagnosis, and treatment.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100 Varese, Italy,Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.,Corresponding author Manuel Glauco Carbone, M.D. Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100 Varese, Italy E-mail:
| | - Filippo Della Rocca
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, 56100, Pisa, Italy.,
| |
Collapse
|
14
|
Maheshwari U, Huang SF, Sridhar S, Keller A. The Interplay Between Brain Vascular Calcification and Microglia. Front Aging Neurosci 2022; 14:848495. [PMID: 35309892 PMCID: PMC8924545 DOI: 10.3389/fnagi.2022.848495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
- *Correspondence: Annika Keller,
| |
Collapse
|
15
|
Characteristics and therapeutic potential of sodium-dependent phosphate cotransporters in relation to idiopathic basal ganglia calcification. J Pharmacol Sci 2021; 148:152-155. [PMID: 34924120 DOI: 10.1016/j.jphs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Type-III sodium-dependent phosphate transporters 1 and 2 (PiT 1 and PiT 2, respectively) are proteins encoded by SLC20A1 and SLC20A2, respectively. The ubiquitous distribution of SLC20A1 and SLC20A2 mRNAs in mammalian tissues supports the housekeeping maintenance and homeostasis of intracellular inorganic phosphate (Pi), which is absorbed from interstitial fluid for normal cellular functions. SLC20A2 variants have been found in patients with idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease or primary familial brain calcification (PFBC). Thus, disrupted Pi homeostasis is considered one of the major factors in the pathogenic mechanism of IBGC. In this paper, among the causative genes of IBGC, we focused specifically on PiT2, and its potential for a therapeutic target of IBGC.
Collapse
|
16
|
Yamazaki M, Kawai M, Kinoshita S, Tachikawa K, Nakanishi T, Ozono K, Michigami T. Clonal osteoblastic cell lines with CRISPR/Cas9-mediated ablation of Pit1 or Pit2 show enhanced mineralization despite reduced osteogenic gene expression. Bone 2021; 151:116036. [PMID: 34118444 DOI: 10.1016/j.bone.2021.116036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Multiple actions of extracellular Pi on the skeletal cells are likely to be partly mediated by type III sodium/phosphate (Na+/Pi) cotransporters Pit1 and Pit2, although the details are not fully understood. In the current study, to determine the roles of Pit1 and Pit2 in osteoblasts, we generated Pit1-knockout (KO) and Pit2-KO osteoblastic cells by applying CRISPR/Cas9 genome editing to an osteoblastic cell line MC3T3-E1 subclone 4. The extracellular Pi level was increased in the Pit1-KO and Pit2-KO clones due to the reduced Pi uptake. Interestingly, in vitro mineralization was accelerated in the Pit1-KO and Pit2-KO clones, although the induction of the expression of osteogenic marker genes was suppressed. In the cells before mineralization, extracellular levels of pyrophosphate (PPi) and adenosine triphosphate (ATP) were increased in the Pit1-KO and Pit2-KO clones, which might be attributable to the reduced expression and activity of tissue-nonspecific alkaline phosphatase (TNSALP). A 24-h treatment with high Pi reduced the expression and activity of TNSALP, suggesting that the suppression of TNSALP in the Pit1-KO and Pit2-KO clones was caused by the increased availability of extracellular Pi. Lentiviral gene transfer of Pit1 and Pit2 restored the changes observed in Pit1-KO and Pit2-KO clones, respectively. The expressions of P2Y2 and P2X7 which encode receptors for extracellular ATP were altered in the Pit1-KO and Pit2-KO clones, suggesting an influence on purinergic signaling. In mineralized cells after long-term culture, intracellular levels of PPi and ATP were higher in the Pit1-KO and Pit2-KO clones. Taken together, ablation of Pit1 or Pit2 in this osteoblastic cell model led to accelerated mineralization, suppressed TNSALP and altered the levels of extracellular and intracellular PPi and ATP, which might be partly mediated by changes in the availability of extracellular Pi.
Collapse
Affiliation(s)
- Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Saori Kinoshita
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
17
|
Ren Y, Shen Y, Si N, Fan S, Zhang Y, Xu W, Shi L, Zhang X. Slc20a2-Deficient Mice Exhibit Multisystem Abnormalities and Impaired Spatial Learning Memory and Sensorimotor Gating but Normal Motor Coordination Abilities. Front Genet 2021; 12:639935. [PMID: 33889180 PMCID: PMC8056086 DOI: 10.3389/fgene.2021.639935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr's disease, is a rare autosomal dominant or recessive neurodegenerative disorder characterized by bilateral and symmetrical microvascular calcifications affecting multiple brain regions, particularly the basal ganglia (globus pallidus, caudate nucleus, and putamen) and thalamus. The most common clinical manifestations include cognitive impairment, neuropsychiatric signs, and movement disorders. Loss-of-function mutations in SLC20A2 are the major genetic causes of PFBC. OBJECTIVE This study aimed to investigate whether Slc20a2 knockout mice could recapitulate the dynamic processes and patterns of brain calcification and neurological symptoms in patients with PFBC. We comprehensively evaluated brain calcifications and PFBC-related behavioral abnormalities in Slc20a2-deficient mice. METHODS Brain calcifications were analyzed using classic calcium-phosphate staining methods. The Morris water maze, Y-maze, and fear conditioning paradigms were used to evaluate long-term spatial learning memory, working memory, and episodic memory, respectively. Sensorimotor gating was mainly assessed using the prepulse inhibition of the startle reflex program. Spontaneous locomotor activity and motor coordination abilities were evaluated using the spontaneous activity chamber, cylinder test, accelerating rotor-rod, and narrowing balance beam tests. RESULTS Slc20a2 homozygous knockout (Slc20a2-HO) mice showed congenital and global developmental delay, lean body mass, skeletal malformation, and a high proportion of unilateral or bilateral eye defects. Brain calcifications were detected in the hypothalamus, ventral thalamus, and midbrain early at postnatal day 80 in Slc20a2-HO mice, but were seldom found in Slc20a2 heterozygous knockout (Slc20a2-HE) mice, even at extremely old age. Slc20a2-HO mice exhibited spatial learning memory impairments and sensorimotor gating deficits while exhibiting normal working and episodic memories. The general locomotor activity, motor balance, and coordination abilities were not statistically different between Slc20a2-HO and wild-type mice after adjusting for body weight, which was a major confounding factor in our motor function evaluations. CONCLUSION The human PFBC-related phenotypes were highly similar to those in Slc20a2-HO mice. Therefore, Slc20a2-HO mice might be suitable for the future evaluation of neuropharmacological intervention strategies targeting cognitive and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Yaqiong Ren
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Lei Shi
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Stenhouse C, Halloran KM, Newton MG, Gaddy D, Suva LJ, Bazer FW. Novel mineral regulatory pathways in ovine pregnancy: I. phosphate, klotho signaling, and sodium-dependent phosphate transporters. Biol Reprod 2021; 104:1084-1096. [PMID: 33624764 DOI: 10.1093/biolre/ioab028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Appropriate mineralization of the fetal skeleton requires an excess of phosphate in the fetus compared to the mother. However, mechanisms for placental phosphate transport are poorly understood. This study aimed to identify phosphate regulatory pathways in ovine endometria and placentae throughout gestation. Suffolk ewes were bred with fertile rams upon visual detection of estrus (Day 0). On Days 9, 12, 17, 30, 70, 90, 110, and 125 of pregnancy (n = 3-14/Day), ewes were euthanized and hysterectomized. Phosphate abundance varied across gestational days in uterine flushings, allantoic fluid, and homogenized endometria and placentae (P < 0.05). The expression of mRNAs for sodium-dependent phosphate transporters (SLC20A1 and SLC20A2) and klotho signaling mediators (FGF7, FGF21, FGF23, FGFR1-4, KL, KLB, ADAM10, and ADAM17) were quantified by qPCR. Day 17 conceptus tissue expressed SLC20A1, SLC20A2, KLB, FGF7, FGF21, FGF23, FGFR1, and FGFR2 mRNAs. Both sodium-dependent phosphate transporters and klotho signaling mediators were expressed in endometria and placentae throughout gestation. Gestational day influenced the expression of SLC20A1, ADAM10, ADAM17, FGF21, FGFR1, and FGFR3 mRNAs in both endometria and placentae (P < 0.05). Gestational day influenced endometrial expression of FGF7 (P < 0.001), and placental expression of FGF23 (P < 0.05). Immunohistochemistry confirmed that both FGF23 and KL proteins were expressed in endometria and placentae throughout gestation. The observed spatiotemporal profile of KL-FGF signaling suggests a potential role in the establishment of pregnancy and regulation of fetal growth. This study provides a platform for further mechanistic investigation into the role for KL-FGF signaling in the regulation of phosphate transport at the ovine maternal-conceptus interface.
Collapse
Affiliation(s)
- Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Katherine M Halloran
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Makenzie G Newton
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Zarb Y, Sridhar S, Nassiri S, Utz SG, Schaffenrath J, Maheshwari U, Rushing EJ, Nilsson KPR, Delorenzi M, Colonna M, Greter M, Keller A. Microglia control small vessel calcification via TREM2. SCIENCE ADVANCES 2021; 7:eabc4898. [PMID: 33637522 PMCID: PMC7909879 DOI: 10.1126/sciadv.abc4898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfbret/ret , to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification.
Collapse
Affiliation(s)
- Yvette Zarb
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sebastian Guido Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, Zurich University Hospital, Zurich, Switzerland
| | | | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Rutsch F, Buers I, Nitschke Y. Hereditary Disorders of Cardiovascular Calcification. Arterioscler Thromb Vasc Biol 2020; 41:35-47. [PMID: 33176451 DOI: 10.1161/atvbaha.120.315577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arterial calcification is a common phenomenon in the elderly, in patients with atherosclerosis or renal failure and in diabetes. However, when present in very young individuals, it is likely to be associated with an underlying hereditary disorder of arterial calcification. Here, we present an overview of the few monogenic disorders presenting with early-onset cardiovascular calcification. These disorders can be classified according to the function of the respective disease gene into (1) disorders caused by an altered purine and phosphate/pyrophosphate metabolism, (2) interferonopathies, and (3) Gaucher disease. The finding of arterial calcification in early life should alert the clinician and prompt further genetic work-up to define the underlying genetic defect, to establish the correct diagnosis, and to enable appropriate therapy.
Collapse
Affiliation(s)
- Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Insa Buers
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| |
Collapse
|
21
|
Chen SY, Lin WC, Chang YY, Lin TK, Lan MY. Brain hypoperfusion and nigrostriatal dopaminergic dysfunction in primary familial brain calcification caused by novel MYORG variants: case report. BMC Neurol 2020; 20:329. [PMID: 32873236 PMCID: PMC7460774 DOI: 10.1186/s12883-020-01910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 11/15/2022] Open
Abstract
Background Primary familial brain calcification (PFBC) is a rare inherited disease characterized by multiple calcified foci in the brain parenchyma. MYORG is the first gene found to be associated with autosomal recessive PFBC. The precise pathogenic mechanism of neurodegeneration in PFBC remains unclear. The clinical phenotypes of PFBC are variable, and there is no clear correlation between clinical manifestations and radiological and pathological features of calcification. Case presentation Two sisters in a Taiwanese family presented with young-onset Parkinsonism and multifocal dystonia. Their brain CTs showed multiple intracerebral calcifications. The genetic study detected two heterozygous novel variants, c.104 T > A (p.Met35Lys) and c.850 T > C (p.Cys284Arg) in the MYORG gene. In both patients, MR susceptibility weighted images revealed calcification of the deep medullary veins. Tc99m ECD SPECT demonstrated a significant decrease of tracer uptake in the brain cortex and subcortical gray matter. Tc99m TRODAT-1 SPECT revealed decreased tracer uptake in the bilateral striatum. Conclusion Two novel MYORG variants were identified in Taiwanese family members presenting with PFBC. Abnormalities in the brain perfusion and dopamine transporter SPECTs suggest that cerebral ischemia due to extensive calcified vasculopathy, disruption of the basal ganglia-thalamo-cortical circuit, and nigrostriatal dopaminergic dysfunction are plausible pathogenic mechanisms of neurodegeneration in PFBC patients. Further investigation into the correlations between the pathogenicity-implicated imaging findings and the clinical phenotype are recommended.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan.,Center for Parkinson's disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan.,Center for Parkinson's disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan.,Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan. .,Center for Parkinson's disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan. .,Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, NiaoSong, Kaohsiung, 833, Taiwan.
| |
Collapse
|
22
|
López-Sánchez U, Tury S, Nicolas G, Wilson MS, Jurici S, Ayrignac X, Courgnaud V, Saiardi A, Sitbon M, Battini JL. Interplay between primary familial brain calcification-associated SLC20A2 and XPR1 phosphate transporters requires inositol polyphosphates for control of cellular phosphate homeostasis. J Biol Chem 2020; 295:9366-9378. [PMID: 32393577 PMCID: PMC7363132 DOI: 10.1074/jbc.ra119.011376] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Solute carrier family 20 member 2 (SLC20A2) and xenotropic and polytropic retrovirus receptor 1 (XPR1) are transporters with phosphate uptake and efflux functions, respectively. Both are associated with primary familial brain calcification (PFBC), a genetic disease characterized by cerebral calcium-phosphate deposition and associated with neuropsychiatric symptoms. The association of the two transporters with the same disease suggests that they jointly regulate phosphate fluxes and cellular homeostasis, but direct evidence is missing. Here, we found that cross-talk between SLC20A2 and XPR1 regulates phosphate homeostasis, and we identified XPR1 as a key inositol polyphosphate (IP)-dependent regulator of this process. We found that overexpression of WT SLC20A2 increased phosphate uptake, as expected, but also unexpectedly increased phosphate efflux, whereas PFBC-associated SLC20A2 variants did not. Conversely, SLC20A2 depletion decreased phosphate uptake only slightly, most likely compensated for by the related SLC20A1 transporter, but strongly decreased XPR1-mediated phosphate efflux. The SLC20A2-XPR1 axis maintained constant intracellular phosphate and ATP levels, which both increased in XPR1 KO cells. Elevated ATP levels are a hallmark of altered inositol pyrophosphate (PP-IP) synthesis, and basal ATP levels were restored after phosphate efflux rescue with WT XPR1 but not with XPR1 harboring a mutated PP-IP-binding pocket. Accordingly, inositol hexakisphosphate kinase 1-2 (IP6K1-2) gene inactivation or IP6K inhibitor treatment abolished XPR1-mediated phosphate efflux regulation and homeostasis. Our findings unveil an SLC20A2-XPR1 interplay that depends on IPs such as PP-IPs and controls cellular phosphate homeostasis via the efflux route, and alteration of this interplay likely contributes to PFBC.
Collapse
Affiliation(s)
- Uriel López-Sánchez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245, and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Miranda S Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Snejana Jurici
- Department of Neurology, Perpignan Hospital, Perpignan, France
| | - Xavier Ayrignac
- Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France .,Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
23
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW In the last 7 years, changes in five genes [SLC20A2, PDGFRB, PDGFB, XPR1, and MYORG] have been implicated in the pathogenesis of primary familial brain calcification (PFBC), allowing for genetic delineation of this phenotypically complex neurodegenerative disorder. This review explores how the ensuing plethora of reported PFBC patients and their disease-causing variants improved our understanding of disease, pathogenesis, clinical manifestation, and penetrance. RECENT FINDINGS In PFBC patients, pathogenic changes have been most frequently described in SLC20A2, accounting for approximately the same number of patients as the variants in the other four PFBC genes combined. There is no appreciable relationship between any combination of the following three variables: the type of disease-causing change, the pattern or extent of calcifications, and the presence or nature of clinical manifestation in PFBC patients. Nevertheless, elucidation of underlying genetic factors provided important recent insights into the pathogenic mechanisms of PFBC, which collectively point toward a compromised neurovascular unit. SUMMARY The ongoing clinical and molecular research increases our understanding of PFBC facilitating diagnosis and identifying potential therapeutic targets for this multifaceted and likely underdiagnosed condition.
Collapse
|
25
|
Chen X, Wang H, Yu M, Kim JK, Qi H, Ha P, Jiang W, Chen E, Luo X, Needle RB, Baik L, Yang C, Shi J, Kwak JH, Ting K, Zhang X, Soo C. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus. Cell Death Differ 2020; 27:1415-1430. [PMID: 31582804 PMCID: PMC7206096 DOI: 10.1038/s41418-019-0427-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
Upregulation of Nell-1 has been associated with craniosynostosis (CS) in humans, and validated in a mouse transgenic Nell-1 overexpression model. Global Nell-1 inactivation in mice by N-ethyl-N-nitrosourea (ENU) mutagenesis results in neonatal lethality with skeletal abnormalities including cleidocranial dysplasia (CCD)-like calvarial bone defects. This study further defines the role of Nell-1 in craniofacial skeletogenesis by investigating specific inactivation of Nell-1 in Wnt1 expressing cell lineages due to the importance of cranial neural crest cells (CNCCs) in craniofacial tissue development. Nell-1flox/flox; Wnt1-Cre (Nell-1Wnt1 KO) mice were generated for comprehensive analysis, while the relevant reporter mice were created for CNCC lineage tracing. Nell-1Wnt1 KO mice were born alive, but revealed significant frontonasal and mandibular bone defects with complete penetrance. Immunostaining demonstrated that the affected craniofacial bones exhibited decreased osteogenic and Wnt/β-catenin markers (Osteocalcin and active-β-catenin). Nell-1-deficient CNCCs demonstrated a significant reduction in cell proliferation and osteogenic differentiation. Active-β-catenin levels were significantly low in Nell-1-deficient CNCCs, but were rescued along with osteogenic capacity to a level close to that of wild-type (WT) cells via exogenous Nell-1 protein. Surprisingly, 5.4% of young adult Nell-1Wnt1 KO mice developed hydrocephalus with premature ossification of the intrasphenoidal synchondrosis and widened frontal, sagittal, and coronal sutures. Furthermore, the epithelial cells of the choroid plexus and ependymal cells exhibited degenerative changes with misplaced expression of their respective markers, transthyretin and vimentin, as well as dysregulated Pit-2 expression in hydrocephalic Nell-1Wnt1 KO mice. Nell-1Wnt1 KO embryos at E9.5, 14.5, 17.5, and newborn mice did not exhibit hydrocephalic phenotypes grossly and/or histologically. Collectively, Nell-1 is a pivotal modulator of CNCCs that is essential for normal development and growth of the cranial vault and base, and mandibles partially via activating the Wnt/β-catenin pathway. Nell-1 may also be critically involved in regulating cerebrospinal fluid homeostasis and in the pathogenesis of postnatal hydrocephalus.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huiming Wang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mengliu Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Center of Stomatology, China-Japan Friendship Hospital, 2nd Yinghuayuan East Street, Chaoyang District, Beijing, PR China
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huichuan Qi
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Eric Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xiangyou Luo
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Ryan Brent Needle
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Lloyd Baik
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cathryn Yang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jiejun Shi
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jin Hee Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, CA, USA
- UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Zarb Y, Weber-Stadlbauer U, Kirschenbaum D, Kindler DR, Richetto J, Keller D, Rademakers R, Dickson DW, Pasch A, Byzova T, Nahar K, Voigt FF, Helmchen F, Boss A, Aguzzi A, Klohs J, Keller A. Ossified blood vessels in primary familial brain calcification elicit a neurotoxic astrocyte response. Brain 2019; 142:885-902. [PMID: 30805583 PMCID: PMC6439320 DOI: 10.1093/brain/awz032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022] Open
Abstract
Brain calcifications are commonly detected in aged individuals and accompany numerous brain diseases, but their functional importance is not understood. In cases of primary familial brain calcification, an autosomally inherited neuropsychiatric disorder, the presence of bilateral brain calcifications in the absence of secondary causes of brain calcification is a diagnostic criterion. To date, mutations in five genes including solute carrier 20 member 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), myogenesis regulating glycosidase (MYORG), platelet-derived growth factor B (PDGFB) and platelet-derived growth factor receptor β (PDGFRB), are considered causal. Previously, we have reported that mutations in PDGFB in humans are associated with primary familial brain calcification, and mice hypomorphic for PDGFB (Pdgfbret/ret) present with brain vessel calcifications in the deep regions of the brain that increase with age, mimicking the pathology observed in human mutation carriers. In this study, we characterize the cellular environment surrounding calcifications in Pdgfbret/ret animals and show that cells around vessel-associated calcifications express markers for osteoblasts, osteoclasts and osteocytes, and that bone matrix proteins are present in vessel-associated calcifications. Additionally, we also demonstrate the osteogenic environment around brain calcifications in genetically confirmed primary familial brain calcification cases. We show that calcifications cause oxidative stress in astrocytes and evoke expression of neurotoxic astrocyte markers. Similar to previously reported human primary familial brain calcification cases, we describe high interindividual variation in calcification load in Pdgfbret/ret animals, as assessed by ex vivo and in vivo quantification of calcifications. We also report that serum of Pdgfbret/ret animals does not differ in calcification propensity from control animals and that vessel calcification occurs only in the brains of Pdgfbret/ret animals. Notably, ossification of vessels and astrocytic neurotoxic response is associated with specific behavioural and cognitive alterations, some of which are associated with primary familial brain calcification in a subset of patients.
Collapse
Affiliation(s)
- Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich University, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Diana Rita Kindler
- Institute of Neuropathology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich University, Zurich, Switzerland
| | - Daniel Keller
- Department of Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Rosa Rademakers
- Institute of Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Dennis W Dickson
- Institute of Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Andreas Pasch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Khayrun Nahar
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Fabian F Voigt
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Brain Research Institute, Zurich University, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland.,Brain Research Institute, Zurich University, Zurich, Switzerland
| | - Andreas Boss
- Department of Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Jan Klohs
- Institute of Neuropathology, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Nahar K, Lebouvier T, Andaloussi Mäe M, Konzer A, Bergquist J, Zarb Y, Johansson B, Betsholtz C, Vanlandewijck M. Astrocyte-microglial association and matrix composition are common events in the natural history of primary familial brain calcification. Brain Pathol 2019; 30:446-464. [PMID: 31561281 PMCID: PMC7317599 DOI: 10.1111/bpa.12787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfbret/ret and Slc20a2-/- mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfbret/ret mice were large, solitary and smooth surfaced, the nodules in Slc20a2-/- mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfbret/ret mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2-/- mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.
Collapse
Affiliation(s)
- Khayrun Nahar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Neurology, CHRU Lille, Lille, France.,Inserm U1171, Lille, France
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne Konzer
- Scientific Service Group Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Bergquist
- Department of Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Bengt Johansson
- Electron Microscopy Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
28
|
|
29
|
Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2019. [PMID: 29514202 PMCID: PMC5852633 DOI: 10.1093/cvr/cvy010] [Citation(s) in RCA: 637] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular calcification is associated with a significant increase in all-cause mortality and atherosclerotic plaque rupture. Calcification has been determined to be an active process driven in part by vascular smooth muscle cell (VSMC) transdifferentiation within the vascular wall. Historically, VSMC phenotype switching has been viewed as binary, with the cells able to adopt a physiological contractile phenotype or an alternate ‘synthetic’ phenotype in response to injury. More recent work, including lineage tracing has however revealed that VSMCs are able to adopt a number of phenotypes, including calcific (osteogenic, chondrocytic, and osteoclastic), adipogenic, and macrophagic phenotypes. Whilst the mechanisms that drive VSMC differentiation are still being elucidated it is becoming clear that medial calcification may differ in several ways from the intimal calcification seen in atherosclerotic lesions, including risk factors and specific drivers for VSMC phenotype changes and calcification. This article aims to compare and contrast the role of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calcification, including aging, uraemia, mechanical stress, oxidative stress, and inflammation. The review also discusses novel findings that have also brought attention to specific pro- and anti-calcifying proteins, extracellular vesicles, mitochondrial dysfunction, and a uraemic milieu as major determinants of vascular calcification.
Collapse
Affiliation(s)
- Andrew L Durham
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| | - Mei Y Speer
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Marta Scatena
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Catherine M Shanahan
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| |
Collapse
|
30
|
Beck‐Cormier S, Lelliott CJ, Logan JG, Lafont DT, Merametdjian L, Leitch VD, Butterfield NC, Protheroe HJ, Croucher PI, Baldock PA, Gaultier‐Lintia A, Maugars Y, Nicolas G, Banse C, Normant S, Magne N, Gérardin E, Bon N, Sourice S, Guicheux J, Beck L, Williams GR, Bassett JHD. Slc20a2, Encoding the Phosphate Transporter PiT2, Is an Important Genetic Determinant of Bone Quality and Strength. J Bone Miner Res 2019; 34:1101-1114. [PMID: 30721528 PMCID: PMC6618161 DOI: 10.1002/jbmr.3691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/25/2022]
Abstract
Osteoporosis is characterized by low bone mineral density (BMD) and fragility fracture and affects over 200 million people worldwide. Bone quality describes the material properties that contribute to strength independently of BMD, and its quantitative analysis is a major priority in osteoporosis research. Tissue mineralization is a fundamental process requiring calcium and phosphate transporters. Here we identify impaired bone quality and strength in Slc20a2-/- mice lacking the phosphate transporter SLC20A2. Juveniles had abnormal endochondral and intramembranous ossification, decreased mineral accrual, and short stature. Adults exhibited only small reductions in bone mass and mineralization but a profound impairment of bone strength. Bone quality was severely impaired in Slc20a2-/- mice: yield load (-2.3 SD), maximum load (-1.7 SD), and stiffness (-2.7 SD) were all below values predicted from their bone mineral content as determined in a cohort of 320 wild-type controls. These studies identify Slc20a2 as a physiological regulator of tissue mineralization and highlight its critical role in the determination of bone quality and strength. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Sarah Beck‐Cormier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | | | - John G Logan
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | | | - Laure Merametdjian
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
- Centre Hospitalier Universitaire (CHU) NantesPôles Hospitalo‐Universitaires (PHU4) ‐ Ostéo‐articulaire ‐ Tête et Cou ‐ Odontologie ‐ Neurochirurgie ‐ Neuro‐traumatologie (OTONN)NantesFrance
| | - Victoria D Leitch
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - Natalie C Butterfield
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - Hayley J Protheroe
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - Peter I Croucher
- The Garvan Institute of Medical ResearchSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) AustraliaSydneyNSWAustralia
| | - Paul A Baldock
- The Garvan Institute of Medical ResearchSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) AustraliaSydneyNSWAustralia
| | | | - Yves Maugars
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Centre Hospitalier Universitaire (CHU) NantesPôles Hospitalo‐Universitaires (PHU4) ‐ Ostéo‐articulaire ‐ Tête et Cou ‐ Odontologie ‐ Neurochirurgie ‐ Neuro‐traumatologie (OTONN)NantesFrance
| | - Gael Nicolas
- INSERM U1245Université de Rouen Normandie (UNIROUEN)RouenFrance
- Department of GeneticsRouen University HospitalRouenFrance
- Centre National de Référence pour les Malades Alzheimer Jeunes (CNR‐MAJ)Normandy Center for Genomic and Personalized MedicineRouenFrance
| | | | | | - Nicolas Magne
- Department of NeuroradiologyRouen University HospitalRouenFrance
| | | | - Nina Bon
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | - Sophie Sourice
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | - Jérôme Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
- Centre Hospitalier Universitaire (CHU) NantesPôles Hospitalo‐Universitaires (PHU4) ‐ Ostéo‐articulaire ‐ Tête et Cou ‐ Odontologie ‐ Neurochirurgie ‐ Neuro‐traumatologie (OTONN)NantesFrance
| | - Laurent Beck
- INSERM, UMR 1229, Regenerative Medicine and Skeleton (RMeS), Université de Nantes, École Nationale Vétérinaire, Agroalimentaire et de l'AlimentationNantes‐Atlantique (ONIRIS)NantesFrance
- Université de NantesUnité de Formation et de Recherche (UFR) OdontologieNantesFrance
| | - Graham R Williams
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| | - J H Duncan Bassett
- Molecular Endocrinology LaboratoryDepartment of MedicineImperial College LondonLondonUK
| |
Collapse
|
31
|
Characterization of XPR1/SLC53A1 variants located outside of the SPX domain in patients with primary familial brain calcification. Sci Rep 2019; 9:6776. [PMID: 31043717 PMCID: PMC6494797 DOI: 10.1038/s41598-019-43255-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurological disease characterized by deposits of calcium phosphate in the basal ganglia and other regions of the brain. Pathogenic variants in the XPR1/SLC53A1 gene, which encodes the only known inorganic phosphate exporter, cause an autosomal dominant form of PFBC. These variants are typically located in the SPX N-terminal domain of the protein. Here, we characterize three XPR1 variants outside of SPX in three PFBC patients with an apparently sporadic presentation: c.1375C > T p.(R459C), c.1855A > G p.(N619D) and c.1886T > G p.(I629S), with the latter identified as the first XPR1/SLC53A1 de novo mutation to occur in a PFBC proband. When tested in an in vitro physiological complementation assay, the three XPR1 variants were impaired in phosphate export function, although they were normally expressed at the cell surface and could serve as functional receptors for retrovirus entry. Moreover, peripheral blood cells from the p.N619D patient could be assayed ex vivo and displayed significantly impaired phosphate export. Our results establish for the first time the clinical and molecular characteristics of XPR1 variants located outside the SPX domain and assert a direct link between these variants, deficient phosphate export, and PFBC. Moreover, we unveiled new structural features in XPR1 C-terminal domain that play a role in phosphate export and disease.
Collapse
|
32
|
Kuroi Y, Akagawa H, Yoneyama T, Kikuchi A, Maegawa T, Onda H, Kasuya H. Novel SLC20A2 mutation in a Japanese pedigree with primary familial brain calcification. J Neurol Sci 2019; 399:183-185. [DOI: 10.1016/j.jns.2019.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
33
|
SLC20A2 variants cause dysfunctional phosphate transport activity in endothelial cells induced from Idiopathic Basal Ganglia Calcification patients-derived iPSCs. Biochem Biophys Res Commun 2019; 510:303-308. [DOI: 10.1016/j.bbrc.2019.01.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
|
34
|
Lack of Major Ophthalmic Findings in Patients with Primary Familial Brain Calcification Linked to SLC20A2 and PDGFB. J Mol Neurosci 2019; 67:441-444. [PMID: 30607898 DOI: 10.1007/s12031-018-1250-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by symmetrical and bilateral brain calcification. It is typically inherited as an autosomal dominant disorder, and de novo variants have also been described. Interestingly, just recent studies have reported the first autosomal recessive PFBC-causative gene. PFBC patients exhibit high clinical heterogeneity including Parkinsonism, dystonia, ataxia, depression, and migraine. Mice studies, an important research tool, have been a breakthrough in increasing the understanding of PFBC's main signs and symptoms, and many findings reported in these mice have been subsequently reported in patients. One phenotype that has been observed in PFBC mice models but not in PFBC patients, however, is the development of ophthalmic abnormalities. This way, this report focused on performing an ophthalmic assessment in six Brazilian patients genetically diagnosed with PFBC. The assessments showed that none of the PFBC individuals included presented any of the ophthalmic abnormalities reported in mice models, such as cataracts, ocular calcification, abnormal iris and lens morphology, and retinal deterioration. Additionally, of the six PFBC patients described, two SLC20A2 mutation carriers showed physiological excavation of the optic nerve head and partial vitreous detachment, while just one individual presented bilateral narrowing of retinal arterioles. In summary, no evidence of similar ophthalmological abnormalities found in mice were found in our patients; nonetheless, further studies in larger sample size are warranted to corroborate with our findings. To our knowledge, this study is the first to focus on investigating, in PFBC patients, the ophthalmological phenotypes described in the PFBC mice models.
Collapse
|
35
|
Pericytes in Primary Familial Brain Calcification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:247-264. [PMID: 31147881 DOI: 10.1007/978-3-030-16908-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells along capillaries that are critical for the development of a functional vascular bed in the central nervous system and other organs. Pericyte functions in the adult brain are less well understood. Pericytes have been suggested to mediate functional hyperemia at the capillary level, regulate the blood-brain barrier and to give rise to scar tissue after spinal cord injury. Furthermore, pericyte loss has been suggested to precede cognitive decline in mouse models of Alzheimer's disease. Despite this observation, there is no convincing causality between pericyte loss and the pathogenesis of Alzheimer's disease. However, recent loss-of-function mutations in PDGFB and PDGFRB genes have implicated pericytes as the principle cell type affected in primary familiar brain calcification (PFBC), a neuropsychiatric disorder with dominant inheritance. Here we review the role of the PDGFB/PDGFRB signaling pathway in pericyte development and briefly discuss homeostatic functions of pericytes in the brain. We provide an overview of recent studies with mouse models of PFBC and discuss suggested pathogenic mechanisms for PFBC with special reference to pericytes.
Collapse
|
36
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
37
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
38
|
Yamada S, Leaf EM, Chia JJ, Cox TC, Speer MY, Giachelli CM. PiT-2, a type III sodium-dependent phosphate transporter, protects against vascular calcification in mice with chronic kidney disease fed a high-phosphate diet. Kidney Int 2018; 94:716-727. [PMID: 30041812 PMCID: PMC6211801 DOI: 10.1016/j.kint.2018.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
PiT-2, a type III sodium-dependent phosphate transporter, is a causative gene for the brain arteriolar calcification in people with familial basal ganglion calcification. Here we examined the effect of PiT-2 haploinsufficiency on vascular calcification in uremic mice using wild-type and global PiT-2 heterozygous knockout mice. PiT-2 haploinsufficiency enhanced the development of vascular calcification in mice with chronic kidney disease fed a high-phosphate diet. No differences were observed in the serum mineral biomarkers and kidney function between the wild-type and PiT-2 heterozygous knockout groups. Micro computed tomography analyses of femurs showed that haploinsufficiency of PiT-2 decreased trabecular bone mineral density in uremia. In vitro, sodium-dependent phosphate uptake was decreased in cultured vascular smooth muscle cells isolated from PiT-2 heterozygous knockout mice compared with those from wild-type mice. PiT-2 haploinsufficiency increased phosphate-induced calcification of cultured vascular smooth muscle cells compared to the wild-type. Furthermore, compared to wild-type vascular smooth muscle cells, PiT-2 deficient vascular smooth muscle cells had lower osteoprotegerin levels and increased matrix calcification, which was attenuated by osteoprotegerin supplementation. Thus, PiT-2 in vascular smooth muscle cells protects against phosphate-induced vascular calcification and may be a therapeutic target in the chronic kidney disease population.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Elizabeth M Leaf
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jia Jun Chia
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Timothy C Cox
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Mei Y Speer
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
39
|
Ramos EM, Carecchio M, Lemos R, Ferreira J, Legati A, Sears RL, Hsu SC, Panteghini C, Magistrelli L, Salsano E, Esposito S, Taroni F, Richard AC, Tranchant C, Anheim M, Ayrignac X, Goizet C, Vidailhet M, Maltete D, Wallon D, Frebourg T, Pimentel L, Geschwind DH, Vanakker O, Galasko D, Fogel BL, Innes AM, Ross A, Dobyns WB, Alcantara D, O'Driscoll M, Hannequin D, Campion D, Oliveira JR, Garavaglia B, Coppola G, Nicolas G. Primary brain calcification: an international study reporting novel variants and associated phenotypes. Eur J Hum Genet 2018; 26:1462-1477. [PMID: 29955172 PMCID: PMC6138755 DOI: 10.1038/s41431-018-0185-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with a wide spectrum of motor, cognitive, and neuropsychiatric symptoms. It is typically inherited as an autosomal-dominant trait with four causative genes identified so far: SLC20A2, PDGFRB, PDGFB, and XPR1. Our study aimed at screening the coding regions of these genes in a series of 177 unrelated probands that fulfilled the diagnostic criteria for primary brain calcification regardless of their family history. Sequence variants were classified as pathogenic, likely pathogenic, or of uncertain significance (VUS), based on the ACMG-AMP recommendations. We identified 45 probands (25.4%) carrying either pathogenic or likely pathogenic variants (n = 34, 19.2%) or VUS (n = 11, 6.2%). SLC20A2 provided the highest contribution (16.9%), followed by XPR1 and PDGFB (3.4% each), and PDGFRB (1.7%). A total of 81.5% of carriers were symptomatic and the most recurrent symptoms were parkinsonism, cognitive impairment, and psychiatric disturbances (52.3%, 40.9%, and 38.6% of symptomatic individuals, respectively), with a wide range of age at onset (from childhood to 81 years). While the pathogenic and likely pathogenic variants identified in this study can be used for genetic counseling, the VUS will require additional evidence, such as recurrence in unrelated patients, in order to be classified as pathogenic.
Collapse
Affiliation(s)
- Eliana Marisa Ramos
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Miryam Carecchio
- Molecular Neurogenetics Unit, Movement Disorders Section, IRCCS Foundation Carlo Besta Neurological Institute, Via L. Temolo n. 4, Milan, 20116, Italy
- Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Via Celoria 11, Milan, 20131, Italy
- PhD Programme in Translational and Molecular Medicine, Milan Bicocca University, Monza, Italy
| | - Roberta Lemos
- Keizo Asami Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Joana Ferreira
- Keizo Asami Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Andrea Legati
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Renee Louise Sears
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandy Chan Hsu
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Celeste Panteghini
- Molecular Neurogenetics Unit, Movement Disorders Section, IRCCS Foundation Carlo Besta Neurological Institute, Via L. Temolo n. 4, Milan, 20116, Italy
| | - Luca Magistrelli
- Department of Neurology, University of Eastern Piedmont, C.so Mazzini 18, Novara, 28100, Italy
| | - Ettore Salsano
- Department of Clinical Neurosciences, IRCCS Foundation Carlo Besta Neurological Institute, Via Celoria 11, Milan, 20131, Italy
| | - Silvia Esposito
- Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Via Celoria 11, Milan, 20131, Italy
| | - Franco Taroni
- IRCCS Foundation Carlo Besta Neurological Institute, Via Amadeo 42, Milan, 20133, Italy
| | - Anne-Claire Richard
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Strasbourg, Illkirch, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Strasbourg, Illkirch, France
| | - Xavier Ayrignac
- Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Cyril Goizet
- CHU Bordeaux, Service de Génétique Médicale, 33000, Bordeaux, France
- INSERM U1211, Univ Bordeaux, Laboratoire Maladies Rares, Génétique et Métabolisme, 33000, Bordeaux, France
| | - Marie Vidailhet
- Département de neurologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, ICM, F-75013, Sorbonne Universites, Paris, France
| | - David Maltete
- Normandie Univ, UNIROUEN, Inserm U1073, Rouen University Hospital, Department of Neurology, F 76000, Rouen, France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Lylyan Pimentel
- Keizo Asami Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Daniel H Geschwind
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium
| | - Douglas Galasko
- Veterans Affairs Medical Center, San Diego and University of California, San Diego, USA
| | - Brent L Fogel
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alison Ross
- Department of Clinical Genetics, Ashgrove House, Foresterhill, Aberdeen, UK
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington; and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Diana Alcantara
- Genome Damage & Stability Centre, University of Sussex, Brighton, UK
| | - Mark O'Driscoll
- Genome Damage & Stability Centre, University of Sussex, Brighton, UK
| | - Didier Hannequin
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology, Department of Genetics and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Dominique Campion
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
- Department of Research, Rouvray Psychiatric Hospital, Sotteville-lès-Rouen, Rouen, France
| | - João R Oliveira
- Keizo Asami Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Barbara Garavaglia
- Molecular Neurogenetics Unit, Movement Disorders Section, IRCCS Foundation Carlo Besta Neurological Institute, Via L. Temolo n. 4, Milan, 20116, Italy
| | - Giovanni Coppola
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
40
|
Wallingford MC, Benson C, Chavkin NW, Chin MT, Frasch MG. Placental Vascular Calcification and Cardiovascular Health: It Is Time to Determine How Much of Maternal and Offspring Health Is Written in Stone. Front Physiol 2018; 9:1044. [PMID: 30131710 PMCID: PMC6090024 DOI: 10.3389/fphys.2018.01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is the deposition of calcium phosphate minerals in vascular tissue. Vascular calcification occurs by both active and passive processes. Extent and tissue-specific patterns of vascular calcification are predictors of cardiovascular morbidity and mortality. The placenta is a highly vascularized organ with specialized vasculature that mediates communication between two circulatory systems. At delivery the placenta often contains calcified tissue and calcification can be considered a marker of viral infection, but the mechanisms, histoanatomical specificity, and pathophysiological significance of placental calcification are poorly understood. In this review, we outline the current understanding of vascular calcification mechanisms, biomedical consequences, and therapeutic interventions in the context of histoanatomical types. We summarize available placental calcification data and clinical grading systems for placental calcification. We report on studies that have examined the association between placental calcification and acute adverse maternal and fetal outcomes. We then review the intersection between placental dysfunction and long-term cardiovascular health, including subsequent occurrence of maternal vascular calcification. Possible maternal phenotypes and trigger mechanisms that may predispose for calcification and cardiovascular disease are discussed. We go on to highlight the potential diagnostic value of placental calcification. Finally, we suggest avenues of research to evaluate placental calcification as a research model for investigating the relationship between placental dysfunction and cardiovascular health, as well as a biomarker for placental dysfunction, adverse clinical outcomes, and increased risk of subsequent maternal and offspring cardiovascular events.
Collapse
Affiliation(s)
- Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States.,Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Ciara Benson
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nicholas W Chavkin
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,School of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States
| | - Michael T Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| |
Collapse
|
41
|
Mice Knocked Out for the Primary Brain Calcification–Associated Gene Slc20a2 Show Unimpaired Prenatal Survival but Retarded Growth and Nodules in the Brain that Grow and Calcify Over Time. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1865-1881. [DOI: 10.1016/j.ajpath.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/30/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
|
42
|
Hernando N, Wagner CA. Mechanisms and Regulation of Intestinal Phosphate Absorption. Compr Physiol 2018; 8:1065-1090. [PMID: 29978897 DOI: 10.1002/cphy.c170024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
States of hypo- and hyperphosphatemia have deleterious consequences including rickets/osteomalacia and renal/cardiovascular disease, respectively. Therefore, the maintenance of appropriate plasma levels of phosphate is an essential requirement for health. This control is executed by the collaborative action of intestine and kidney whose capacities to (re)absorb phosphate are regulated by a number of hormonal and metabolic factors, among them parathyroid hormone, fibroblast growth factor 23, 1,25(OH)2 vitamin D3 , and dietary phosphate. The molecular mechanisms responsible for the transepithelial transport of phosphate across enterocytes are only partially understood. Indeed, whereas renal reabsorption entirely relies on well-characterized active transport mechanisms of phosphate across the renal proximal epithelia, intestinal absorption proceeds via active and passive mechanisms, with the molecular identity of the passive component still unknown. The active absorption of phosphate depends mostly on the activity and expression of the sodium-dependent phosphate cotransporter NaPi-IIb (SLC34A2), which is highly regulated by many of the factors, mentioned earlier. Physiologically, the contribution of NaPi-IIb to the maintenance of phosphate balance appears to be mostly relevant during periods of low phosphate availability. Therefore, its role in individuals living in industrialized societies with high phosphate intake is probably less relevant. Importantly, small increases in plasma phosphate, even within normal range, associate with higher risk of cardiovascular disease. Therefore, therapeutic approaches to treat hyperphosphatemia, including dietary phosphate restriction and phosphate binders, aim at reducing intestinal absorption. Here we review the current state of research in the field. © 2017 American Physiological Society. Compr Physiol 8:1065-1090, 2018.
Collapse
Affiliation(s)
- Nati Hernando
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| | - Carsten A Wagner
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
43
|
Ding Y, Dong HQ. A Novel SLC20A2 Mutation Associated with Familial Idiopathic Basal Ganglia Calcification and Analysis of the Genotype-Phenotype Association in Chinese Patients. Chin Med J (Engl) 2018; 131:799-803. [PMID: 29578123 PMCID: PMC5887738 DOI: 10.4103/0366-6999.228245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Idiopathic basal ganglia calcification (IBGC) is a genetic disorder characterized by bilateral basal ganglia calcification and neural degeneration. In this study, we reported a new SLC2OA2 mutation of IBGC and reviewed relevant literature to explore the association between phenotypes and genotypes in Chinese IBGC patients. METHODS Clinical information of the proband and her relatives were collected comprehensively. Blood samples of both the patient and her father were obtained, and genetic screening related to IBGC was performed using second generation sequencing with their consent. Findings were confirmed by Sanger sequencing. Polyphen-2 was used to predict the potential association between mutations and disease. Then, we retrieved literatures of Chinese IBGC patients and explored the association between phenotype and genotype. RESULTS A novel mutation was identified through genetic testing, and it is suggested to be a damage mutation predicted by Polyphen-2. Through literature review, we found that SLC20A2 mutation is the most common cause for IBGC in China. Its hot spot regions are mainly on the 1st and 8th exons; the second common one is PDGFB where the hot spot covered a length of 220-230 bp localized on the 2nd exon; moreover, Chinese IBGC patients featured early-onset, more severe movement disorder and relatively mild cognitive impairment compared with those in other countries. CONCLUSIONS There is significant heterogeneity both in phenotype and genotype in Chinese IBGC patients. Further research of pathogenic mechanism of IBGC is required to eventually develop precise treatment for individuals who suffered this disease.
Collapse
Affiliation(s)
- Yan Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hui-Qing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
44
|
Hozumi I, Kurita H, Ozawa K, Furuta N, Inden M, Sekine SI, Yamada M, Hayashi Y, Kimura A, Inuzuka T, Seishima M. Inorganic phosphorus (Pi) in CSF is a biomarker for SLC20A2-associated idiopathic basal ganglia calcification (IBGC1). J Neurol Sci 2018; 388:150-154. [PMID: 29627011 DOI: 10.1016/j.jns.2018.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/07/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Idiopathic basal ganglia calcification (IBGC), also called Fahr's disease or recently primary familial brain calcification (PFBC), is characterized by abnormal deposits of minerals including calcium mainly and phosphate in the brain. Mutations in SLC20A2 (IBGC1 (merged with former IBGC2 and IBGC3)), which encodes PiT-2, a phosphate transporter, is the major cause of IBGC. Recently, Slc20a2-KO mice have been showed to have elevated levels of inorganic phosphorus (Pi) in cerebrospinal fluid (CSF); however, CSF Pi levels in patients with IBGC have not been fully examined. METHODS We investigated the cases of 29 patients with IBGC including six patients with SLC20A2 mutation and three patients with PDGFB mutation, and 13 controls. The levels of sodium (Na), potassium (K), chloride (Cl), calcium (Ca), and Pi in sera and CSF were determined by potentiometry and colorimetry. Moreover, clinical manifestations were investigated in the IBGC patients with high Pi levels in CSF. RESULTS The study revealed that the average level of Pi in the CSF of the total group of patients with IBGC is significantly higher than that of the control group, and the levels of Pi in CSF of the IBGC patients with SLC20A2 mutations are significantly higher than those of the IBGC patients with PDGFB mutations, the other IBGC patients and controls. CONCLUSION Results of this study suggest that the levels of CSF Pi will be a good biomarker for IBGC1.
Collapse
Affiliation(s)
- Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuhiro Ozawa
- Nursing Collaboration Center, Gifu College Nursing, 3047-1, Hashima, Gifu 501-6295, Japan
| | - Nobuyuki Furuta
- Department of Informative Clinical Medicine, Gifu University, Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Shin-Ichiro Sekine
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Megumi Yamada
- Department of Neurology and Geriatrics, Gifu University, Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yuichi Hayashi
- Department of Neurology and Geriatrics, Gifu University, Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akio Kimura
- Department of Neurology and Geriatrics, Gifu University, Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Inuzuka
- Department of Neurology and Geriatrics, Gifu University, Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University, Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
45
|
Yamada S, Wallingford MC, Borgeia S, Cox TC, Giachelli CM. Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice. Biochem Biophys Res Commun 2018; 495:553-559. [PMID: 29133259 PMCID: PMC5739526 DOI: 10.1016/j.bbrc.2017.11.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/31/2023]
Abstract
Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Suhaib Borgeia
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Timothy C Cox
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
New Data from Pdfgb ret/ret Mutant Mice Might Lead to a Paradoxical Association Between Brain Calcification, Pericytes Recruitment and BBB Integrity. J Mol Neurosci 2017; 63:419-421. [PMID: 29098547 DOI: 10.1007/s12031-017-0992-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023]
Abstract
Data of mice with PDGF-B-truncating mutation (Pdgfb ret/ret) from different research groups indicate that the malfunction of this protein leads to reduced pericyte recruitment, loss of Blood-Brain Barrier (BBB) integrity and bilateral brain calcification. This makes these mice important models for Primary Brain Calcification and pericyte-BBB correlation studies. The global brain pericyte count is reduced in Pdgfb ret/ret mice, with higher BBB permeability. We have overlapped the data from other research groups into a figure to further analyze the findings. Calcifications form within midbrain, interbrain, basal forebrain, and pons. Interestingly, these calcification-prone regions have a comparably higher pericyte count and lower BBB leakage in relation to other non-calcifying regions of the Pdgfb ret/ret mouse (such as the cortex and striatum). A comparatively higher BBB integrity in regions prone to calcification seems paradoxical and indicates that other region-specific changes are the cause of the calcifications.
Collapse
|
47
|
Merametdjian L, Beck-Cormier S, Bon N, Couasnay G, Sourice S, Guicheux J, Gaucher C, Beck L. Expression of Phosphate Transporters during Dental Mineralization. J Dent Res 2017; 97:209-217. [PMID: 28892649 DOI: 10.1177/0022034517729811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The importance of phosphate (Pi) as an essential component of hydroxyapatite crystals suggests a key role for membrane proteins controlling Pi uptake during mineralization in the tooth. To clarify the involvement of the currently known Pi transporters (Slc17a1, Slc34a1, Slc34a2, Slc34a3, Slc20a1, Slc20a2, and Xpr1) during tooth development and mineralization, we determined their spatiotemporal expression in murine tooth germs from embryonic day 14.5 to postnatal day 15 and in human dental samples from Nolla stages 6 to 9. Using real-time polymerase chain reaction, in situ hybridization, immunohistochemistry, and X-gal staining, we showed that the expression of Slc17a1, Slc34a1, and Slc34a3 in tooth germs from C57BL/6 mice were very low. In contrast, Slc34a2, Slc20a1, Slc20a2, and Xpr1 were highly expressed, mostly during the postnatal stages. The expression of Slc20a2 was 2- to 10-fold higher than the other transporters. Comparable results were obtained in human tooth germs. In mice, Slc34a2 and Slc20a1 were predominantly expressed in ameloblasts but not odontoblasts, while Slc20a2 was detected neither in ameloblasts nor in odontoblasts. Rather, Slc20a2 was highly expressed in the stratum intermedium and the subodontoblastic cell layer. Although Slc20a2 knockout mice did not show enamel defects, mutant mice showed a disrupted dentin mineralization, displaying unmerged calcospherites at the mineralization front. This latter phenotypical finding raises the possibility that Slc20a2 may play an indirect role in regulating the extracellular Pi availability for mineralizing cells rather than a direct role in mediating Pi transport through mineralizing plasma cell membranes. By documenting the spatiotemporal expression of Pi transporters in the tooth, our data support the possibility that the currently known Pi transporters may be dispensable for the initiation of dental mineralization and may rather be involved later during the tooth mineralization scheme.
Collapse
Affiliation(s)
- L Merametdjian
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France.,3 CHU Nantes, PHU 4 OTONN, Nantes, France
| | - S Beck-Cormier
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - N Bon
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - G Couasnay
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - S Sourice
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - J Guicheux
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France.,3 CHU Nantes, PHU 4 OTONN, Nantes, France
| | - C Gaucher
- 4 Dental School, University Paris Descartes, PRES Sorbonne Paris Cité, Montrouge, France.,5 AP-HP, Odontology Department, Hôpital Albert Chenevier, GHHM, Créteil, France
| | - L Beck
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW We give an update on the etiology and potential treatment options of rare inherited monogenic disorders associated with arterial calcification and calcific cardiac valve disease. RECENT FINDINGS Genetic studies of rare inherited syndromes have identified key regulators of ectopic calcification. Based on the pathogenic principles causing the diseases, these can be classified into three groups: (1) disorders of an increased extracellular inorganic phosphate/inorganic pyrophosphate ratio (generalized arterial calcification of infancy, pseudoxanthoma elasticum, arterial calcification and distal joint calcification, progeria, idiopathic basal ganglia calcification, and hyperphosphatemic familial tumoral calcinosis; (2) interferonopathies (Singleton-Merten syndrome); and (3) others, including Keutel syndrome and Gaucher disease type IIIC. Although some of the identified causative mechanisms are not easy to target for treatment, it has become clear that a disturbed serum phosphate/pyrophosphate ratio is a major force triggering arterial and cardiac valve calcification. Further studies will focus on targeting the phosphate/pyrophosphate ratio to effectively prevent and treat these calcific disease phenotypes.
Collapse
MESH Headings
- Abnormalities, Multiple/drug therapy
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Basal Ganglia Diseases/drug therapy
- Basal Ganglia Diseases/genetics
- Basal Ganglia Diseases/metabolism
- Calcinosis/drug therapy
- Calcinosis/genetics
- Calcinosis/metabolism
- Cartilage Diseases/drug therapy
- Cartilage Diseases/genetics
- Cartilage Diseases/metabolism
- Dental Enamel Hypoplasia/drug therapy
- Dental Enamel Hypoplasia/genetics
- Dental Enamel Hypoplasia/metabolism
- Diphosphates/metabolism
- Enzyme Replacement Therapy
- Gaucher Disease/drug therapy
- Gaucher Disease/genetics
- Gaucher Disease/metabolism
- Hand Deformities, Congenital/drug therapy
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Humans
- Hyperostosis, Cortical, Congenital/drug therapy
- Hyperostosis, Cortical, Congenital/genetics
- Hyperostosis, Cortical, Congenital/metabolism
- Hyperphosphatemia/drug therapy
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Interferons/metabolism
- Metacarpus/abnormalities
- Metacarpus/metabolism
- Muscular Diseases/drug therapy
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Odontodysplasia/drug therapy
- Odontodysplasia/genetics
- Odontodysplasia/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/genetics
- Osteoporosis/metabolism
- Phosphates/metabolism
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Pseudoxanthoma Elasticum/drug therapy
- Pseudoxanthoma Elasticum/genetics
- Pseudoxanthoma Elasticum/metabolism
- Pulmonary Valve Stenosis/drug therapy
- Pulmonary Valve Stenosis/genetics
- Pulmonary Valve Stenosis/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Yvonne Nitschke
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.
| |
Collapse
|
49
|
Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone 2017; 100:87-93. [PMID: 27847254 PMCID: PMC5429216 DOI: 10.1016/j.bone.2016.11.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/23/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023]
Abstract
Vascular calcification (VC) is highly prevalent in aging, diabetes mellitus, and chronic kidney disease (CKD). VC is a strong predictor of cardiovascular morbidity and mortality in the CKD population. Complex pathological mechanisms are involved in the development of VC, including osteochondrogenic differentiation and apoptosis of vascular smooth muscle cells, instability and release of extracellular vesicles loaded calcium and phosphate, and elastin degradation. Elevated serum phosphate is a late manifestation of CKD, and has been shown to accelerate mineral deposition in both the vessel wall and heart valves. α-Klotho and fibroblast growth factor 23 (FGF23) are emerging factors in CKD-mineral and bone disorder (CKD-MBD) and are thought to be involved in the pathogenesis of uremic VC. There are discordant reports regarding the biomedical effects of FGF23 on VC. In contrast, mounting evidence supports a well-supported protective role for α-Klotho on VC. Further studies are warranted to elucidate potential roles of FGF23 and α-Klotho in VC and to determine where and how they are synthesized in normal and disease conditions. A thorough systemic evaluation of the biomedical interplay of phosphate, FGF23, and α-Klotho may potentially lead to new therapeutic options for patients with CKD-MBD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
MiR-9-5p Down-Regulates PiT2, but not PiT1 in Human Embryonic Kidney 293 Cells. J Mol Neurosci 2017; 62:28-33. [PMID: 28303467 DOI: 10.1007/s12031-017-0906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
PiT1 (SLC20A1) and PiT2 (SLC20A2) are members of the mammalian type-III inorganic phosphate transporters and recent studies linked SLC20A2 mutations with primary brain calcifications. MicroRNAs (miRNAs) are endogenous noncoding regulatory RNAs and MicroRNA-9 (miR-9) modulates neurogenesis but is also involved with different types of cancer. We evaluated possible interactions between miR-9 and the phosphate transporters (PiT1 and PiT2). SLC20A2, platelet-derived growth factor receptor beta (PDGFRB) and Fibrillin-2 (FBN2) showed binding sites with high affinity for mir-9, In silico. miR-9 mimic was transfected into HEK293 cells and expression was confirmed by RT-qPCR. Overexpression of miR-9 in these cells caused a significant reduction in PiT2 and FBN2. PDGFRB appeared to be decreased, but was not significantly down-regulated. PiT1 showed no significant difference relative to controls. The down-regulation of PiT2 protein by miR-9 was confirmed by western blotting. In conclusion, we showed that miR-9 can down-regulate PiT2, in HEK293 cells. [corrected].
Collapse
|