1
|
Thornburg-Suresh EJC, Summers DW. Microtubules, Membranes, and Movement: New Roles for Stathmin-2 in Axon Integrity. J Neurosci Res 2024; 102:e25382. [PMID: 39253877 PMCID: PMC11407747 DOI: 10.1002/jnr.25382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Neurons establish functional connections responsible for how we perceive and react to the world around us. Communication from a neuron to its target cell occurs through a long projection called an axon. Axon distances can exceed 1 m in length in humans and require a dynamic microtubule cytoskeleton for growth during development and maintenance in adulthood. Stathmins are microtubule-associated proteins that function as relays between kinase signaling and microtubule polymerization. In this review, we describe the prolific role of Stathmins in microtubule homeostasis with an emphasis on emerging roles for Stathmin-2 (Stmn2) in axon integrity and neurodegeneration. Stmn2 levels are altered in Amyotrophic Lateral Sclerosis and loss of Stmn2 provokes motor and sensory neuropathies. There is growing potential for employing Stmn2 as a disease biomarker or even a therapeutic target. Meeting this potential requires a mechanistic understanding of emerging complexity in Stmn2 function. In particular, Stmn2 palmitoylation has a surprising contribution to axon maintenance through undefined mechanisms linking membrane association, tubulin interaction, and axon transport. Exploring these connections will reveal new insight on neuronal cell biology and novel opportunities for disease intervention.
Collapse
Affiliation(s)
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Lafta MS, Sokolov AV, Landtblom AM, Ericson H, Schiöth HB, Abu Hamdeh S. Exploring biomarkers in trigeminal neuralgia patients operated with microvascular decompression: A comparison with multiple sclerosis patients and non-neurological controls. Eur J Pain 2024; 28:929-942. [PMID: 38158702 DOI: 10.1002/ejp.2231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Trigeminal neuralgia (TN) is a severe facial pain condition often associated with a neurovascular conflict. However, neuroinflammation has also been implicated in TN, as it frequently co-occurs with multiple sclerosis (MS). METHODS We analysed protein expression levels of TN patients compared to MS patients and controls. Proximity Extension Assay technology was used to analyse the levels of 92 proteins with the Multiplex Neuro-Exploratory panel provided by SciLifeLab, Uppsala, Sweden. Serum and CSF samples were collected from TN patients before (n = 33 and n = 27, respectively) and after (n = 28 and n = 8, respectively) microvascular decompression surgery. Additionally, we included samples from MS patients (n = 20) and controls (n = 20) for comparison. RESULTS In both serum and CSF, several proteins were found increased in TN patients compared to either MS patients, controls, or both, including EIF4B, PTPN1, EREG, TBCB, PMVK, FKBP5, CD63, CRADD, BST2, CD302, CRIP2, CCL27, PPP3R1, WWP2, KLB, PLA2G10, TDGF1, SMOC1, RBKS, LTBP3, CLSTN1, NXPH1, SFRP1, HMOX2, and GGT5. The overall expression of the 92 proteins in postoperative TN samples seems to shift towards the levels of MS patients and controls in both serum and CSF, as compared to preoperative samples. Interestingly, there was no difference in protein levels between MS patients and controls. CONCLUSIONS We conclude that TN patients showed increased serum and CSF levels of specific proteins and that successful surgery normalizes these protein levels, highlighting its potential as an effective treatment. However, the similarity between MS and controls challenges the idea of shared pathophysiology with TN, suggesting distinct underlying mechanisms in these conditions. SIGNIFICANCE This study advances our understanding of trigeminal neuralgia (TN) and its association with multiple sclerosis (MS). By analysing 92 protein biomarkers, we identified distinctive molecular profiles in TN patients, shedding light on potential pathophysiological mechanisms. The observation that successful surgery normalizes many protein levels suggests a promising avenue for TN treatment. Furthermore, the contrasting protein patterns between TN and MS challenge prevailing assumptions of similarity between the two conditions and point to distinct pathophysiological mechanisms.
Collapse
Affiliation(s)
- Muataz S Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hans Ericson
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sami Abu Hamdeh
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Zhou L, Xie M, Wang X, Xu R. The usage and advantages of several common amyotrophic lateral sclerosis animal models. Front Neurosci 2024; 18:1341109. [PMID: 38595972 PMCID: PMC11002901 DOI: 10.3389/fnins.2024.1341109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
Amyotrophic lateral sclerosis is a fatal, multigenic, multifactorial neurodegenerative disease characterized by upper and lower motor neuron loss. Animal models are essential for investigating pathogenesis and reflecting clinical manifestations, particularly in developing reasonable prevention and therapeutic methods for human diseases. Over the decades, researchers have established a host of different animal models in order to dissect amyotrophic lateral sclerosis (ALS), such as yeast, worms, flies, zebrafish, mice, rats, pigs, dogs, and more recently, non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms of motor neuron degeneration in ALS, contributing to the development of new promising therapeutics. In this review, we describe several common animal models in ALS, classified by the naturally occurring and experimentally induced, pointing out their features in modeling, the onset and progression of the pathology, and their specific pathological hallmarks. Moreover, we highlight the pros and cons aimed at helping the researcher select the most appropriate among those common experimental animal models when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Neurology, Jiangxi Provincial People’s Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Meng Xie
- Health Management Center, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinxin Wang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Seki S, Kitaoka Y, Kawata S, Nishiura A, Uchihashi T, Hiraoka SI, Yokota Y, Isomura ET, Kogo M, Tanaka S. Characteristics of Sensory Neuron Dysfunction in Amyotrophic Lateral Sclerosis (ALS): Potential for ALS Therapy. Biomedicines 2023; 11:2967. [PMID: 38001967 PMCID: PMC10669304 DOI: 10.3390/biomedicines11112967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the progressive degeneration of motor neurons, resulting in muscle weakness, paralysis, and, ultimately, death. Presently, no effective treatment for ALS has been established. Although motor neuron dysfunction is a hallmark of ALS, emerging evidence suggests that sensory neurons are also involved in the disease. In clinical research, 30% of patients with ALS had sensory symptoms and abnormal sensory nerve conduction studies in the lower extremities. Peroneal nerve biopsies show histological abnormalities in 90% of the patients. Preclinical research has reported several genetic abnormalities in the sensory neurons of animal models of ALS, as well as in motor neurons. Furthermore, the aggregation of misfolded proteins like TAR DNA-binding protein 43 has been reported in sensory neurons. This review aims to provide a comprehensive description of ALS-related sensory neuron dysfunction, focusing on its clinical changes and underlying mechanisms. Sensory neuron abnormalities in ALS are not limited to somatosensory issues; proprioceptive sensory neurons, such as MesV and DRG neurons, have been reported to form networks with motor neurons and may be involved in motor control. Despite receiving limited attention, sensory neuron abnormalities in ALS hold potential for new therapies targeting proprioceptive sensory neurons.
Collapse
Affiliation(s)
- Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
6
|
Bieniussa L, Kahraman B, Skornicka J, Schulte A, Voelker J, Jablonka S, Hagen R, Rak K. Pegylated Insulin-Like Growth Factor 1 attenuates Hair Cell Loss and promotes Presynaptic Maintenance of Medial Olivocochlear Cholinergic Fibers in the Cochlea of the Progressive Motor Neuropathy Mouse. Front Neurol 2022; 13:885026. [PMID: 35720065 PMCID: PMC9203726 DOI: 10.3389/fneur.2022.885026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of “efferent auditory neuropathy.” Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Baran Kahraman
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Skornicka
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Kristen Rak
| |
Collapse
|
7
|
Efentakis P, Molitor M, Kossmann S, Bochenek ML, Wild J, Lagrange J, Finger S, Jung R, Karbach S, Schäfer K, Schulz A, Wild P, Münzel T, Wenzel P. Tubulin-folding cofactor E deficiency promotes vascular dysfunction by increased endoplasmic reticulum stress. Eur Heart J 2021; 43:488-500. [PMID: 34132336 PMCID: PMC8830526 DOI: 10.1093/eurheartj/ehab222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/29/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Assessment of endothelial function in humans by measuring flow-mediated dilation (FMD) risk-stratifies individuals with established cardiovascular disease, whereas its predictive value is limited in primary prevention. We therefore aimed to establish and evaluate novel markers of FMD at the population level. METHODS AND RESULTS In order to identify novel targets that were negatively correlated with FMD and investigate their contribution to vascular function, we performed a genome-wide association study (GWAS) of 4175 participants of the population based Gutenberg Health Study. Subsequently, conditional knockout mouse models deleting the gene of interest were generated and characterized. GWAS analysis revealed that single-nucleotide polymorphisms (SNPs) in the tubulin-folding cofactor E (TBCE) gene were negatively correlated with endothelial function and TBCE expression. Vascular smooth muscle cell (VSMC)-targeted TBCE deficiency was associated with endothelial dysfunction, aortic wall hypertrophy, and endoplasmic reticulum (ER) stress-mediated VSMC hyperproliferation in mice, paralleled by calnexin up-regulation and exacerbated by the blood pressure hormone angiotensin II. Treating SMMHC-ERT2-Cre+/-TBCEfl/fl mice with the ER stress modulator tauroursodeoxycholic acid amplified Raptor/Beclin-1-dependent autophagy and reversed vascular dysfunction. CONCLUSION TBCE and tubulin homeostasis seem to be novel predictors of vascular function and offer a new drug target to ameliorate ER stress-dependent vascular dysfunction.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sabine Kossmann
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Johannes Wild
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jeremy Lagrange
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Susanne Karbach
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Andreas Schulz
- Department of Cardiology-Preventive Cardiology and Medical Prevention, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Philipp Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Department of Cardiology-Preventive Cardiology and Medical Prevention, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
8
|
Changes of Dorsal Root Ganglion Volume in Dogs with Clinical Signs of Degenerative Myelopathy Detected by Water-Excitation Magnetic Resonance Imaging. Animals (Basel) 2021; 11:ani11061702. [PMID: 34200373 PMCID: PMC8226439 DOI: 10.3390/ani11061702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Canine degenerative myelopathy (DM) is a chronic, progressive, and fatal neurodegenerative disease. Although degenerative changes in dogs with DM are observed not only in the spinal cord white matter but also the dorsal root ganglion (DRG) neurons, these changes are undetectable on conventional magnetic resonance imaging (MRI). Therefore, we investigated the ability of water-excitation MRI to visualize the DRG in dogs, and whether volumetry of DRG has a premortem diagnostic value for DM. Using water-excitation MRI, DRG could be depicted in all dogs. To normalize the volumes of DRG, body surface area was the most suitable denominator. The normalized DRG volume in dogs with DM was significantly lower than those in control dogs and dogs with intervertebral disc herniation. The results of this study revealed that widespread atrophy of DRG was likely to occur in DM. Moreover, volume reductions of DRG were observed in dogs with DM in both the early disease stage and late disease stage. Our research suggests that the DRG volume obtained by the water-excitation technique could be used as a clinical biomarker for DM. Abstract Canine degenerative myelopathy (DM) is a progressive and fatal neurodegenerative disease. However, a definitive diagnosis of DM can only be achieved by postmortem histopathological examination of the spinal cord. The purpose of this study was to investigate whether the volumetry of DRG using the ability of water-excitation magnetic resonance imaging (MRI) to visualize the DRG in dogs has premortem diagnostic value for DM. Eight dogs with DM, twenty-four dogs with intervertebral disc herniation (IVDH), and eight control dogs were scanned using a 3.0-tesla MRI system, and water-excitation images were obtained to visualize and measure the volume of DRG, normalized by body surface area. The normalized mean DRG volume between each spinal cord segment and mean volume of all DRG between T8 and L2 in the DM group was significantly lower than that in the control and the IVDH groups (P = 0.011, P = 0.002, respectively). There were no correlations within the normalized mean DRG volume between DM stage 1 and stage 4 (rs = 0.312, P = 0.128, respectively). In conclusion, DRG volumetry by the water-excitation MRI provides a non-invasive and quantitative assessment of neurodegeneration in DRG and may have diagnostic potential for DM.
Collapse
|
9
|
Riancho J, Paz-Fajardo L, López de Munaín A. Clinical and preclinical evidence of somatosensory involvement in amyotrophic lateral sclerosis. Br J Pharmacol 2020; 178:1257-1268. [PMID: 32673410 DOI: 10.1111/bph.15202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron neurodegenerative disease. Although it has been classically considered as a disease limited to the motor system, there is increasing evidence for the involvement of other neural and non-neuronal systems. In this review, we will discuss currently existing literature regarding the involvement of the sensory system in ALS. Human studies have reported intradermic small fibre loss, sensory axonal predominant neuropathy, as well as somatosensory cortex hyperexcitability. In line with this, ALS animal studies have demonstrated the involvement of several sensory components. Specifically, they have highlighted the impairment of sensory-motor networks as a potential mechanism for the disease. The elucidation of these "non-motor" systems involvement, which might also be part of the degeneration process, should prompt the scientific community to re-consider ALS as a pure motor neuron disease, which may in turn result in more holistic research approaches. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana-IDIVAL, Torrelavega, Spain
| | - Adolfo López de Munaín
- Centro de Investigación en Red de Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Madrid, Spain.,Neurosciences Area, Biodonostia Research Institute, San Sebastián, Spain.,Neurology Department, Donostia University Hospital-OSAKIDETZA, San Sebastián, Spain.,Neurosciences Department, Basque Country University, San Sebastián, Spain
| |
Collapse
|
10
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SMR. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10:400. [PMID: 31139131 PMCID: PMC6527847 DOI: 10.3389/fneur.2019.00400] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Marie-Rose Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| |
Collapse
|
12
|
Helferich AM, Brockmann SJ, Reinders J, Deshpande D, Holzmann K, Brenner D, Andersen PM, Petri S, Thal DR, Michaelis J, Otto M, Just S, Ludolph AC, Danzer KM, Freischmidt A, Weishaupt JH. Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS. Cell Mol Life Sci 2018; 75:4301-4319. [PMID: 30030593 PMCID: PMC11105367 DOI: 10.1007/s00018-018-2873-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.
Collapse
Affiliation(s)
- Anika M Helferich
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah J Brockmann
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, Regensburg University, 93053, Regensburg, Germany
| | | | - Karlheinz Holzmann
- Genomics-Core Facility, Center for Biomedical Research, Ulm University Hospital, 89081, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter M Andersen
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Dietmar R Thal
- Laboratory for Neuropathology, Institute of Pathology, Ulm University, 89081, Ulm, Germany
- Laboratory for Neuropathology, Department of Neurosciences, KU Leuven, 3000, Louvain, Belgium
- Department of Pathology, UZ Leuven, 3000, Louvain, Belgium
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
13
|
Vaughan SK, Sutherland NM, Zhang S, Hatzipetros T, Vieira F, Valdez G. The ALS-inducing factors, TDP43 A315T and SOD1 G93A, directly affect and sensitize sensory neurons to stress. Sci Rep 2018; 8:16582. [PMID: 30410094 PMCID: PMC6224462 DOI: 10.1038/s41598-018-34510-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
There is increased recognition that sensory neurons located in dorsal root ganglia (DRG) are affected in amyotrophic lateral sclerosis (ALS). However, it remains unknown whether ALS-inducing factors, other than mutant superoxide dismutase 1 (SOD1G93A), directly affect sensory neurons. Here, we examined the effect of mutant TAR DNA-binding protein 1 (TDP43A315T) on sensory neurons in culture and in vivo. In parallel, we reevaluated sensory neurons expressing SOD1G93A. We found that cultured sensory neurons harboring either TDP43A315T or SOD1G93A grow neurites at a slower rate and elaborate fewer neuritic branches compared to control neurons. The presence of either ALS-causing mutant gene also sensitizes sensory neurons to vincristine, a microtubule inhibitor that causes axonal degeneration. Interestingly, these experiments revealed that cultured sensory neurons harboring TDP43A315T elaborate shorter and less complex neurites, and are more sensitive to vincristine compared to controls and to SOD1G93A expressing sensory neurons. Additionally, levels of two molecules involved in stress responses, ATF3 and PERK are significantly different between sensory neurons harboring TDP43A315T to those with SOD1G93A in vitro and in vivo. These findings demonstrate that sensory neurons are directly affected by two ALS-inducing factors, suggesting important roles for this neuronal subpopulation in ALS-related pathogenesis.
Collapse
Affiliation(s)
- Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Sihui Zhang
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | | | | | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
14
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
15
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
16
|
Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown-Vialetto disease that is partially rescued by riboflavin. Sci Rep 2017; 7:46271. [PMID: 28382968 PMCID: PMC5382781 DOI: 10.1038/srep46271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Riboflavin is essential in numerous cellular oxidation/reduction reactions but is not synthesized by mammalian cells. Riboflavin absorption occurs through the human riboflavin transporters RFVT1 and RFVT3 in the intestine and RFVT2 in the brain. Mutations in these genes are causative for the Brown–Vialetto–Van Laere (BVVL), childhood-onset syndrome characterized by a variety of cranial nerve palsies as well as by spinal cord motor neuron (MN) degeneration. Why mutations in RFVTs result in a neural cell–selective disorder is unclear. As a novel tool to gain insights into the pathomechanisms underlying the disease, we generated MNs from induced pluripotent stem cells (iPSCs) derived from BVVL patients as an in vitro disease model. BVVL-MNs explained a reduction in axon elongation, partially improved by riboflavin supplementation. RNA sequencing profiles and protein studies of the cytoskeletal structures showed a perturbation in the neurofilament composition in BVVL-MNs. Furthermore, exploring the autophagy–lysosome pathway, we observed a reduced autophagic/mitophagic flux in patient MNs. These features represent emerging pathogenetic mechanisms in BVVL-associated neurodegeneration, partially rescued by riboflavin supplementation. Our data showed that this therapeutic strategy could have some limits in rescuing all of the disease features, suggesting the need to develop complementary novel therapeutic strategies.
Collapse
|