1
|
Ho MF, Zhang C, Cohan JS, Tuncturk M, Heider RM, Coombes BJ, Biernacka J, Moon I, Skime M, Ho AM, Ngo Q, Skillon C, Croarkin PE, Oesterle TS, Karpyak VM, Li H, Weinshilboum RM. IL17RB genetic variants are associated with acamprosate treatment response in patients with alcohol use disorder: A proteomics-informed genomics study. Brain Behav Immun 2024; 120:304-314. [PMID: 38852760 PMCID: PMC11269006 DOI: 10.1016/j.bbi.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Acamprosate is a Food and Drug Administration (FDA) approved medication for the treatment of alcohol use disorder (AUD). However, only a subset of patients achieves optimal treatment outcomes. Currently, no biological measures are utilized to predict response to acamprosate treatment. We applied our established pharmaco-omics informed genomics strategy to identify potential biomarkers associated with acamprosate treatment response. Specifically, our previous open-label acamprosate clinical trial recruited 442 patients with AUD who were treated with acamprosate for three months. We first performed proteomics using baseline plasma samples to identify potential biomarkers associated with acamprosate treatment outcomes. Next, we applied our established "proteomics-informed genome-wide association study (GWAS)" research strategy, and identified 12 proteins, including interleukin-17 receptor B (IL17RB), associated with acamprosate treatment response. A GWAS for IL17RB concentrations identified several genome-wide significant signals. Specifically, the top hit single nucleotide polymorphism (SNP) rs6801605 with a minor allele frequency of 38% in the European American population mapped 4 kilobase (Kb) upstream of IL17RB, and intron 1 of the choline dehydrogenase (CHDH) gene on chromosome 3 (p: 4.8E-20). The variant genotype (AA) for the SNP rs6801605 was associated with lower IL17RB protein expression. In addition, we identified a series of genetic variants in IL17RB that were associated with acamprosate treatment outcomes. Furthermore, the variantgenotypes for all of those IL17RB SNPs were protective for alcohol relapse. Finally, we demonstrated that the basal level of mRNA expression of IL17RB was inversely correlated with those of nuclear factor-κB (NF-κB) subunits, and a significantly higher expression of NF-κB subunits was observed in AUD patients who relapsed to alcohol use. In summary, this study illustrates that IL17RB genetic variants might contribute to acamprosate treatment outcomes. This series of studies represents an important step toward generating functional hypotheses that could be tested to gain insight into mechanisms underlying acamprosate treatment response phenotypes. (The ClinicalTrials.gov Identifier: NCT00662571).
Collapse
Affiliation(s)
- Ming-Fen Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA.
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | - James S Cohan
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mustafa Tuncturk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Robin M Heider
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | - Brandon J Coombes
- Division of Computational Biology, Quantitative Health Sciences, Rochester, MN, USA
| | - Joanna Biernacka
- Division of Computational Biology, Quantitative Health Sciences, Rochester, MN, USA
| | - Irene Moon
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ada M Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Quyen Ngo
- Hazelden Betty Ford Foundation, Center City, MN, USA
| | | | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Tyler S Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | | |
Collapse
|
2
|
Plug BC, Revers IM, Breur M, González GM, Timmerman JA, Meijns NRC, Hamberg D, Wagendorp J, Nutma E, Wolf NI, Luchicchi A, Mansvelder HD, van Til NP, van der Knaap MS, Bugiani M. Human post-mortem organotypic brain slice cultures: a tool to study pathomechanisms and test therapies. Acta Neuropathol Commun 2024; 12:83. [PMID: 38822428 PMCID: PMC11140981 DOI: 10.1186/s40478-024-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024] Open
Abstract
Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.
Collapse
Affiliation(s)
- Bonnie C Plug
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Ilma M Revers
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Marjolein Breur
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Gema Muñoz González
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jaap A Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niels R C Meijns
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Daniek Hamberg
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Jikke Wagendorp
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Erik Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
| | - Nicole I Wolf
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam University Medical Centre, VU University, Amsterdam Neuroscience, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Niek P van Til
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marjo S van der Knaap
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam Neuroscience, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Marianna Bugiani
- Department of Paediatrics and Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands.
| |
Collapse
|
3
|
Abstract
11-beta-hydroxysteroid dehydrogenases (11β-HSDs) catalyse the conversion of active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto forms (cortisone, 11-dehydrocorticosterone). They were first reported in the body and brain 70 years ago, but only recently have they become of interest. 11β-HSD2 is a dehydrogenase, potently inactivating glucocorticoids. In the kidney, 11β-HSD2 generates the aldosterone-specificity of intrinsically non-selective mineralocorticoid receptors. 11β-HSD2 also protects the developing foetal brain and body from premature glucocorticoid exposure, which otherwise engenders the programming of neuropsychiatric and cardio-metabolic disease risks. In the adult CNS, 11β-HSD2 is confined to a part of the brain stem where it generates aldosterone-specific central control of salt appetite and perhaps blood pressure. 11β-HSD1 is a reductase, amplifying active glucocorticoid levels within brain cells, notably in the cortex, hippocampus and amygdala, paralleling its metabolic functions in peripheral tissues. 11β-HSD1 is elevated in the ageing rodent and, less certainly, human forebrain. Transgenic models show this rise contributes to age-related cognitive decline, at least in mice. 11β-HSD1 inhibition robustly improves memory in healthy and pathological ageing rodent models and is showing initial promising results in phase II studies of healthy elderly people. Larger trials are needed to confirm and clarify the magnitude of effect and define target populations. The next decade will be crucial in determining how this tale ends - in new treatments or disappointment.
Collapse
Affiliation(s)
- Jonathan Seckl
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
di Michele F. Neurosteroids and their Therapeutic Potential: Remembering the Contribution of Dr. Sabina Luchetti, Netherlands Institute for Neuroscience, Amsterdam, Netherlands. Curr Med Chem 2024; 31:2895-2899. [PMID: 38904159 DOI: 10.2174/0109298673270157231120072205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 06/22/2024]
Abstract
This article traces the career of Dr. Sabina Luchetti (1969-2021), a noted physician (medical doctor, specialized in Neurology at Tor Vergata University of Rome, Italy), a dedicated neuroscientist (Ph.D. in Neuroscience at Tor Vergata University and IRCCS Santa Lucia of Rome), and a member of a renowned Netherlands group (senior researcher at Professor Swaab Laboratory of the Netherlands Institute for Neuroscience, Amsterdam, Netherlands), working in the field of brain function and diseases. She is particularly involved in the study of natural compounds, such as neurosteroids and their biosynthetic pathways in neurodegenerative and neuroinflammation- related disorders, working on post-mortem human brains. This editorial outlines Dr. Luchetti's wide range of interests, discloses her superior fund of knowledge, and recollects her humanitarian spirit, all of which contribute to creating a great sense of belonging to any group of researchers whom she worked with. The impact of Dr. Luchetti's work will continue to be felt for many years. From the bench to the bedside, her work has indirectly contributed to shedding light on the neurosteroids' potential therapeutic effects, considering that neurosteroids and their analogues (some of which are over-the-counter) are now used to treat depression, epilepsy, and substance abuse disorders. Moreover, the potential therapeutic effects of allopregnanolone with respect to its capability to promote neuroregeneration and neuroprotection are a promising basis for future treatment of neurodegenerative diseases.
Collapse
|
5
|
Luchetti S, Liere P, Pianos A, Verwer RWH, Sluiter A, Huitinga I, Schumacher M, Swaab DF, Mason MRJ. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson's disease. Neurobiol Dis 2023:106169. [PMID: 37257664 DOI: 10.1016/j.nbd.2023.106169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.
Collapse
Affiliation(s)
- Sabina Luchetti
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands; Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Philippe Liere
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Antoine Pianos
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Arja Sluiter
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Michael Schumacher
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | | |
Collapse
|
6
|
Distinct proteomic profiles in prefrontal subareas of elderly major depressive disorder and bipolar disorder patients. Transl Psychiatry 2022; 12:275. [PMID: 35821008 PMCID: PMC9276790 DOI: 10.1038/s41398-022-02040-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
We investigated for the first time the proteomic profiles both in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of major depressive disorder (MDD) and bipolar disorder (BD) patients. Cryostat sections of DLPFC and ACC of MDD and BD patients with their respective well-matched controls were used for study. Proteins were quantified by tandem mass tag and high-performance liquid chromatography-mass spectrometry system. Gene Ontology terms and functional cluster alteration were analyzed through bioinformatic analysis. Over 3000 proteins were accurately quantified, with more than 100 protein expressions identified as significantly changed in these two brain areas of MDD and BD patients as compared to their respective controls. These include OGDH, SDHA and COX5B in the DLPFC in MDD patients; PFN1, HSP90AA1 and PDCD6IP in the ACC of MDD patients; DBN1, DBNL and MYH9 in the DLPFC in BD patients. Impressively, depending on brain area and distinct diseases, the most notable change we found in the DLPFC of MDD was 'suppressed energy metabolism'; in the ACC of MDD it was 'suppressed tissue remodeling and suppressed immune response'; and in the DLPFC of BD it was differentiated 'suppressed tissue remodeling and suppressed neuronal projection'. In summary, there are distinct proteomic changes in different brain areas of the same mood disorder, and in the same brain area between MDD and BD patients, which strengthens the distinct pathogeneses and thus treatment targets.
Collapse
|
7
|
Tournikioti K, Alevizaki M, Michopoulos I, Mantzou A, Soldatos C, Douzenis A, Dikeos D, Ferentinos P. Cortisol to Dehydroepiandrosterone Sulphate Ratio and Executive Function in Bipolar Disorder. Neuropsychobiology 2022; 80:342-351. [PMID: 33508827 DOI: 10.1159/000513512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is associated with impairment in cognitive domains such as verbal memory and executive functions. Very few studies have assessed dehydroepiandrosterone sulphate (DHEA-S) in BD and its relation to cognitive functioning despite evidence showing its regulatory effects on glucocorticoid action. The aim of our study was to explore the association of cortisol, DHEA-S, and cortisol to DHEA-S ratio with visuospatial memory and executive functioning in BD. METHODS Cognitive performance of 60 bipolar I patients and 30 healthy subjects was evaluated by using Cambridge Neuropsychological Test Automated Battery tasks targeting visuospatial memory (spatial recognition memory) and executive functions (planning [Stockings of Cambridge; SOC] and attentional set shifting [ID/ED]). Morning serum cortisol and DHEA-S levels were measured in patients. Main effects of cortisol, DHEA-S, and cortisol/DHEA-S ratio for each neurocognitive task were explored in multiple regression analyses correcting for demographic and clinical parameters as well as treatment-related factors (current use of antipsychotic and mood stabilizer medication). RESULTS Bipolar patients showed poorer performance than healthy subjects in planning and attentional set shifting but not in visuospatial memory. Cortisol to DHEA-S ratio predicted worse performance in planning (SOC). CONCLUSIONS This is the first study to assess memory and executive function in BD in relation to DHEA-S and cortisol to DHEA-S ratio. We report an association of cortisol to DHEA-S ratio with worse performance in planning in bipolar I patients, which warrants further investigation.
Collapse
Affiliation(s)
- Kalliopi Tournikioti
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece,
| | - Maria Alevizaki
- Endocrine Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis Michopoulos
- Mental Health Care Unit, Evgenidion Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Aimilia Mantzou
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Constantin Soldatos
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Athanasios Douzenis
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitris Dikeos
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
8
|
Yoshino Y, Roy B, Dwivedi Y. Corticosterone-mediated regulation and functions of miR-218-5p in rat brain. Sci Rep 2022; 12:194. [PMID: 34996981 PMCID: PMC8742130 DOI: 10.1038/s41598-021-03863-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic stress is one of the key precipitating factors in major depressive disorder (MDD). Stress associated studies have underscored the mechanistic role of epigenetic master players like microRNAs (miRNAs) in depression pathophysiology at both preclinical and clinical levels. Previously, we had reported changes in miR-218-5p expression in response to corticosterone (CORT) induced chronic stress. MiR-218-5p was one of the most significantly induced miRNAs in the prefrontal cortex (PFC) of rats under chronic stress. In the present report, we have investigated how chronic CORT exposure mechanistically affected miR-218-5p expression in the rat brain and how miR-218 could trigger molecular changes on its downstream regulatory pathways. Elevated expression of miR-218-5p was found in the PFC of CORT-treated rats. A glucocorticoid receptor (GR) targeted Chromatin-Immunoprecipitation (ChIP) assay revealed high GR occupancy on the promoter region of Slit3 gene hosting miR-218-2 in its 3rd intron. RNA-sequencing data based on RNA Induced silencing Complex Immunoprecipitation (RISC-IP) with AGO2 in SH-SY5Y cells detected six consistent target genes of miR-218-5p (APOL4, DTWD1, BNIP1, METTL22, SNAPC1, and HDAC6). The expression of all five genes, except APOL4, was successfully validated with qPCR in CORT-treated rat PFC. Further, Hdac6-based ChIP-seq experiment helped in mapping major genomic loci enriched for intergenic regions in the PFC of CORT-treated rat. A proximity-based gene ontology (GO) analysis revealed a majority of the intergenic sites to be part of key genes implicated in central nervous system functions, notably synapse organization, neuron projection morphogenesis, and axonogenesis. Our results suggest that the upregulation of miR-218-5p in PFC of CORT-treated rats possibly resulted from GR biding in the promoter region of Slit3 gene. Interestingly, Hdac6 was one of the consistent target genes potentially found to regulate CNS related genes by chromatin modification. Collectively, these findings establish the role of miR-218-5p in chronic stress and the epigenetic function it plays to induce chromatin-based transcriptional changes of several CNS genes in triggering stress-induced disorders, including depression. This also opens up the scope to understand the role of miR-218-5p as a potential target for noncoding RNA therapeutics in clinical depression.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- UAB Mood Disorder Program, Division of Behavioral Neurobiology, Department of Psychiatry and Behavioral Neurobiology, UAB Depression and Suicide Center, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, USA.
| |
Collapse
|
9
|
Na +, K +-ATPase α Isoforms and Endogenous Cardiac Steroids in Prefrontal Cortex of Bipolar Patients and Controls. Int J Mol Sci 2020; 21:ijms21165912. [PMID: 32824628 PMCID: PMC7460572 DOI: 10.3390/ijms21165912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bipolar disorder is a chronic multifactorial psychiatric illness that affects the mood, cognition, and functioning of about 1–2% of the world’s population. Its biological basis is unknown, and its treatment is unsatisfactory. The α1, α2, and α3 isoforms of the Na+, K+-ATPase, an essential membrane transporter, are vital for neuronal and glial function. The enzyme and its regulators, endogenous cardiac steroids like ouabain and marinobufagenin, are implicated in neuropsychiatric disorders, bipolar disorder in particular. Here, we address the hypothesis that the α isoforms of the Na+, K+-ATPase and its regulators are altered in the prefrontal cortex of bipolar disease patients. The α isoforms were determined by Western blot and ouabain and marinobufagenin by specific and sensitive immunoassays. We found that the α2 and α3 isoforms were significantly higher and marinobufagenin levels were significantly lower in the prefrontal cortex of the bipolar disease patients compared with those in the control. A positive correlation was found between the levels of the three α isoforms in all samples and between the α1 isoform and ouabain levels in the controls. These results are in accordance with the notion that the Na+, K+-ATPase-endogenous cardiac steroids system is involved in bipolar disease and suggest that it may be used as a target for drug development.
Collapse
|
10
|
Peters T, Nüllig L, Antel J, Naaresh R, Laabs BH, Tegeler L, Amhaouach C, Libuda L, Hinney A, Hebebrand J. The Role of Genetic Variation of BMI, Body Composition, and Fat Distribution for Mental Traits and Disorders: A Look-Up and Mendelian Randomization Study. Front Genet 2020; 11:373. [PMID: 32373164 PMCID: PMC7186862 DOI: 10.3389/fgene.2020.00373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
Anthropometric traits and mental disorders or traits are known to be associated clinically and to show genetic overlap. We aimed to identify genetic variants with relevance for mental disorders/traits and either (i) body mass index (or obesity), (ii) body composition, (and/or) (iii) body fat distribution. We performed a look-up analysis of 1,005 genome-wide significant SNPs for BMI, body composition, and body fat distribution in 15 mental disorders/traits. We identified 40 independent loci with one or more SNPs fulfilling our threshold significance criterion (P < 4.98 × 10-5) for the mental phenotypes. The majority of loci was associated with schizophrenia, educational attainment, and/or intelligence. Fewer associations were found for bipolar disorder, neuroticism, attention deficit/hyperactivity disorder, major depressive disorder, depressive symptoms, and well-being. Unique associations with measures of body fat distribution adjusted for BMI were identified at five loci only. To investigate the potential causality between body fat distribution and schizophrenia, we performed two-sample Mendelian randomization analyses. We found no causal effect of body fat distribution on schizophrenia and vice versa. In conclusion, we identified 40 loci which may contribute to genetic overlaps between mental disorders/traits and BMI and/or shape related phenotypes. The majority of loci identified for body composition overlapped with BMI loci, thus suggesting pleiotropic effects.
Collapse
Affiliation(s)
- Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lena Nüllig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roaa Naaresh
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Lisa Tegeler
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Chaima Amhaouach
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Libuda
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Swaab DF, Bao AM. Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:335-358. [PMID: 33008536 DOI: 10.1016/b978-0-444-64123-6.00023-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress-related disorders, such as mood disorders and posttraumatic stress disorder (PTSD), are more common in women than in men. This sex difference is at least partly due to the organizing effect of sex steroids during intrauterine development, while activating or inhibiting effects of circulating sex hormones in the postnatal period and adulthood also play a role. Such effects result in structural and functional changes in neuronal networks, neurotransmitters, and neuropeptides, which make the arousal- and stress-related brain systems more vulnerable to environmental stressful events in women. Certain brainstem nuclei, the amygdala, habenula, prefrontal cortex, and hypothalamus are important hubs in the stress-related neuronal network. Various hypothalamic nuclei play a central role in this sexually dimorphic network. This concerns not only the hypothalamus-pituitary-adrenal axis (HPA-axis), which integrates the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of mood disorders, such as disordered day-night rhythm, lack of reward feelings, disturbed eating and sex, and disturbed cognitive functions. The present chapter focuses on the structural and functional sex differences that are present in the stress-related brain systems in mood disorders and PTSD, placing the HPA-axis in the center. The individual differences in the vulnerability of the discussed systems, caused by genetic and epigenetic developmental factors warrant further research to develop tailor-made therapeutic strategies.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Key Laboratory of Mental Disorder Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Qi XR, Kamphuis W, Shan L. Astrocyte Changes in the Prefrontal Cortex From Aged Non-suicidal Depressed Patients. Front Cell Neurosci 2019; 13:503. [PMID: 31798416 PMCID: PMC6874137 DOI: 10.3389/fncel.2019.00503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Glia alterations in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) have been postulated to play an important role in the pathophysiology of psychiatric disorders. Astroglia is the most abundant type of glial cells in the central nervous system. The expression levels of astrocyte markers (glial fibrillary acidic protein (GFAP), synemin-α, synemin-β, vimentin, nestin) in isolated gray matter from postmortem ACC and DLPFC were determined to investigate the possible involvement of astrocytes in depression. Donors were aged non-suicidal subjects with bipolar disorder (BPD) or major depressive disorder (MDD), and matched controls. GFAP mRNA levels were significantly increased in the ACC of BPD patients. However, GFAP immunohistochemistry showed that the area fraction of GFAP immunoreactive astrocytes was decreased in the ACC of BPD patients, while there were no changes in the cell density and integrated optical density (IOD), indicating that there might be a reduction of GFAP-positive astrocyte processes and remodeling of the astrocyte network in BPD. Furthermore, in controls, DLPFC GFAP mRNA levels were significantly lower with a time of death at daytime (08:01–20:00 h) compared to nighttime (20:01–08:00 h). In depression, such a diurnal pattern was not present. These findings in BPD and MDD subjects warrant further studies given the crucial roles of astrocytes in the central nervous system.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Willem Kamphuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Ling Shan
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
13
|
Hodes A, Rosen H, Cohen-Ben Ami H, Lichtstein D. Na +, K +-ATPase α3 isoform in frontal cortex GABAergic neurons in psychiatric diseases. J Psychiatr Res 2019; 115:21-28. [PMID: 31082653 DOI: 10.1016/j.jpsychires.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022]
Abstract
Na+, K+-ATPase is an essential membrane transporter. In the brain, the α3 isoform of Na+, K+-ATPase is vital for neuronal function. The enzyme and its regulators, endogenous cardiac steroids (ECS), were implicated in neuropsychiatric disorders. GABAergic neurotransmission was also studied extensively in diseases such as schizophrenia and bipolar disorder (BD). Post mortem brain samples from subjects with depression, schizophrenia or BD and non-psychiatric controls were provided by the Stanley Medical Research Institute. ECS levels were determined by ELISA. Expression levels of the three Na+, K+-ATPase-α isoforms, α1, α2 and α3, were determined by Western blot analysis. The α3 levels in GABAergic neurons in different regions of the brain were quantified by fluorescence immunohistochemistry. The results show that Na+, K+ -ATPase α3 isoform levels were lower in GABAergic neurons in the frontal cortex in BD and schizophrenia as compared with the controls (n = 15 subjects per group). A study on a 'mini-cohort' (n = 3 subjects per group) showed that the α3 isoform levels were also lower in GABAergic neurons in the hippocampus, but not amygdala, of bipolar and schizophrenic subjects. In the temporal cortex, higher Na+, K+ -ATPase α3 protein levels were found in the three psychiatric groups. No significant differences in ECS levels were found in this brain area. This is the first report on the distribution of α3 in specific neurons in the human brain in association with mental illness. These results strengthen the hypothesis for the involvement of Na+, K+ -ATPase in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - Hagit Cohen-Ben Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel.
| |
Collapse
|
14
|
Joshi MB, Pai S, Balakrishnan A, Bhat M, Kotambail A, Sharma P, Satyamoorthy K. Evidence for perturbed metabolic patterns in bipolar disorder subjects associated with lithium responsiveness. Psychiatry Res 2019; 273:252-259. [PMID: 30658210 DOI: 10.1016/j.psychres.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 01/21/2023]
Abstract
Bipolar disorder (BD) is multifactorial mood disorder characterized by alternating episodes of hyperactive mania and severe depression. Lithium is one of the most preferred drug used as mood stabilizer in treating BD. In this study, we examined the changes in plasma metabolome in BD subjects in the context of lithium responsiveness. Plasma samples from clinically defined, age and gender matched unrelated healthy controls and BD subjects (lithium responders and non-responders) were obtained and processed in positive and negative mode using untargeted liquid chromatography/mass spectrometry analysis. We identified significant alterations in plasma levels of dopamine along with its precursors (tyrosine and phenylalanine), branched chain amino acid such as valine and excitatory neurotransmitter glutamate between healthy control and BD subjects. Lipid molecules such as, eicosenoic acid and retinyl ester also showed distinguished patterns between control and BD individuals. Lithium responsiveness was markedly associated with significant differences in proline, L-gamma-glutamyl-isoleucine, dopamine, palmitic acid methyl ester, cholesterol sulfate, androsterone sulfate and 9S,12S,13S-triHOME levels. Altered metabolites enriched with key biochemical pathways associated with neuropsychiatry disorders. We hypothesize that BD pathogenesis and lithium responsiveness is associated with impaired homeostasis of amino acid and lipid metabolism.
Collapse
Affiliation(s)
- Manjunath B Joshi
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Supriya Pai
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Aswath Balakrishnan
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manoj Bhat
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Psvn Sharma
- Department of Psychiatry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
15
|
Haduch A, Daniel WA. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: a possible role in mental disorders. Drug Metab Rev 2019; 50:415-429. [PMID: 30501426 DOI: 10.1080/03602532.2018.1554674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current state of knowledge indicates that the cerebral cytochrome P450 (CYP) plays an important role in the endogenous metabolism in the brain. Different CYP isoenzymes mediate metabolism of many endogenous substrates such as monoaminergic neurotransmitters, neurosteroids, cholesterol, vitamins and arachidonic acid. Therefore, these enzymes may affect brain development, susceptibility to mental and neurodegenerative diseases and may contribute to their pathophysiology. In addition, they can modify the therapeutic effects of psychoactive drugs at the place of their target action in the brain, where the drugs can act by affecting the metabolism of endogenous substrates. The article focuses on the role of cerebral CYP isoforms in the metabolism of neurotransmitters, neurosteroids, and cholesterol, and their possible involvement in animal behavior, as well as in stress, depression, schizophrenia, cognitive processes, learning, and memory. CYP-mediated alternative pathways of dopamine and serotonin synthesis may have a significant role in the local production of these neurotransmitters in the brain regions where the disturbances of these neurotransmitter systems are observed in depression and schizophrenia. The local alternative synthesis of neurotransmitters may be of great importance in the brain, since dopamine and serotonin do not pass the blood-brain barrier and cannot be supplied from the periphery. In vitro studies indicate that human CYP2D6 catalyzing dopamine and serotonin synthesis is more efficient in these reactions than the rat CYP2D isoforms. It suggests that these alternative pathways may have much greater significance in the human brain but confirmation of these assumptions requires further studies.
Collapse
Affiliation(s)
- Anna Haduch
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| | - Władysława Anna Daniel
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
16
|
Qi XR, Verwer RWH, Bao AM, Balesar RA, Luchetti S, Zhou JN, Swaab DF. Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds. Neurosci Bull 2019; 35:244-252. [PMID: 30604279 DOI: 10.1007/s12264-018-0328-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
Abstract
Investigating the pathophysiological mechanisms underlying brain disorders is a priority if novel therapeutic strategies are to be developed. In vivo studies of animal models and in vitro studies of cell lines/primary cell cultures may provide useful tools to study certain aspects of brain disorders. However, discrepancies among these studies or unsuccessful translation from animal/cell studies to human/clinical studies often occur, because these models generally represent only some symptoms of a neuropsychiatric disorder rather than the complete disorder. Human brain slice cultures from postmortem tissue or resected tissue from operations have shown that, in vitro, neurons and glia can stay alive for long periods of time, while their morphological and physiological characteristics, and their ability to respond to experimental manipulations are maintained. Human brain slices can thus provide a close representation of neuronal networks in vivo, be a valuable tool for investigation of the basis of neuropsychiatric disorders, and provide a platform for the evaluation of novel pharmacological treatments of human brain diseases. A brain bank needs to provide the necessary infrastructure to bring together donors, hospitals, and researchers who want to investigate human brain slices in cultures of clinically and neuropathologically well-documented material.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands.
| | - Ronald W H Verwer
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rawien A Balesar
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Sabina Luchetti
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Jiang-Ning Zhou
- Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, China
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| |
Collapse
|
17
|
Bao AM, Swaab DF. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep 2018; 6:45-53. [PMID: 31211281 PMCID: PMC6562194 DOI: 10.1016/j.ibror.2018.11.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
There are no specific structural neuropathological hallmarks found in the brain of mood disorders. Instead, there are molecular, functional and structural alterations reported in many brain areas. The neurodevelopmental underpinning indicated the presence of various genetic and developmental risk factors. The effect of genetic polymorphisms and developmental sequalae, some of which may start in the womb, result in functional changes in a network mediated by neurotransmitters and neuropeptides, which make the emotion- and stress-related brain systems more vulnerable to stressful events. This network of stress-related neurocircuits consists of, for instance, brainstem nuclei, the amygdala, habenula, prefrontal cortex and hypothalamus. Various nuclei of the hypothalamus form indeed one of the crucial hubs in this network. This structure concerns not only the hypothalamo-pituitary-adrenal (HPA) axis that integrate the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of depression, such as disordered day-night rhythm, lack of reward feelings, disturbed eating, sex, and disturbed cognitive functions. The present review will focus on the changes in the human hypothalamus in depression, with the HPA axis in the center. We will discuss the inordinate network of neurotransmitters and neuropeptides involved, with the hope to find the most vulnerable neurobiological systems and the possible development of tailor-made treatments for mood disorders in the future.
Collapse
Affiliation(s)
- Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick F Swaab
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Tolahunase MR, Sagar R, Faiq M, Dada R. Yoga- and meditation-based lifestyle intervention increases neuroplasticity and reduces severity of major depressive disorder: A randomized controlled trial. Restor Neurol Neurosci 2018; 36:423-442. [DOI: 10.3233/rnn-170810] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Madhuri R. Tolahunase
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Muneeb Faiq
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rima Dada
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
19
|
Tobiansky DJ, Wallin-Miller KG, Floresco SB, Wood RI, Soma KK. Androgen Regulation of the Mesocorticolimbic System and Executive Function. Front Endocrinol (Lausanne) 2018; 9:279. [PMID: 29922228 PMCID: PMC5996102 DOI: 10.3389/fendo.2018.00279] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Multiple lines of evidence indicate that androgens, such as testosterone, modulate the mesocorticolimbic system and executive function. This review integrates neuroanatomical, molecular biological, neurochemical, and behavioral studies to highlight how endogenous and exogenous androgens alter behaviors, such as behavioral flexibility, decision making, and risk taking. First, we briefly review the neuroanatomy of the mesocorticolimbic system, which mediates executive function, with a focus on the ventral tegmental area (VTA), nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). Second, we present evidence that androgen receptors (AR) and other steroid receptors are expressed in the mesocorticolimbic system. Using sensitive immunohistochemistry and quantitative polymerase chain reaction (qPCR) techniques, ARs are detected in the VTA, NAc, mPFC, and OFC. Third, we describe recent evidence for local androgens ("neuroandrogens") in the mesocorticolimbic system. Steroidogenic enzymes are expressed in mesocorticolimbic regions. Furthermore, following long-term gonadectomy, testosterone is nondetectable in the blood but detectable in the mesocorticolimbic system, using liquid chromatography tandem mass spectrometry. However, the physiological relevance of neuroandrogens remains unknown. Fourth, we review how anabolic-androgenic steroids (AAS) influence the mesocorticolimbic system. Fifth, we describe how androgens modulate the neurochemistry and structure of the mesocorticolimbic system, particularly with regard to dopaminergic signaling. Finally, we discuss evidence that androgens influence executive functions, including the effects of androgen deprivation therapy and AAS. Taken together, the evidence indicates that androgens are critical modulators of executive function. Similar to dopamine signaling, there might be optimal levels of androgen signaling within the mesocorticolimbic system for executive functioning. Future studies should examine the regulation and functions of neurosteroids in the mesocorticolimbic system, as well as the potential deleterious and enduring effects of AAS use.
Collapse
Affiliation(s)
- Daniel J. Tobiansky
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Daniel J. Tobiansky,
| | - Kathryn G. Wallin-Miller
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Stan B. Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ruth I. Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Kiran K. Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|