1
|
Suwattananuruk P, Yaset S, Chotipanich C, Moldes-Anaya A, Sundset R, Berzaghi R, Figenschau S, Claes S, Schols D, Rojsitthisak P, Kranz M, Vajragupta O. Radiosynthesis and preclinical evaluation of a 68Ga-labeled tetrahydroisoquinoline-based ligand for PET imaging of C-X-C chemokine receptor type 4 in an animal model of glioblastoma. EJNMMI Radiopharm Chem 2024; 9:61. [PMID: 39162901 PMCID: PMC11335985 DOI: 10.1186/s41181-024-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND This study aimed to develop a novel positron emission tomography (PET) tracer, [68Ga]Ga-TD-01, for CXCR4 imaging. To achieve this goal, the molecular scaffold of TIQ15 was tuned by conjugation with the DOTA chelator to make it suitable for 68Ga radiolabeling. METHODS A bifunctional chelator was prepared by conjugating the amine group of TIQ15 with p-NCS-Bz-DOTA, yielding TD-01, with a high yield (68.92%). TD-01 was then radiolabeled with 68Ga using 0.1 M ammonium acetate at 60 °C for 10 min. A 1-h dynamic small animal PET/MRI study of the labeled compound in GL261-luc2 tumor-bearing mice was performed, and brain tumor uptake was assessed. Blocking studies involved pre-administration of TIQ15 (10 mg/kg) 10 min before the PET procedure started. RESULTS [68Ga]Ga-TD-01 exhibited a radiochemical yield (RCY) of 36.33 ± 1.50% (EOS), with a radiochemical purity > 99% and a molar activity of 55.79 ± 1.96 GBq/µmol (EOS). The radiotracer showed in vitro stability in PBS and human plasma for over 4 h. Biodistribution studies in healthy animals revealed favorable kinetics for subsequent PET pharmacokinetic modeling with low uptake in the brain and moderate uptake in lungs, intestines and spleen. Elimination could be assigned to a renal-hepatic pathway as showed by high uptake in kidneys, liver, and urinary bladder. Importantly, [68Ga]Ga-TD-01 uptake in glioblastoma (GBM)-bearing mice significantly decreased upon competition with TIQ15, with a baseline tumor-to-background ratios > 2.5 (20 min p.i.), indicating high specificity. CONCLUSION The newly developed CXCR4 PET tracer, [68Ga]Ga-TD-01, exhibited a high binding inhibition for CXCR4, excellent in vitro stability, and favorable pharmacokinetics, suggesting that the compound is a promising candidate for full in vivo characterization of CXCR4 expression in GBM, with potential for further development as a tool in cancer diagnosis.
Collapse
Affiliation(s)
- Piyapan Suwattananuruk
- Department of Food and Pharmaceutical Chemistry and Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sukanya Yaset
- National Cyclotron and PET Centre, Chulabhorn Hospital, Bangkok, Thailand
| | | | | | - Rune Sundset
- PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stine Figenschau
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Louvain, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Louvain, Belgium
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry and Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Mathias Kranz
- PET Imaging Center, University Hospital of North Norway, Tromsø, Norway.
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Opa Vajragupta
- Department of Food and Pharmaceutical Chemistry and Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Meng Q, Zhu R, Mao Y, Zhu S, Wu Y, Huang L, Ciechanover A, An J, Xu Y, Huang Z. Biological and mutational analyses of CXCR4-antagonist interactions and design of new antagonistic analogs. Biosci Rep 2023; 43:BSR20230981. [PMID: 38131305 PMCID: PMC10987480 DOI: 10.1042/bsr20230981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The chemokine receptor CXCR4 has become an attractive therapeutic target for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. A wide variety of synthetic antagonists of CXCR4 have been developed and studied for a growing list of clinical applications. To compare the biological effects of different antagonists on CXCR4 functions and their common and/or distinctive molecular interactions with the receptor, we conducted head-to-head comparative cell-based biological and mutational analyses of the interactions with CXCR4 of eleven reported antagonists, including HC4319, DV3, DV1, DV1 dimer, V1, vMIP-II, CVX15, LY2510924, IT1t, AMD3100, and AMD11070 that were representative of different structural classes of D-peptides, L-peptide, natural chemokine, cyclic peptides, and small molecules. The results were rationalized by molecular modeling of CXCR4-antagonist interactions from which the common as well as different receptor binding sites of these antagonists were derived, revealing a number of important residues such as W94, D97, H113, D171, D262, and E288, mostly of negative charge. To further examine this finding, we designed and synthesized new antagonistic analogs by adding positively charged residues Arg to a D-peptide template to enhance the postulated charge-charge interactions. The newly designed analogs displayed significantly increased binding to CXCR4, which supports the notion that negatively charged residues of CXCR4 can engage in interactions with moieties of positive charge of the antagonistic ligands. The results from these mutational, modeling and new analog design studies shed new insight into the molecular mechanisms of different types of antagonists in recognizing CXCR4 and guide the development of new therapeutic agents.
Collapse
Affiliation(s)
- Qian Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruohan Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Siyu Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lina S.M. Huang
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Aaron Ciechanover
- The Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jing An
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Yan Xu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
3
|
Zeghal M, Laroche G, Freitas JD, Wang R, Giguère PM. Profiling of basal and ligand-dependent GPCR activities by means of a polyvalent cell-based high-throughput platform. Nat Commun 2023; 14:3684. [PMID: 37407564 DOI: 10.1038/s41467-023-39132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and β-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting β-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio's robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Julia Douglas Freitas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Rebecca Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|
4
|
Rebolledo-Bustillo M, Garcia-Gomez D, Dávila EM, Castro ME, Caballero NA, Melendez FJ, Baizabal-Aguirre VM, Sanchez-Gaytan BL, Perez-Aguilar JM. Structural Basis of the Binding Mode of the Antineoplastic Compound Motixafortide (BL-8040) in the CXCR4 Chemokine Receptor. Int J Mol Sci 2023; 24:ijms24054393. [PMID: 36901829 PMCID: PMC10001991 DOI: 10.3390/ijms24054393] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Modulation of the CXCL12-CXCR4 signaling axis is of the utmost importance due to its central involvement in several pathological disorders, including inflammatory diseases and cancer. Among the different currently available drugs that inhibit CXCR4 activation, motixafortide-a best-in-class antagonist of this GPCR receptor-has exhibited promising results in preclinical studies of pancreatic, breast, and lung cancers. However, detailed information on the interaction mechanism of motixafortide is still lacking. Here, we characterize the motixafortide/CXCR4 and CXCL12/CXCR4 protein complexes by using computational techniques including unbiased all-atom molecular dynamics simulations. Our microsecond-long simulations of the protein systems indicate that the agonist triggers changes associated with active-like GPCR conformations, while the antagonist favors inactive conformations of CXCR4. Detailed ligand-protein analysis indicates the importance of motixafortide's six cationic residues, all of which established charge-charge interactions with acidic CXCR4 residues. Furthermore, two synthetic bulky chemical moieties of motixafortide work in tandem to restrict the conformations of important residues associated with CXCR4 activation. Our results not only elucidate the molecular mechanism by which motixafortide interacts with the CXCR4 receptor and stabilizes its inactive states, but also provide essential information to rationally design CXCR4 inhibitors that preserve the outstanding pharmacological features of motixafortide.
Collapse
Affiliation(s)
- Mariana Rebolledo-Bustillo
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - David Garcia-Gomez
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Eliud Morales Dávila
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - María Eugenia Castro
- Chemistry Center, Science Institute, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Norma A. Caballero
- School of Biological Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Francisco J. Melendez
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Victor M. Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km. 9.5 s/n Carretera Morelia-Zinapécuaro, La Palma, Tarímbaro, Morelia 58893, MICH, Mexico
| | - Brenda L. Sanchez-Gaytan
- Chemistry Center, Science Institute, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-(222)-2295500 (ext. 4089)
| |
Collapse
|
5
|
Discovery of Bis-Imidazoline Derivatives as New CXCR4 Ligands. Molecules 2023; 28:molecules28031156. [PMID: 36770826 PMCID: PMC9920567 DOI: 10.3390/molecules28031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.
Collapse
|
6
|
Lee YL, Chou YT, Su BK, Wu CC, Wang CH, Chang KH, Ho JAA, Chou PT. Comprehensive Thione-Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging, Tracking, and Targeted Photodynamic Therapy. J Am Chem Soc 2022; 144:17249-17260. [PMID: 36069676 DOI: 10.1021/jacs.2c07967] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored with phenyl substituents at the imide N site, followed by thionation, yielding a series of thione products 1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D, and 4S-PDI-D, respectively, with n = 1, 2, 3, and 4 thione. The photophysical properties are dependent on the number of anchored thiones, where the observed prominent lower-lying absorption is assigned to the S0 → S2(ππ*) transition and is red-shifted upon increasing the number of thiones; the lowest-lying excited state is ascribed to a transition-forbidden S1(nπ*) configuration. All nS-PDIs are non-emissive in solution but reveal an excellent two-photon absorption cross-section of >800 GM. Supported by the femtosecond transient absorption study, the S1(nπ*) → T1(ππ*) intersystem crossing (ISC) rate is > 1012 s-1, resulting in ∼100% triplet population. The lowest-lying T1(ππ*) energy is calculated to be in the order of 1S-PDI-D > 2S-cis-PDI-D ∼ 2S-trans-PDI-D > 3S-PDI-D > 4S-PDI-D, where the T1 energy of 1S-PDI-D (1.10 eV) is higher than that (0.97 eV) of the 1O2 1Δg state. 1S-PDI-D is further modified by either conjugation with peptide FC131 on the two terminal sides, forming 1S-FC131, or linkage with peptide FC131 and cyanine5 dye on each terminal, yielding Cy5-1S-FC131. In vitro experiments show power of 1S-FC131 and Cy5-1S-FC131 in recognizing A549 cells out of other three lung normal cells and effective photodynamic therapy. In vivo, both molecular composites demonstrate outstanding antitumor ability in A549 xenografted tumor mice, where Cy5-1S-FC131 shows superiority of simultaneous fluorescence tracking and targeted photodynamic therapy.
Collapse
Affiliation(s)
- Yao-Lin Lee
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Yi-Te Chou
- Department of Biochemical Science and Technology/Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Bo-Kang Su
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chih-Hsing Wang
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Biochemical Science and Technology/Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
7
|
Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022; 206:812-822. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022]
Abstract
The chemokine receptor CXCR4 and its cognate ligand CXCL12 mediate pathways that lead to cell migration and chemotaxis. Although the structural details of related receptor-ligand complexes have been resolved, the roles of the N-terminal domain of the receptor and post-translational sulfation that are determinants of ligand selectivity and affinity remain unclear. Here, we analyze the structural dynamics induced by receptor sulfation by combining molecular dynamics, docking and network analysis. The sulfotyrosine residues, 7YsN-term, 12YsN-term and 21YsN-term allow the N-terminal domain of the apo-sulfated receptor to adopt an "open" conformation that appears to facilitate ligand binding. The overall topology of the CXCR4-CXCL12 complex is independent of the sulfation state, but an extensive network of protein-protein interactions characterizes the sulfated receptor, in line with its increased ligand affinity. The altered interactions of sulfotyrosine residues, such as 21YsN-term-47RCXCL12 replacing the 21YN-term-13FCXCL12 interaction, propagate via allosteric pathways towards the receptor lumen. In particular, our results suggest that the experimentally-reported receptor-ligand interactions 262D6.58-8RCXCL12 and 277E7.28-12RCXCL12 could be dependent on the sulfation state of the receptor and need to be carefully analyzed. Our work is an important step in understanding chemokine-receptor interactions and how post-translational modifications could modulate receptor-ligand complexes.
Collapse
|
8
|
Zhang X, Detering L, Sultan D, Heo GS, Luehmann H, Taylor S, Choksi A, Rubin JB, Liu Y. C-X-C Chemokine Receptor Type 4-Targeted Imaging in Glioblastoma Multiforme Using 64Cu-Radiolabeled Ultrasmall Gold Nanoclusters. ACS APPLIED BIO MATERIALS 2022; 5:235-242. [PMID: 35014818 DOI: 10.1021/acsabm.1c01056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary malignant brain cancer in adults, and it carries a poor prognosis. Despite the current multimodality treatment, including surgery, radiation, and chemotherapy, the overall survival is still poor. Neurooncological imaging plays an important role in the initial diagnosis and prediction of the treatment response of GBM. Positron emission tomography (PET) imaging using radiotracers that target disease-specific hallmarks, which are both noninvasive and specific, has drawn much attention. C-X-C chemokine receptor 4 (CXCR4) plays an important role in neoangiogenesis and vasculogenesis, and, moreover, it is reported to be overexpressed in GBM, which is associated with poor patient survival; thus, CXCR4 can be an ideal candidate for PET imaging of GBM. Nanomaterials, which possess multifunctional capabilities, effective drug delivery, and favorable pharmacokinetics, are now being applied to improve the diagnosis and therapy of the most difficult-to-treat cancers. Herein, we engineered an ultrasmall, renal-clearable gold nanoclusters intrinsically radiolabeled with 64Cu (64Cu-AuNCs-FC131) for targeted PET imaging of CXCR4 in a U87 intracranial GBM mouse model. These targeted nanoclusters demonstrated specific binding to U87 cells with minimal cytotoxicity. The in vivo biodistribution showed favorable pharmacokinetics and efficient renal clearance. PET/computed tomography imaging of the U87 model revealed the effective delivery of 64Cu-AuNCs-FC131 into the tumors. In vivo toxicity studies demonstrated insignificant safety concerns at various dosages, indicating its potential as a useful platform for GBM imaging and drug delivery.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sara Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ankur Choksi
- School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
9
|
A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist. Eur J Med Chem 2022; 231:114150. [DOI: 10.1016/j.ejmech.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
10
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
11
|
Chittasupho C, Aonsri C, Imaram W. Targeted dendrimers for antagonizing the migration and viability of NALM-6 lymphoblastic leukemia cells. Bioorg Chem 2021; 107:104601. [PMID: 33476870 DOI: 10.1016/j.bioorg.2020.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
Acute lymphoblastic leukemia (ALL) or white blood cell cancer is one of the major causes that kills many children worldwide. Although various therapeutic agents are available for ALL treatment, the new drug discovery and drug delivery system are needed to improve their effectiveness, to reduce the toxicity and side-effect, and to enhance their selectivity to target cancer cells. CXCR4 is a protein expressed on the surface of various types of cancer cell including ALL. In this work, the CXCR4-targeted PAMAM dendrimer was constructed by conjugating G5 PAMAM with a CXCR4 antagonist, LFC131. The results revealed that the LFC131-conjugated G5 PAMAM selectively targeted CXCR4 expressing leukemic precursor B cells (NALM-6) and the migration of NALM-6 cells induced by SDF-1α was inhibited at non-cytotoxic concentration. Further research based on this findings may contribute to potential anti-metastatic drugs for lymphoblastic leukemia.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Chaiyawat Aonsri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand; Special Research Unit for Advanced Magnetic Resonance, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
12
|
Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proc Natl Acad Sci U S A 2020; 117:29144-29154. [PMID: 33148803 PMCID: PMC7682396 DOI: 10.1073/pnas.2013319117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Class A G protein−coupled receptors (GPCRs) can form dimers and oligomers via poorly understood mechanisms. We show here that the chemokine receptor CXCR4, which is a major pharmacological target, has an oligomerization behavior modulated by its active conformation. Combining advanced, single-molecule, and single-cell optical tools with functional assays and computational approaches, we unveil three key features of CXCR4 quaternary organization: CXCR4 dimerization 1) is dynamic, 2) increases with receptor expression level, and 3) can be disrupted by stabilizing an inactive receptor conformation. Ligand binding motifs reveal a ligand binding subpocket essential to modulate both CXCR4 basal activity and dimerization. This is relevant to develop new strategies to design CXCR4-targeting drugs. Although class A G protein−coupled receptors (GPCRs) can function as monomers, many of them form dimers and oligomers, but the mechanisms and functional relevance of such oligomerization is ill understood. Here, we investigate this problem for the CXC chemokine receptor 4 (CXCR4), a GPCR that regulates immune and hematopoietic cell trafficking, and a major drug target in cancer therapy. We combine single-molecule microscopy and fluorescence fluctuation spectroscopy to investigate CXCR4 membrane organization in living cells at densities ranging from a few molecules to hundreds of molecules per square micrometer of the plasma membrane. We observe that CXCR4 forms dynamic, transient homodimers, and that the monomer−dimer equilibrium is governed by receptor density. CXCR4 inverse agonists that bind to the receptor minor pocket inhibit CXCR4 constitutive activity and abolish receptor dimerization. A mutation in the minor binding pocket reduced the dimer-disrupting ability of these ligands. In addition, mutating critical residues in the sixth transmembrane helix of CXCR4 markedly diminished both basal activity and dimerization, supporting the notion that CXCR4 basal activity is required for dimer formation. Together, these results link CXCR4 dimerization to its density and to its activity. They further suggest that inverse agonists binding to the minor pocket suppress both dimerization and constitutive activity and may represent a specific strategy to target CXCR4.
Collapse
|
13
|
Chang CC, Liou JW, Dass KTP, Li YT, Jiang SJ, Pan SF, Yeh YC, Hsu HJ. Internal water channel formation in CXCR4 is crucial for G i-protein coupling upon activation by CXCL12. Commun Chem 2020; 3:133. [PMID: 36703316 PMCID: PMC9814148 DOI: 10.1038/s42004-020-00383-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2020] [Indexed: 01/29/2023] Open
Abstract
Chemokine receptor CXCR4 is a major drug target for numerous diseases because of its involvement in the regulation of cell migration and the developmental process. In this study, atomic-level molecular dynamics simulations were used to determine the activation mechanism and internal water formation of CXCR4 in complex with chemokine CXCL12 and Gi-protein. The results indicated that CXCL12-bound CXCR4 underwent transmembrane 6 (TM6) outward movement and a decrease in tyrosine toggle switch by eliciting the breakage of hydrophobic layer to form a continuous internal water channel. In the GDP-bound Gαi-protein state, the rotation and translation of the α5-helix of Gαi-protein toward the cytoplasmic pocket of CXCR4 induced an increase in interdomain distance for GDP leaving. Finally, an internal water channel formation model was proposed based on our simulations for CXCL12-bound CXCR4 in complex with Gαi-protein upon activation for downstream signaling. This model could be useful in anticancer drug development.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | | | - Ya-Tzu Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Sheng-Feng Pan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Chen Yeh
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan.
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
14
|
Tomassi S, Trotta AM, Ieranò C, Merlino F, Messere A, Rea G, Santoro F, Brancaccio D, Carotenuto A, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Marinelli L, Scala S, Di Maro S. Disulfide Bond Replacement with 1,4‐ and 1,5‐Disubstituted [1,2,3]‐Triazole on C‐X‐C Chemokine Receptor Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chemistry 2020; 26:10113-10125. [DOI: 10.1002/chem.202002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Maria Trotta
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Caterina Ieranò
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Messere
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Giuseppina Rea
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Federica Santoro
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Diego Brancaccio
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Ettore Novellino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Sandro Cosconati
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Luciana Marinelli
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Stefania Scala
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Salvatore Di Maro
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
15
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Fang X, Meng Q, Zhang H, Liang B, Zhu S, Wang J, Zhang C, Huang LS, Zhang X, Schooley RT, An J, Xu Y, Huang Z. Design, synthesis, and biological characterization of a new class of symmetrical polyamine-based small molecule CXCR4 antagonists. Eur J Med Chem 2020; 200:112410. [PMID: 32492596 DOI: 10.1016/j.ejmech.2020.112410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
CXCR4, a well-studied coreceptor of human immunodeficiency virus type 1 (HIV-1) entry, recognizes its cognate ligand SDF-1α (also named CXCL12) which plays many important roles, including regulating immune cells, controlling hematopoietic stem cells, and directing cancer cells migration. These pleiotropic roles make CXCR4 an attractive target to mitigate human disorders. Here a new class of symmetrical polyamines was designed and synthesized as potential small molecule CXCR4 antagonists. Among them, a representative compound 21 (namely HF50731) showed strong CXCR4 binding affinity (mean IC50 = 19.8 nM) in the CXCR4 competitive binding assay. Furthermore, compound 21 significantly inhibited SDF-1α-induced calcium mobilization and cell migration, and blocked HIV-1 infection via antagonizing CXCR4 coreceptor function. The structure-activity relationship analysis, site-directed mutagenesis, and molecular docking were conducted to further elucidate the binding mode of compound 21, suggesting that compound 21 could primarily occupy the minor subpocket of CXCR4 and partially bind in the major subpocket by interacting with residues W94, D97, D171, and E288. Our studies provide not only new insights for the fragment-based design of small molecule CXCR4 antagonists for clinical applications, but also a new and effective molecular probe for CXCR4-targeting biological studies.
Collapse
Affiliation(s)
- Xiong Fang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qian Meng
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huijun Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boqiang Liang
- Nobel Institute of Biomedicine, Zhuhai, 519080, China
| | - Siyu Zhu
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Juan Wang
- Nobel Institute of Biomedicine, Zhuhai, 519080, China
| | - Chaozai Zhang
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Lina S Huang
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Xingquan Zhang
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Robert T Schooley
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Jing An
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Yan Xu
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China.
| | - Ziwei Huang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Larsen O, Lückmann M, van der Velden WJC, Oliva-Santiago M, Brvar M, Ulven T, Frimurer TM, Karlshøj S, Rosenkilde MM. Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacol Transl Sci 2019; 2:429-441. [PMID: 32259075 DOI: 10.1021/acsptsci.9b00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/29/2022]
Abstract
Chemokines undergo post-translational modification such as N-terminal truncations. Here, we describe how N-terminal truncation of full length CCL3(1-70) affects its activity at CCR1. Truncated CCL3(5-70) has 10-fold higher potency and enhanced efficacy in β-arrestin recruitment, but less than 2-fold increased potencies in G protein signaling determined by calcium release, cAMP and IP3 formation. Small positive ago-allosteric ligands modulate the two CCL3 variants differently as the metal ion chelator bipyridine in complex with zinc (ZnBip) enhances the binding of truncated, but not full length CCL3, while a size-increase of the chelator to a chloro-substituted terpyridine (ZnClTerp), eliminates its allosteric, but not agonistic action. By employing a series of receptor mutants and in silico modeling we describe residues of importance for chemokine and small molecule binding. Notably, the chemokine receptor-conserved Glu2877.39 interacts with the N-terminal amine of truncated CCL3(5-70) and with Zn2+ of ZnBip, thereby bridging their binding sites and enabling the positive allosteric effect. Our study emphasizes that small allosteric molecules may act differently toward chemokine variants and thus selectively modulate interactions of specific chemokine subsets with their cognate receptors.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Michael Lückmann
- Section for Metabolic Receptology, Novo Nordisk Foundation, Center for Basic Metabolic Research, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Marta Oliva-Santiago
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Matjaz Brvar
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Trond Ulven
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2200 Copenhagen, Denmark
| | - Thomas M Frimurer
- Section for Metabolic Receptology, Novo Nordisk Foundation, Center for Basic Metabolic Research, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|
18
|
Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, Wijtmans M, de Esch I, Hill S, Leurs R. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharmacol 2019; 96:737-752. [DOI: 10.1124/mol.119.117663] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
|
19
|
Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B, de Haard H, Smit MJ. Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Mol Pharmacol 2019; 96:753-764. [PMID: 31481460 DOI: 10.1124/mol.119.116954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.
Collapse
Affiliation(s)
- Vladimir Bobkov
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Aurélien Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Timo W M De Groof
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Bas van der Woning
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Hans de Haard
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| |
Collapse
|
20
|
Schottelius M, Ludescher M, Richter F, Kapp TG, Kessler H, Wester HJ. Validation of [ 125I]CPCR4.3 as an investigative tool for the sensitive and specific detection of hCXCR4 and mCXCR4 expression in vitro and in vivo. EJNMMI Res 2019; 9:75. [PMID: 31410585 PMCID: PMC6692420 DOI: 10.1186/s13550-019-0545-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The development and clinical translation of [68Ga] Pentixafor has substantially promoted the relevance of non-invasive PET imaging of CXCR4 expression in a broad spectrum of diseases, including cancer and inflammation. Its pronounced selectivity for the human receptor (hCXCR4), however, precludes the use of [68Ga] Pentixafor for imaging receptor expression and dynamics in CXCR4-related diseases in endogenous mouse models. To overcome this restriction, [125I]CPCR4.3, a structurally related pentapeptide ligand, has been evaluated as a preclinical tool for efficient in vitro and in vivo targeting of hCXCR4 and mCXCR4. RESULTS Compared to the reference [68Ga] Pentixafor, [125I]CPCR4.3 showed 2.4- to 11-fold increased specific binding to human cancer cell lines with different hCXCR4 expression levels (Jurkat, Daudi, HT-29, SH-5YSY, MCF-7, LNCaP) as well as strong and highly specific binding to mCXCR4 expressing cells (mCXCR4-transfected CHO cells, Eμ-myc 1080, 4 T1), which was not detectable for [68Ga]Pentixafor. This is the consequence of the equally high affinity of iodo-CPCR4 to hCXCR4 and mCXCR4 (IC50 = 5.4 ± 1.5 and 4.9 ± 1.7 nM, respectively) as opposed to [natGa] Pentixafor (hCXCR4: 42.4 ± 11.6 nM, mCXCR4: > 1000 nM). Additionally, [125I]CPCR4.3 showed enhanced tracer internalization (factor of 1.5-2 compared to the reference). In vivo biodistribution studies in immunocompetent Black Six and immunocompromised CD-1 nude mice showed predominant hepatobiliary excretion of [125I]CPCR4.3 (logP = 0.51), leading to high activity levels in liver and intestines. However, [125I]CPCR4.3 also showed high and specific accumulation in organs with endogenous mCXCR4 expression (spleen, lung, adrenals), even at low receptor expression levels. CONCLUSIONS Due to its excellent hCXCR4 and mCXCR4 targeting efficiency, both in vitro and in vivo, [125I]CPCR4.3 represents a sensitive and reliable tool for the species-independent quantification of CXCR4 expression. Its suboptimal clearance properties will certainly restrict its use for in vivo imaging applications using 123I (for SPECT) or 124I (for PET), but due to its high and specific accumulation in mCXCR4 expressing tissues, [125I]CPCR4.3 holds promise as a powerful preclinical tool for the investigation and quantification of CXCR4 involvement and kinetics in various murine disease models via, e.g., biodistribution and autoradiography studies.
Collapse
Affiliation(s)
- Margret Schottelius
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| | - Marina Ludescher
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| | - Frauke Richter
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| | - Tobias G. Kapp
- Chemistry Department, Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Horst Kessler
- Chemistry Department, Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Hans-Jürgen Wester
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| |
Collapse
|
21
|
Arimont M, Hoffmann C, de Graaf C, Leurs R. Chemokine Receptor Crystal Structures: What Can Be Learned from Them? Mol Pharmacol 2019; 96:765-777. [PMID: 31266800 DOI: 10.1124/mol.119.117168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Chemokine receptors belong to the class A of G protein-coupled receptors (GPCRs) and are implicated in a wide variety of physiologic functions, mostly related to the homeostasis of the immune system. Chemokine receptors are also involved in multiple pathologic processes, including immune and autoimmune diseases, as well as cancer. Hence, several members of this GPCR subfamily are considered to be very relevant therapeutic targets. Since drug discovery efforts can be significantly reinforced by the availability of crystal structures, substantial efforts in the area of chemokine receptor structural biology could dramatically increase the outcome of drug discovery campaigns. This short review summarizes the available data on chemokine receptor crystal structures, discusses the numerous applications from chemokine receptor structures that can enhance the daily work of molecular pharmacologists, and describes the challenges and pitfalls to consider when relying on crystal structures for further research applications. SIGNIFICANCE STATEMENT: This short review summarizes the available data on chemokine receptor crystal structures, discusses the numerous applications from chemokine receptor structures that can enhance the daily work of molecular pharmacologists, and describes the challenges and pitfalls to consider when relying on crystal structures for further research applications.
Collapse
Affiliation(s)
- Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Carsten Hoffmann
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Chris de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| |
Collapse
|
22
|
Heo GS, Zhao Y, Sultan D, Zhang X, Detering L, Luehmann HP, Zhang X, Li R, Choksi A, Sharp S, Levingston S, Reichert DE, Sun G, Razani B, Li S, Weilbaecher KN, Dehdashti F, Wooley KL, Liu Y. Assessment of Copper Nanoclusters for Accurate in Vivo Tumor Imaging and Potential for Translation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19669-19678. [PMID: 31074257 PMCID: PMC7811435 DOI: 10.1021/acsami.8b22752] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanoparticles have been widely used for preclinical cancer imaging. However, their successful clinical translation is largely hampered by potential toxicity, unsatisfactory detection of malignancy at early stages, inaccurate diagnosis of tumor biomarkers, and histology for imaging-guided treatment. Herein, a targeted copper nanocluster (CuNC) is reported with high potential to address these challenges for future translation. Its ultrasmall structure enables efficient renal/bowel clearance, minimized off-target effects in nontargeted organs, and low nonspecific tumor retention. The pH-dependent in vivo dissolution of CuNCs affords minimal toxicity and potentially selective drug delivery to tumors. The intrinsic radiolabeling through the direct addition of 64Cu to CuNC (64Cu-CuNCs-FC131) synthesis offers high specific activity for sensitive and accurate detection of CXCR4 via FC131-directed targeting in novel triple negative breast cancer (TNBC) patient-derived xenograft mouse models and human TNBC tissues. In summary, this study not only reveals the potential of CXCR4-targeted 64Cu-CuNCs for TNBC imaging in clinical settings, but also provides a useful strategy to design and assess the translational potential of nanoparticles for cancer theranostics.
Collapse
Affiliation(s)
- Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - Yongfeng Zhao
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, United States
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - Hannah P. Luehmann
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - Xiangyu Zhang
- Department of Medicine, Washington University, St. Louis, MO 63110, United States
| | - Richen Li
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX 77842, United States
| | - Ankur Choksi
- University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | - Sidney Levingston
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - David E. Reichert
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - Guorong Sun
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX 77842, United States
| | - Babak Razani
- Department of Medicine, Washington University, St. Louis, MO 63110, United States
| | - Shunqiang Li
- Department of Medicine, Washington University, St. Louis, MO 63110, United States
| | | | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX 77842, United States
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, United States
- Corresponding Author:
| |
Collapse
|
23
|
Ligand-selective small molecule modulators of the constitutively active vGPCR US28. Eur J Med Chem 2018; 155:244-254. [PMID: 29886326 DOI: 10.1016/j.ejmech.2018.05.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
US28 is a broad-spectrum constitutively active G protein-coupled receptor encoded by the human cytomegalovirus (HCMV). It binds and scavenges multiple CC-chemokines as well as CX3CL1 (fractalkine) by constitutive receptor endocytosis to escape immune surveillance. We herein report the design and characterization of a novel library of US28-acting commercially available ligands based on the molecular descriptors of two previously reported US28-acting structures. Among these, we identify compounds capable of selectively recognizing CCL2-and CCL4-, but not CX3CL1-induced receptor conformations. Moreover, we find a direct correlation between the binding properties of small molecule ligands to CCL-induced conformations at the wild-type receptor and functional activity at the C-terminal truncated US28Δ300. As US28Δ300 is devoid of arrestin-recruitment and endocytosis, this highlights the potential usefulness of this construct in future drug discovery efforts aimed at specific US28 conformations. The new scaffolds identified herein represent valuable starting points for the generation of novel anti-HCMV therapies targeting the virus-encoded chemokine receptor US28 in a conformational-selective manner.
Collapse
|
24
|
Brancaccio D, Diana D, Di Maro S, Di Leva FS, Tomassi S, Fattorusso R, Russo L, Scala S, Trotta AM, Portella L, Novellino E, Marinelli L, Carotenuto A. Ligand-Based NMR Study of C-X-C Chemokine Receptor Type 4 (CXCR4)–Ligand Interactions on Living Cancer Cells. J Med Chem 2018. [DOI: 10.1021/acs.jmedchem.7b01830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Diego Brancaccio
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini, C.N.R., 80134 Naples, Italy
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | | | - Stefano Tomassi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luigi Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy
| | - Anna Maria Trotta
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy
| | - Luigi Portella
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS-Napoli, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Dipartimento di Farmacia, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
25
|
Di Maro S, Di Leva FS, Trotta AM, Brancaccio D, Portella L, Aurilio M, Tomassi S, Messere A, Sementa D, Lastoria S, Carotenuto A, Novellino E, Scala S, Marinelli L. Structure–Activity Relationships and Biological Characterization of a Novel, Potent, and Serum Stable C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonist. J Med Chem 2017; 60:9641-9652. [DOI: 10.1021/acs.jmedchem.7b01062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Anna Maria Trotta
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Portella
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Michela Aurilio
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Stefano Tomassi
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Deborah Sementa
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Secondo Lastoria
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefania Scala
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
26
|
CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm 2017; 119:310-321. [PMID: 28694161 DOI: 10.1016/j.ejpb.2017.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/10/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Abstract
CXCR4 and its ligand CXCL12 play a critical role in the metastasis of various types of cancer including breast cancer. Breast tumors preferentially metastasize to the lung, bones and distant lymph nodes, secreting high levels of CXCL12. We hypothesized that targeted inhibition of CXCR4 in breast cancer cells should suppress CXCR4-positive tumor cells toward secondary metastatic sites. In the present study, the efficacy of CXCR4 targeted dendrimers carrying DOX (LFC131-DOX-D4) on cellular binding, cytotoxicity, and migration of BT-549-Luc and T47D breast cancer cells was investigated. PAMAM dendrimers encapsulating DOX was surface functionalized with LFC131 peptide which recognized CXCR4 expressed on the surface of breast cancer cells. The LFC131-DOX-D4 bound to breast cancer cells resulting in significantly enhanced in vitro cellular toxicity as compared with non-targeted dendrimers. The LFC131-D4 exhibited remarkable reduced migration of BT-549-Luc breast cancer cells toward chemoattractant. This report demonstrated the potential utility of LFC131-dendrimer conjugates for breast cancer therapy and metastasis.
Collapse
|
27
|
Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017; 60:4735-4779. [PMID: 28165741 PMCID: PMC5483895 DOI: 10.1021/acs.jmedchem.6b01309] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
This
review focuses on the construction and application of structural chemokine
receptor models for the elucidation of molecular determinants of chemokine
receptor modulation and the structure-based discovery and design of
chemokine receptor ligands. A comparative analysis of ligand binding
pockets in chemokine receptors is presented, including a detailed
description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures,
and their implication for modeling molecular interactions of chemokine
receptors with small-molecule ligands, peptide ligands, and large
antibodies and chemokines. These studies demonstrate how the integration
of new structural information on chemokine receptors with extensive
structure–activity relationship and site-directed mutagenesis
data facilitates the prediction of the structure of chemokine receptor–ligand
complexes that have not been crystallized. Finally, a review of structure-based
ligand discovery and design studies based on chemokine receptor crystal
structures and homology models illustrates the possibilities and challenges
to find novel ligands for chemokine receptors.
Collapse
Affiliation(s)
- Marta Arimont
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Shan-Liang Sun
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Martine Smit
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Karlshøj S, Amarandi RM, Larsen O, Daugvilaite V, Steen A, Brvar M, Pui A, Frimurer TM, Ulven T, Rosenkilde MM. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5). J Biol Chem 2016; 291:26860-26874. [PMID: 27834679 DOI: 10.1074/jbc.m116.740183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn2+ is anchored to the chemokine receptor-conserved Glu-283VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116III:16/3.40, a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37I:07/1.39, Trp-86II:20/2.60, and Phe-109III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors.
Collapse
Affiliation(s)
- Stefanie Karlshøj
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Roxana Maria Amarandi
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.,the Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Bd. Carol I No. 11, RO-700506 Iaşi, Romania
| | - Olav Larsen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Viktorija Daugvilaite
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Anne Steen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Matjaž Brvar
- the Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Aurel Pui
- the Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Bd. Carol I No. 11, RO-700506 Iaşi, Romania
| | - Thomas Michael Frimurer
- the Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark, and
| | - Trond Ulven
- the Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Mette Marie Rosenkilde
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark,
| |
Collapse
|
29
|
Lückmann M, Amarandi RM, Papargyri N, Jakobsen MH, Christiansen E, Jensen LJ, Pui A, Schwartz TW, Rosenkilde MM, Frimurer TM. Structure-based discovery of novel US28 small molecule ligands with different modes of action. Chem Biol Drug Des 2016; 89:289-296. [PMID: 27569905 DOI: 10.1111/cbdd.12848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
The human cytomegalovirus-encoded G protein-coupled receptor US28 is a constitutively active receptor, which can recognize various chemokines. Despite the recent determination of its 2.9 Å crystal structure, potent and US28-specific tool compounds are still scarce. Here, we used structural information from a refined US28:VUF2274 complex for virtual screening of >12 million commercially available small molecule compounds. Using a combined receptor- and ligand-based approach, we tested 98 of the top 0.1% ranked compounds, revealing novel chemotypes as compared to the ~1.45 million known ligands in the ChEMBL database. Two compounds were confirmed as agonist and inverse agonist, respectively, in both IP accumulation and Ca2+ mobilization assays. The screening setup presented in this work is computationally inexpensive and therefore particularly useful in an academic setting as it enables simultaneous testing in binding as well as in different functional assays and/or species without actual chemical synthesis.
Collapse
Affiliation(s)
- Michael Lückmann
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Roxana-Maria Amarandi
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Natalia Papargyri
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Mette H Jakobsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Christiansen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Lars J Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Aurel Pui
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Thue W Schwartz
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Di Maro S, Trotta AM, Brancaccio D, Di Leva FS, La Pietra V, Ieranò C, Napolitano M, Portella L, D'Alterio C, Siciliano RA, Sementa D, Tomassi S, Carotenuto A, Novellino E, Scala S, Marinelli L. Exploring the N-Terminal Region of C-X-C Motif Chemokine 12 (CXCL12): Identification of Plasma-Stable Cyclic Peptides As Novel, Potent C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonists. J Med Chem 2016; 59:8369-80. [PMID: 27571038 DOI: 10.1021/acs.jmedchem.6b00695] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We previously reported the discovery of a CXCL12-mimetic cyclic peptide (2) as a selective CXCR4 antagonist showing promising in vitro and in vivo anticancer activity. However, further development of this peptide was hampered by its degradation in biological fluids as well as by its low micromolar affinity for the receptor. Herein, extensive chemical modifications led to the development of a new analogue (10) with enhanced potency, specificity, and plasma stability. A combined approach of Ala-amino acid scan, NMR, and molecular modeling unraveled the reasons behind the improved binding properties of 10 vs 2. Biological investigations on leukemia (CEM) and colon (HT29 and HCT116) cancer cell lines showed that 10 is able to impair CXCL12-mediated cell migration, ERK-phosphorylation, and CXCR4 internalization. These outcomes might pave the way for the future preclinical development of 10 in CXCR4 overexpressing leukemia and colon cancer.
Collapse
Affiliation(s)
- Salvatore Di Maro
- DiSTABiF, Second University of Naples , Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Maria Trotta
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy.,Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic.A.Tec.), Università Mediterranea di Reggio Calabria , Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Caterina Ieranò
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Maria Napolitano
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Luigi Portella
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Crescenzo D'Alterio
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Rosa Anna Siciliano
- Istituto di Scienze dell'Alimentazione, CNR , Via Roma 64, 83100 Avellino, Italy
| | - Deborah Sementa
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Stefania Scala
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
31
|
Allen SE, Dokholyan NV, Bowers AA. Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications. ACS Chem Biol 2016; 11:10-24. [PMID: 26575401 DOI: 10.1021/acschembio.5b00663] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many natural products consist of large and flexible macrocycles that engage their targets via multiple contact points. This combination of contained flexibility and large contact area often allows natural products to bind at target surfaces rather than deep pockets, making them attractive scaffolds for inhibiting protein-protein interactions and other challenging therapeutic targets. The increasing ability to manipulate such compounds either biosynthetically or via semisynthetic modification means that these compounds can now be considered as starting points for medchem campaigns rather than solely as ends. Modern medchem benefits substantially from rational improvements made on the basis of molecular docking. As such, docking methods have been enhanced in recent years to deal with the complicated binding modalities and flexible scaffolds of macrocyclic natural products and natural product-like structures. Here, we comprehensively review methods for treating and docking these large macrocyclic scaffolds and discuss some of the resulting advances in medicinal chemistry.
Collapse
Affiliation(s)
- Scott E. Allen
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Amarandi RM, Hjortø GM, Rosenkilde MM, Karlshøj S. Probing Biased Signaling in Chemokine Receptors. Methods Enzymol 2015; 570:155-86. [PMID: 26921946 DOI: 10.1016/bs.mie.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors occurs via two major routes, G protein- and β-arrestin-dependent, which can be preferentially modulated depending on the ligands or receptors involved, as well as the cell types or tissues in which the signaling event occurs. The preferential activation of a certain signaling pathway to the detriment of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein-dependent and -independent signaling in order to quantify chemokine system bias.
Collapse
Affiliation(s)
- Roxana-Maria Amarandi
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Zachariassen ZG, Karlshøj S, Haug BE, Rosenkilde MM, Våbenø J. Probing the Molecular Interactions between CXC Chemokine Receptor 4 (CXCR4) and an Arginine-Based Tripeptidomimetic Antagonist (KRH-1636). J Med Chem 2015; 58:8141-53. [PMID: 26397724 DOI: 10.1021/acs.jmedchem.5b00987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We here report an experimentally verified binding mode for the known tripeptidomimetic CXCR4 antagonist KRH-1636 (1). A limited SAR study based on the three functionalities of 1 was first conducted, followed by site-directed mutagenesis studies. The receptor mapping showed that both the potency and affinity of 1 were dependent on the transmembrane residues His(113), Asp(171), Asp(262), and His(281) and also suggested the involvement of Tyr(45) and Gln(200) (potency) and Tyr(116) and Glu(288) (affinity). Molecular docking of 1 to an X-ray structure of CXCR4 showed that the l-Arg guanidino group of 1 forms polar interactions with His(113) and Asp(171) and the (pyridin-2-ylmethyl)amino moiety is anchored by Asp(262) and His(281), whereas the naphthalene ring is tightly packed in a hydrophobic subpocket formed by the aromatic side chains of Trp(94), Tyr(45), and Tyr(116). The detailed picture of ligand-receptor interactions provided here will assist in structure-based design and further development of small-molecule peptidomimetic CXCR4 antagonists.
Collapse
Affiliation(s)
- Zack G Zachariassen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway , Breivika, NO-9037 Tromsø, Norway
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Bengt Erik Haug
- Department of Chemistry and Centre for Pharmacy, University of Bergen , Allégaten 41, NO-5007 Bergen, Norway
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen , Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Jon Våbenø
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway , Breivika, NO-9037 Tromsø, Norway
| |
Collapse
|
34
|
Progress toward rationally designed small-molecule peptide and peptidomimetic CXCR4 antagonists. Future Med Chem 2015; 7:1261-83. [DOI: 10.4155/fmc.15.64] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the last 5 years, X-ray structures of CXCR4 in complex with three different ligands (the small-molecule antagonist IT1t, the polypeptide antagonist CVX15 and the viral chemokine antagonist vMIP-II) have been released. In addition to the inherent scientific value of these specific X-ray structures, they provide a reliable structural foundation for studies of the molecular interactions between CXCR4 and its key peptide ligands (CXCL12 and HIV-1 gp120), and serve as valuable templates for further development of small-molecule CXCR4 antagonists with therapeutic potential. We here review recent computational studies of the molecular interactions between CXCR4 and its peptide ligands – based on the X-ray structures of CXCR4 – and the current status of small-molecule peptide and peptidomimetic CXCR4 antagonists.
Collapse
|
35
|
Oishi S, Kuroyanagi T, Kubo T, Montpas N, Yoshikawa Y, Misu R, Kobayashi Y, Ohno H, Heveker N, Furuya T, Fujii N. Development of Novel CXC Chemokine Receptor 7 (CXCR7) Ligands: Selectivity Switch from CXCR4 Antagonists with a Cyclic Pentapeptide Scaffold. J Med Chem 2015; 58:5218-25. [DOI: 10.1021/acs.jmedchem.5b00216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoko Kuroyanagi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tatsuhiko Kubo
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Nicolas Montpas
- Département
de Biochimie, Université de Montréal, Montréal, H3T 1J4, Canada
- Research Centre,
Sainte-Justine Hospital, University of Montreal, Montréal, H3T 1C5, Canada
| | - Yasushi Yoshikawa
- Drug Discovery Department, Research & Development Division, PharmaDesign Inc., 2-19-8 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | - Ryosuke Misu
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuka Kobayashi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Nikolaus Heveker
- Département
de Biochimie, Université de Montréal, Montréal, H3T 1J4, Canada
- Research Centre,
Sainte-Justine Hospital, University of Montreal, Montréal, H3T 1C5, Canada
| | - Toshio Furuya
- Drug Discovery Department, Research & Development Division, PharmaDesign Inc., 2-19-8 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | - Nobutaka Fujii
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
36
|
Planesas JM, Pérez-Nueno VI, Borrell JI, Teixidó J. Studying the binding interactions of allosteric agonists and antagonists of the CXCR4 receptor. J Mol Graph Model 2015; 60:1-14. [PMID: 26080355 DOI: 10.1016/j.jmgm.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/01/2022]
Abstract
Several examples of allosteric modulators of GPCRs have been reported recently in the literature, but understanding their molecular mechanism presents a new challenge for medicinal chemistry. For the specific case of the cellular receptor CXCR4, it is known that pepducins (lipidated fragments of intracellular GPCR loops) such as ATI-2341 modulate CXCR4 activity agonistically via an allosteric mechanism. Moreover, there are also examples of small organic molecules such as AMD11070 and GSK812397 which may also act as allosteric antagonists. However, incomplete knowledge of the ligand-binding sites has hampered a detailed molecular understanding of how these inhibitors work. Here, we attempt to answer this question by analysing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose two different allosteric binding sites, one located in the intracellular loops 1, 2 and 3 (ICL1, ICL2 and ICL3) which binds the pepducin agonist ATI-2341, and the other at a subsite of the main extracellular orthosteric binding pocket between extracellular loops 1 and 2 and the N-terminus, which binds the antagonists AMD11070 and GSK812397. Allosteric interactions between the CXCR4 and ATI-2341 were predicted by combining different modeling approaches. First, a rotational blind docking search was applied and the best poses were subsequently refined using flexible docking methods and molecular dynamic simulations. For the AMD11070 and GSK812397 antagonists, the entire CXCR4 protein surface was explored by blind docking in order to define the binding region. A second docking analysis by subsites was then performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 allosteric modulators.
Collapse
Affiliation(s)
- Jesús M Planesas
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Violeta I Pérez-Nueno
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain; Harmonic Pharma, Espace Transfert, 615 rue du Jardin Botanique, 54600 Villers lès Nancy, France.
| | - José I Borrell
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Jordi Teixidó
- Grup d'Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain.
| |
Collapse
|
37
|
Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2015; 35:816-26. [DOI: 10.1038/onc.2015.139] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
|
38
|
Montpas N, Cabana J, St-Onge G, Gravel S, Morin G, Kuroyanagi T, Lavigne P, Fujii N, Oishi S, Heveker N. Mode of binding of the cyclic agonist peptide TC14012 to CXCR7: identification of receptor and compound determinants. Biochemistry 2015; 54:1505-15. [PMID: 25669416 DOI: 10.1021/bi501526s] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The chemokine receptor CXCR7 is an atypical CXCL12 receptor that, as opposed to the classical CXCL12 receptor CXCR4, signals preferentially via the β-arrestin pathway and does not mediate chemotaxis. We previously reported that the cyclic peptide TC14012, a potent CXCR4 antagonist, also engaged CXCR7, albeit with lower potency. Surprisingly, the compound activated the CXCR7-arrestin pathway. The reason underlying the opposite effects of TC14012 on CXCR4 and CXCR7, and the mode of binding of TC14012 to CXCR7, remained unclear. The mode of binding of TC14012 to CXCR4 is known from cocrystallization of its analogue CVX15 with CXCR4. We here report the the mode of binding of TC14012 to CXCR7 by combining the use of compound analogues, receptor mutants, and molecular modeling. We find that the mode of binding of TC14012 to CXCR7 is indeed similar to that of CVX15 to CXCR4, with compound positions Arg2 and Arg14 engaging CXCR7 key residues D179(4.60) (on the tip of transmembrane domain 4) and D275(6.58) (on the tip of transmembrane domain 6), respectively. Interestingly, the TC14012 parent compound T140 is not a CXCR7 agonist, because of conformational constraints in its pharmacophore, which in TC14012 are relieved through C-terminal amidation. However, an engineered salt bridge between the CXCR7 ECL2 substitution R197D and compound residue Arg1 permitted T140 agonism by repositioning the compound in the binding pocket. In conclusion, our results show that the opposite effect of TC14012 on CXCR4 and CXCR7 is not explained by different binding modes. Rather, engagement of the interface between transmembrane domains and extracellular loops readily triggers CXCR7, but not CXCR4, activation.
Collapse
Affiliation(s)
- Nicolas Montpas
- Research Centre, Sainte-Justine Hospital, University of Montreal , Montréal H3T 1C5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|