1
|
Magalhães DM, Stewart NA, Mampay M, Rolle SO, Hall CM, Moeendarbary E, Flint MS, Sebastião AM, Valente CA, Dymond MK, Sheridan GK. The sphingosine 1-phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus. J Neurochem 2024; 168:1113-1142. [PMID: 38339785 DOI: 10.1111/jnc.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The small-molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1-phosphate (S1P) analogue currently used to treat relapsing-remitting multiple sclerosis in both adults and children. FTY720 can cross the blood-brain barrier (BBB) and, over time, accumulate in lipid-rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor-mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry-based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy-phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up-regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down-regulated. FTY720 also modulated anxiety-like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sara O Rolle
- Green Templeton College, University of Oxford, Oxford, UK
| | - Chloe M Hall
- School of Applied Sciences, University of Brighton, Brighton, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- 199 Biotechnologies Ltd, London, UK
| | - Melanie S Flint
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Marcus K Dymond
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | |
Collapse
|
2
|
Park HR, Lee H, Cho WK, Ma JY. Pro-neurogenic effects of Lilii Bulbus on hippocampal neurogenesis and memory. Biomed Pharmacother 2023; 164:114951. [PMID: 37267636 DOI: 10.1016/j.biopha.2023.114951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Lilii Bulbus, the bulb of tiger lily, has anti-oxidant and anti-tumorigenic properties. However, the effects of Lilii Bulbus on learning, memory, and hippocampal neurogenesis remain unknown. This study investigated whether water extract of Lilii Bulbus (WELB) affects memory ability and hippocampal neurogenesis. Behavioral analyses (Morris water maze and passive avoidance test), immunohistochemistry, cell proliferation assay, and immunoblot analysis were performed. WELB (50 and 100 mg/kg; for 14 days) enhanced memory retention and spatial memory in normal mice as well as in scopolamine-treated mice with memory deficits. Furthermore, the administration of WELB significantly increased the number of proliferating cells and surviving newborn cells in the dentate gyrus of the hippocampus in normal mice. We found that WELB has a pro-neurogenic effect by increasing the activation of brain-derived neurotrophic factor (BDNF)/cAMP response element-binding protein (CREB) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) in the hippocampus. Moreover, we confirmed that WELB (100 and 200 μg/ml) significantly increased NE-4 C and primary embryonic NSCs proliferation. Inhibition/knockdown of MEK/ERK blocked WELB-induced MEK/ERK phosphorylation and NSCs proliferation. Hence, MEK/ERK activation was required in WELB-induced NSCs proliferation. Our study demonstrates the first evidence for WELB promoting hippocampal neurogenesis and memory; pro-neurogenic activity may enhance brain plasticity, with implications for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hee Ra Park
- Department of KM Medicine Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Heeeun Lee
- Kine Sciences Inc., 24, Eonju-ro85gil, Gangnam-gu, Seoul 06221, Republic of Korea
| | - Won-Kyung Cho
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
3
|
Yu X, Qi X, Wei L, Zhao L, Deng W, Guo W, Wang Q, Ma X, Hu X, Ni P, Li T. Fingolimod ameliorates schizophrenia-like cognitive impairments induced by phencyclidine in male rats. Br J Pharmacol 2023; 180:161-173. [PMID: 36106568 DOI: 10.1111/bph.15954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Improvement of cognitive deficits in schizophrenia remains an unmet need owing to the lack of new therapies and drugs. Recent studies have reported that fingolimod, an immunomodulatory drug for treating multiple sclerosis, demonstrates anti-inflammatory and neuroprotective effects in several neurological disease models. This suggests its usefulness for ameliorating cognitive dysfunction in schizophrenia. Herein, we assessed the efficacy profile and mechanism of fingolimod in a rat model of phencyclidine (PCP)-induced schizophrenia. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were treated with PCP for 14 days. The therapeutic effect of fingolimod on cognitive function was assessed using the Morris water maze and fear conditioning tests. Hippocampal neurogenesis and the expression of astrocytes and microglia were evaluated using immunostaining. Cytokine expression was quantified using multiplexed flow cytometry. Brain-derived neurotrophic factor expression and phosphorylation of extracellular signal-regulated kinase were determined using western blot analysis. KEY RESULTS Fingolimod attenuated cognitive deficits and restored hippocampal neurogenesis in a dose-dependent manner in PCP-treated rats. Fingolimod treatment exerted anti-inflammatory effects by inhibiting microglial activation and IL-6 and IL-1β pro-inflammatory cytokine expression. The underlying mechanism involves the upregulation of brain-derived neurotrophic factor protein expression and activation of the ERK signalling pathway. CONCLUSION AND IMPLICATIONS This is the first preclinical assessment of the effects of fingolimod on cognitive function in a model for schizophrenia. Our results suggest the immune system plays an crucial role in cognitive alterations in schizophrenia and highlight the potential of immunomodulatory strategies to improve cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Xueli Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xueyu Qi
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Long Wei
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Wang
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyan Ni
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Skoug C, Martinsson I, Gouras GK, Meissner A, Duarte JMN. Sphingosine 1-Phoshpate Receptors are Located in Synapses and Control Spontaneous Activity of Mouse Neurons in Culture. Neurochem Res 2022; 47:3114-3125. [PMID: 35781853 PMCID: PMC9470655 DOI: 10.1007/s11064-022-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) is best known for its roles as vascular and immune regulator. Besides, it is also present in the central nervous system (CNS) where it can act as neuromodulator via five S1P receptors (S1PRs), and thus control neurotransmitter release. The distribution of S1PRs in the active zone and postsynaptic density of CNS synapses remains unknown. In the current study, we investigated the localization of S1PR1-5 in synapses of the mouse cortex. Cortical nerve terminals purified in a sucrose gradient were endowed with all five S1PRs. Further subcellular fractionation of cortical nerve terminals revealed S1PR2 and S1PR4 immunoreactivity in the active zone of presynaptic nerve terminals. Interestingly, only S1PR2 and S1PR3 immunoreactivity was found in the postsynaptic density. All receptors were present outside the active zone of nerve terminals. Neurons in the mouse cortex and primary neurons in culture showed immunoreactivity against all five S1PRs, and Ca2+ imaging revealed that S1P inhibits spontaneous neuronal activity in a dose-dependent fashion. When testing selective agonists for each of the receptors, we found that only S1PR1, S1PR2 and S1PR4 control spontaneous neuronal activity. We conclude that S1PR2 and S1PR4 are located in the active zone of nerve terminals and inhibit neuronal activity. Future studies need to test whether these receptors modulate stimulation-induced neurotransmitter release.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Isak Martinsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Gunnar K Gouras
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, University of Augsburg, Augsburg, Germany
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
6
|
Colombo E, Farina C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol Ther 2021; 230:107971. [PMID: 34450231 DOI: 10.1016/j.pharmthera.2021.107971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive sphingolipid binding to specific G protein-coupled receptors expressed in several organs. The relevance of S1P-S1P receptor axis in the pathophysiology of immune and nervous systems has encouraged the development of S1P receptor modulators for the treatment of neurological, autoimmune and/or inflammatory disorders. Currently, four S1P receptor modulators are approved drugs for multiple sclerosis (MS), an inflammatory disorder of the central nervous system. As main pharmacologic effect, these treatments induce lymphopenia due to the loss of responsiveness to S1P gradients guiding lymphocyte egress from lymphoid organs into the bloodstream. Recent data point to immunological effects of the S1P modulators beyond the inhibition of lymphocyte trafficking. Further, these drugs may cross the blood-brain barrier and directly target CNS resident cells expressing S1P receptors. Here we review the role of S1P signalling in neuroimmunology at the light of the evidences generated from the study of the mechanism of action of S1P receptor modulators in MS and integrate this information with findings derived from neuroinflammatory animal models and in vitro observations. These insights can direct the application of therapeutic approaches targeting S1P receptors in other disease areas.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy.
| |
Collapse
|
7
|
Wang CC, Kuo JR, Wang SJ. Fingolimod inhibits glutamate release through activation of S1P1 receptors and the G protein βγ subunit-dependent pathway in rat cerebrocortical nerve terminals. Neuropharmacology 2021; 185:108451. [PMID: 33428887 DOI: 10.1016/j.neuropharm.2021.108451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 01/28/2023]
Abstract
Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator approved for treating multiple sclerosis, is reported to prevent excitotoxic insult. Because excessive glutamate release is a major cause of neuronal damage in various neurological disorders, the effect of fingolimod on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) was investigated in the current study. Fingolimod decreased 4-aminopyridine (4-AP)-stimulated glutamate release and calcium concentration elevation. Fingolimod-mediated inhibition of 4-AP-induced glutamate release was dependent on extracellular calcium, persisted in the presence of the glutamate transporter inhibitor DL-TBOA or intracellular Ca2+-releasing inhibitors dantrolene and CGP37157, and was prevented by blocking vesicular transporters or N- and P/Q-type channels. Western blot and immunocytochemical analysis revealed the presence of S1P1 receptor proteins in presynaptic terminals. Fingolimod-mediated inhibition of 4-AP-induced glutamate release was also abolished by the sphingosine kinase inhibitor DMS, selective S1P1 receptor antagonist W146, Gi/o protein inhibitor pertussis toxin, and G protein βγ subunit inhibitor gallein; however, it was unaffected by the adenylyl cyclase inhibitor SQ22536, protein kinase A inhibitor H89, and phospholipase C inhibitor U73122. These data indicate that fingolimod decreases glutamate release from rat cerebrocortical synaptosomes by suppressing N- and P/Q-type Ca2+ channel activity; additionally, the activation of presynaptic S1P1 receptors and the G protein βγ subunit participates in achieving the effect.
Collapse
Affiliation(s)
- Che Chuan Wang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Jinn Rung Kuo
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, No.510, Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.
| |
Collapse
|
8
|
Meacci E, Garcia-Gil M, Pierucci F. SARS-CoV-2 Infection: A Role for S1P/S1P Receptor Signaling in the Nervous System? Int J Mol Sci 2020; 21:E6773. [PMID: 32942748 PMCID: PMC7556035 DOI: 10.3390/ijms21186773] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The recent coronavirus disease (COVID-19) is still spreading worldwide. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, binds to its receptor angiotensin-converting enzyme 2 (ACE2), and replicates within the cells of the nasal cavity, then spreads along the airway tracts, causing mild clinical manifestations, and, in a majority of patients, a persisting loss of smell. In some individuals, SARS-CoV-2 reaches and infects several organs, including the lung, leading to severe pulmonary disease. SARS-CoV-2 induces neurological symptoms, likely contributing to morbidity and mortality through unknown mechanisms. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with pleiotropic properties and functions in many tissues, including the nervous system. S1P regulates neurogenesis and inflammation and it is implicated in multiple sclerosis (MS). Notably, Fingolimod (FTY720), a modulator of S1P receptors, has been approved for the treatment of MS and is being tested for COVID-19. Here, we discuss the putative role of S1P on viral infection and in the modulation of inflammation and survival in the stem cell niche of the olfactory epithelium. This could help to design therapeutic strategies based on S1P-mediated signaling to limit or overcome the host-virus interaction, virus propagation and the pathogenesis and complications involving the nervous system.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy;
- Interuniversity Institute of Myology, University of Firenze, 50134 Firenze, Italy
| | - Mercedes Garcia-Gil
- Unit of Physiology, Department of Biology, University of Pisa, via S. Zeno 31, 56127 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy;
- Interuniversity Institute of Myology, University of Firenze, 50134 Firenze, Italy
| |
Collapse
|
9
|
Pournajaf S, Valian N, Mohaghegh Shalmani L, Khodabakhsh P, Jorjani M, Dargahi L. Fingolimod increases oligodendrocytes markers expression in epidermal neural crest stem cells. Eur J Pharmacol 2020; 885:173502. [PMID: 32860811 DOI: 10.1016/j.ejphar.2020.173502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal neural crest stem cells (EPI-NCSCs) are propitious candidates for cell replacement therapy and supplying neurotrophic factors in the neurological disorders. Considering the potential remyelinating and regenerative effects of fingolimod, in this study, we evaluated its effects on EPI-NCSCs viability and the expression of neurotrophic and oligodendrocyte differentiation factors. EPI-NCSCs, extracted from the bulge of rat hair follicles, were characterized and treated with fingolimod (0, 50, 100, 200, 400, 600, 1000, and 5000 nM). The cell viability was evaluated by MTT assay at 6, 24 and 72 h. The expression of neurotrophic and differentiation factors in the cells treated with 100 and 400 nM fingolimod were measured at 24 and 120 h. Fingolimod at 50-600 nM increased the cells viability after 6 h, with no change at the higher concentrations. The highest concentration (5000nM) induced toxicity at 24 and 72 h. NGF and GDNF genes expression were decreased at 120 h, but on the contrary, brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) were increased by both concentrations at both time points. Oligodendrocyte markers including platelet-derived growth factor receptor A (PDGFRα), neuron-glial antigen 2 (NG2) and growth associated protein 43 (GAP43) were elevated at 120 h, which was accompanied with reduce in stemness markers (Nestin and early growth response 1 (EGR1)). Fingolimod increased the expression of neurotrophic factors in EPI-NCSCs, and guided them to oligodendrocyte fate. Therefore, fingolimod in combination with EPI-NCSCs, can be considered as a promising approach for demyelinating neurological disorders.
Collapse
Affiliation(s)
- Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Li W, He T, Jiang L, Shi R, Song Y, Mamtilahun M, Ma Y, Zhang Z, Tang Y, Yang GY, Wang Y. Fingolimod Inhibits Inflammation but Exacerbates Brain Edema in the Acute Phases of Cerebral Ischemia in Diabetic Mice. Front Neurosci 2020; 14:842. [PMID: 32848587 PMCID: PMC7432267 DOI: 10.3389/fnins.2020.00842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose: Diabetes mellitus increases stroke incidence and mortality and hampers functional recovery after stroke. Fingolimod has been shown to improve neurofunctional recovery and reduce brain infarction after ischemic injury in mice without comorbidities. In this work, we investigated the effects of fingolimod in diabetic mice after transient middle cerebral artery occlusion (tMCAO). Methods: Hyperglycemia was induced by a single bolus streptozotocin injection. Adult male ICR mice (n = 86) underwent 1-h tMCAO surgery and received intraperitoneal injection of fingolimod (1 mg/kg) or vehicle immediately after reperfusion. Clark neurological score, brain infarction and edema, blood–brain barrier (BBB) integrity, apoptosis, and inflammation were evaluated at 24 h after tMCAO. Results: Fingolimod treatment reduced the number of infiltrated inflammatory cells and lowered the mRNA level of Tnfα. It also increased the ratio of Bcl-2/Bax. However, fingolimod significantly aggravated brain edema and reduced the expression levels of tight junction proteins ZO-1 and Occludin. The negative impacts of fingolimod on BBB integrity outweighed its beneficial effects in anti-inflammation, which resulted in the lack of improvement in endpoint outcomes at 24 h after tMCAO. Conclusion: Caution should be taken in considering the acute treatment using fingolimod for ischemic stroke with diabetes comorbidity.
Collapse
Affiliation(s)
- Wanlu Li
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting He
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Jiang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhijun Zhang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Yin SW, Wang Y, Meng YL, Liu CX. Effects of mild intrauterine hypoperfusion in the second trimester on memory and learning function in rat offspring. Neural Regen Res 2020; 15:2082-2088. [PMID: 32394966 PMCID: PMC7716030 DOI: 10.4103/1673-5374.282268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mild intrauterine hypoperfusion (MIUH) is a serious pathological event that affects the growth and development of fetuses and offspring. MIUH can lead to growth restriction, low birth weight, neurodevelopmental disorders, and other adverse clinical outcomes. To study the effects of MIUH on learning and memory function in offspring, a model of MIUH was established by placing a coil (length 2.5 mm, diameter 0.24 mm) on the uterine artery and ovarian uterine artery of Sprague-Dawley rats in the second trimester of pregnancy (day 17). Next, 120 mg/kg lithium chloride (the MIUH + Li group) or normal saline (the MIUH group) was injected intraperitoneally into these rats. In addition, 120 mg/kg lithium chloride (the Li group) or normal saline (the SHAM group) was injected intraperitoneally into pregnant rats without coil placement. The Morris water maze was used to detect changes in learning and memory ability in the offspring at 4 weeks after birth. In the MIUH group, the escape latency and journey length before reaching the platform were both increased, and the number of times that the platform was crossed and the activity time in the target quadrant within 90 seconds were both decreased compared with the SHAM group. Immunofluorescence double staining and western blot assays demonstrated that hippocampal nestin and Ki67 (both cell-proliferation-related proteins) expression was significantly downregulated in the MIUH group compared with the SHAM group. Furthermore, western blot assays were conducted to investigate changes in related signaling pathway proteins in the brains of offspring rats, and revealed that glycogen synthase kinase 3β (GSK3β) expression was upregulated and β-catenin expression was downregulated in the MIUH group compared with the SHAM group. In addition, compared with the MIUH group, the expression levels of p-GSK3β and β-catenin were upregulated in the MIUH + Li group. These results suggest that MIUH may affect learning and memory function in rat offspring by regulating the GSK3β signaling pathway. The experimental procedures were approved by Animal Ethics Committee of Shengjing Hospital of China Medical University (approval No. 2018PS07K) in June 2018.
Collapse
Affiliation(s)
- Shao-Wei Yin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi-Lin Meng
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, Liaoning Province, China
| | - Cai-Xia Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
S1P/S1P Receptor Signaling in Neuromuscolar Disorders. Int J Mol Sci 2019; 20:ijms20246364. [PMID: 31861214 PMCID: PMC6941007 DOI: 10.3390/ijms20246364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), and the signaling pathways triggered by its binding to specific G protein-coupled receptors play a critical regulatory role in many pathophysiological processes, including skeletal muscle and nervous system degeneration. The signaling transduced by S1P binding appears to be much more complex than previously thought, with important implications for clinical applications and for personalized medicine. In particular, the understanding of S1P/S1P receptor signaling functions in specific compartmentalized locations of the cell is worthy of being better investigated, because in various circumstances it might be crucial for the development or/and the progression of neuromuscular diseases, such as Charcot-Marie-Tooth disease, myasthenia gravis, and Duchenne muscular dystrophy.
Collapse
|
13
|
Yazdi A, Ghasemi‐Kasman M, Javan M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: An overview on remyelination process. J Neurosci Res 2019; 98:524-536. [DOI: 10.1002/jnr.24509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Ghasemi‐Kasman
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
- Neuroscience Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
14
|
Metzdorf J, Hobloss Z, Schlevogt S, Ayzenberg I, Stahlke S, Pedreiturria X, Haupeltshofer S, Gold R, Tönges L, Kleiter I. Fingolimod for Irradiation-Induced Neurodegeneration. Front Neurosci 2019; 13:699. [PMID: 31354410 PMCID: PMC6633210 DOI: 10.3389/fnins.2019.00699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cranial irradiation is a common therapy for the treatment of brain tumors, but unfortunately patients suffer from side effects, particularly cognitive impairment, caused by neurodegenerative and neuroinflammatory mechanisms. Finding a therapeutic agent protecting hippocampal neurons would be beneficial. Fingolimod (FTY720), a sphingosine-1-phosphate receptor modulator approved for multiple sclerosis, is an immunosuppressant and known to enhance proliferation and differentiation of neuronal precursor cells (NPCs). Objectives To investigate whether pre-treatment with FTY720 protects NPCs in vitro and in vivo from irradiation-induced damage. Methods Neuronal precursor cells were isolated from E13 C57BL/6 wildtype mice, treated at day 0 of differentiation with FTY720 and irradiated on day 6 with 1 Gy. NPCs were analyzed for markers of cell death (PI, caspase-3), proliferation (Ki67), and differentiation (DCX, βIII-tubulin). Adult C57BL/6 wildtype mice were treated with FTY720 (1 mg/kg) and received a single dose of 6 Gy cranial irradiation at day 7. Using immunohistochemistry, we analyzed DCX and BrdU as markers of neurogenesis and Iba1, GFAP, and CD3 to visualize inflammation in the dentate gyrus (DG) and the subventricular zone (SVZ). B6(Cg)-Tyrc-2J/J DCX-luc reporter mice were used for bioluminescence imaging to evaluate the effect of FTY720 on neurogenesis in the DG and the spinal cord of naïve mice. Results FTY720 protected NPCs against irradiation induced cell death in vitro. Treatment with FTY720 dose-dependently reduced the number of PI+ cells 24 and 96 h after irradiation without effecting proliferation or neuronal differentiation. In vivo treatment resulted in a significant survival of DCX+ neurons in the DG and the SVZ 4 weeks after irradiation as well as a slight increase of proliferating cells. FTY720 inhibited microglia activation 24 h after X-ray exposure in the DG, while astrocyte activation was unaffected and no lymphocyte infiltrations were found. In naïve mice, FTY720 treatment for 4 weeks had no effect on neurogenesis. Conclusion FTY720 treatment of NPCs prior to X-ray exposure and of mice prior to cranial irradiation is neuroprotective. No effects on neurogenesis were found.
Collapse
Affiliation(s)
- Judith Metzdorf
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Zaynab Hobloss
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Sibylle Schlevogt
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany.,Department of Neurology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sarah Stahlke
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | | | | | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany.,Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| |
Collapse
|
15
|
High dose of dexamethasone protects against EAE-induced motor deficits but impairs learning/memory in C57BL/6 mice. Sci Rep 2019; 9:6673. [PMID: 31040362 PMCID: PMC6491620 DOI: 10.1038/s41598-019-43217-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/17/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and neuroinflammatory disease characterized by demyelination of the Central Nervous System. Immune cells activation and release of pro-inflammatory cytokines play a crucial role in the disease modulation, decisively contributing to the neurodegeneration observed in MS and the experimental autoimmune encephalomyelitis (EAE), the widely used MS animal model. Synthetic glucocorticoids, commonly used to treat the MS attacks, have controversial effects on neuroinflammation and cognition. We sought to verify the influence of dexamethasone (DEX) on the EAE progression and on EAE-induced cognitive deficits. In myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE female mice, treated once with DEX (50 mg/kg) or not, on the day of immunization, DEX decreased EAE-induced motor clinical scores, infiltrating cells in the spinal cord and delayed serum corticosterone peak. At the asymptomatic phase (8-day post-immunization), DEX did not protected from the EAE-induced memory consolidation deficits, which were accompanied by increased glucocorticoid receptor (GR) activity and decreased EGR-1 expression in the hippocampus. Blunting hippocampal GR genomic activation with DnGR vectors prevented DEX effects on EAE-induced memory impairment. These data suggest that, although DEX improves clinical signs, it decreases cognitive and memory capacity by diminishing neuronal activity and potentiating some aspects of neuroinflammation in EAE.
Collapse
|
16
|
Hong F, Zhao M, Zhang L, Feng L. Inhibition of Ezh2 In Vitro and the Decline of Ezh2 in Developing Midbrain Promote Dopaminergic Neurons Differentiation Through Modifying H3K27me3. Stem Cells Dev 2019; 28:649-658. [PMID: 30887911 DOI: 10.1089/scd.2018.0258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epigenetic modifications play an important role in neural development. Trimethylated histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic marker that mediates tissue development. In this study, we demonstrate that H3K27me3 and histone methyl transferase Ezh2 regulated the development of dopaminergic (DA) neurons in vitro and in vivo. We found that H3K27me3 increased during differentiation of ventral midbrain-derived neural stem cells (VM-NSCs). However, histone demethylase selective inhibitor GSK-J1 increased H3K27me3 level and decreased the expression of tyrosine hydroxylase. Treated with Ezh2-selective inhibitor EPZ005687 repressed the trimethylation of H3K27 and enhanced differentiation of DA neurons in VM-NSCs cultures. Furthermore, Ezh2 inhibition promoted the expression of DA neurons developmental-related factors by modifying H3K27 trimethylation on the relevant promoter regions. Moreover, the effect of Ezh2 inhibition-mediated DA neurons differentiation was blocked by the expression of shRNA specific for Nurr1. In vivo, Ezh2 decreased and resulted in a reduction of H3K27me3 in developing midbrain. Deletion of Ezh2 by RNA interference approach promoted differentiation of DA neurons during midbrain development. Overexpression of Ezh2 enhanced cell self-renewal and did not affect differentiation of DA neurons.
Collapse
Affiliation(s)
- Feng Hong
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China.,2 Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| | - Mengxue Zhao
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China.,2 Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Linyin Feng
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China.,2 Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Kong W, Qi Z, Xia P, Chang Y, Li H, Qu Y, Pan S, Yang X. Local delivery of FTY720 and NSCs on electrospun PLGA scaffolds improves functional recovery after spinal cord injury. RSC Adv 2019; 9:17801-17811. [PMID: 35520542 PMCID: PMC9064641 DOI: 10.1039/c9ra01717h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) is a common issue in the clinic that causes severe motor and sensory dysfunction below the lesion level. FTY720, also known as fingolimod, has recently been reported to exert a positive effect on the recovery from a spinal cord injury. Through local delivery to the lesion site, FTY720 effectively integrates with biomaterials, and the systemic adverse effects are alleviated. However, the effects of the proper mass ratio of FTY720 in biomaterials on neural stem cell (NSC) proliferation and differentiation, as well as functional recovery after SCI, have not been thoroughly investigated. In our study, we fabricated electrospun poly (lactide-co-glycolide) (PLGA)/FTY720 scaffolds at different mass ratios (0.1%, 1%, and 10%) and characterized these scaffolds. The effects of electrospun PLGA/FTY720 scaffolds on NSC proliferation and differentiation were measured. Then, a rat model of spinal transection was established to investigate the effects of PLGA/FTY720 scaffolds loaded with NSCs. Notably, 1% PLGA/FTY720 scaffolds exerted the best effects on the proliferation and differentiation of NSCs and 10% PLGA/FTY720 was cytotoxic to NSCs. Based on the Basso, Beattie, and Bresnahan (BBB) score, HE staining and immunofluorescence staining, the PLGA/FTY720 scaffold loaded with NSCs effectively promoted the recovery of spinal cord function. Thus, FTY720 properly integrated with electrospun PLGA scaffolds, and electrospun PLGA/FTY720 scaffolds loaded with NSCs may have potential applications for SCI as a nerve implant. Spinal cord injury (SCI) is a common issue in the clinic that causes severe motor and sensory dysfunction below the lesion level.![]()
Collapse
Affiliation(s)
- Weijian Kong
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Peng Xia
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Hongru Li
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Yunpeng Qu
- Department of Cardiovascular Medicine
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Su Pan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| |
Collapse
|
18
|
Lidgerwood GE, Pitson SM, Bonder C, Pébay A. Roles of lysophosphatidic acid and sphingosine-1-phosphate in stem cell biology. Prog Lipid Res 2018; 72:42-54. [PMID: 30196008 DOI: 10.1016/j.plipres.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Stem cells are unique in their ability to self-renew and differentiate into various cell types. Because of these features, stem cells are key to the formation of organisms and play fundamental roles in tissue regeneration and repair. Mechanisms controlling their fate are thus fundamental to the development and homeostasis of tissues and organs. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive phospholipids that play a wide range of roles in multiple cell types, during developmental and pathophysiological events. Considerable evidence now demonstrates the potent roles of LPA and S1P in the biology of pluripotent and adult stem cells, from maintenance to repair. Here we review their roles for each main category of stem cells and explore how those effects impact development and physiopathology.
Collapse
Affiliation(s)
- Grace E Lidgerwood
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Claudine Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
19
|
Cacciaguerra L, Pagani E, Mesaros S, Dackovic J, Dujmovic-Basuroski I, Drulovic J, Valsasina P, Filippi M, Rocca MA. Dynamic volumetric changes of hippocampal subfields in clinically isolated syndrome patients: A 2-year MRI study. Mult Scler 2018; 25:1232-1242. [DOI: 10.1177/1352458518787347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background:Different subregional patterns of hippocampal involvement have been observed in diverse multiple sclerosis (MS) phenotypes.Objective:To evaluate the occurrence of regional hippocampal variations in clinically isolated syndrome (CIS) patients, their relationships with focal white matter (WM) lesions, and their prognostic implications.Methods:Brain dual-echo and three-dimensional (3D) T1-weighted scans were acquired from 14 healthy controls and 36 CIS patients within 2 months from clinical onset and after 3, 12, and 24 months. Radial distance distribution was assessed using 3D parametric surface mesh models. A cognitive screening was also performed.Results:Patients showed clusters of reduced radial distance in the Cornu Ammonis 1 from month 3, progressively extending to the subiculum, negatively correlated with ipsilateral T2 and T1 lesion volume. Increased radial distance appeared in the right dentate gyrus after 3 ( p < 0.05), 12, and 24 ( p < 0.001) months, and in the left one after 3 and 24 months ( p < 0.001), positively correlated with lesional measures. Hippocampal volume variations were more pronounced in patients converting to MS after 24 months and did not correlate with cognitive performance.Conclusion:Regional hippocampal changes occur in CIS, are more pronounced in patients converting to MS, and are modulated by focal WM lesions.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Sharlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Dackovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
20
|
Garcia-Martinez V, Gimenez-Molina Y, Villanueva J, Darios FD, Davletov B, Gutiérrez LM. Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Lett 2018; 592:3493-3503. [PMID: 29962039 PMCID: PMC6282582 DOI: 10.1002/1873-3468.13178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/27/2018] [Indexed: 01/22/2023]
Abstract
Membrane fusion is a key event in exocytosis of neurotransmitters and hormones stored in intracellular vesicles. In this process, soluble N‐ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins are essential components of the exocytotic molecular machinery, while lipids have been seen traditionally as structural elements. However, the so‐called signalling lipids, such as sphingosine and arachidonic acid, interact with SNAREs and directly modulate the frequency and mode of fusion events. Interestingly, recent work has proved that the sphingosine analogue FTY‐720, used in the treatment of multiple sclerosis, mimics the effects of signalling lipids. In the present Review, we discuss recent investigations suggesting that endogenous signalling lipids and synthetic analogues can modulate important physiological aspects of secretion, such as quantal release, vesicle recruitment into active sites, vesicle transport and even organelle fusion in the cytosol. Therefore, these compounds are far from being merely structural components of cellular membranes.
Collapse
Affiliation(s)
- Virginia Garcia-Martinez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - José Villanueva
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - Frederic D Darios
- Inserm, U1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Paris, France
| | - Bazbek Davletov
- Department of Biomedical Sciences, University of Sheffield, UK
| | - Luis M Gutiérrez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
21
|
Saleem M, Herrmann N, Dinoff A, Mielke MM, Oh PI, Shammi P, Cao X, Venkata SLV, Haughey NJ, Lanctôt KL. A Lipidomics Approach to Assess the Association Between Plasma Sphingolipids and Verbal Memory Performance in Coronary Artery Disease Patients Undertaking Cardiac Rehabilitation: A C18:0 Signature for Cognitive Response to Exercise. J Alzheimers Dis 2018; 60:829-841. [PMID: 28598843 DOI: 10.3233/jad-161292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early subtle deficits in verbal memory, which may indicate early neural risk, are common in patients with coronary artery disease (CAD). While exercise can improve cognition, cognitive response to exercise is heterogeneous. Sphingolipids have been associated with the development and progression of CAD, and impairments in sphingolipid metabolism may play roles in neurodegeneration and in the neural adaptation response to exercise. OBJECTIVE In this study, change in plasma concentrations of sphingolipids was assessed in relation to change in verbal memory performance and in other cognitive domains among CAD subjects undertaking a 6-month cardiac rehabilitation (CR) program. METHODS Patients with CAD (n = 120, mean age = 64±6 y, 84% male, years of education = 16±3) underwent CR with neuropsychological assessments and blood collected at baseline, 3-, and 6-months. Z-scores based on age, gender, and education were combined for verbal memory, visuospatial memory, processing speed, executive function, and global cognition tasks to calculate cognitive domain Z-scores. Plasma sphingolipid concentrations were measured from fasting blood samples using high performance liquid chromatography coupled electrospray ionization tandem mass spectrometry (LC/MS/MS). Mixed models were used to identify sphingolipids significantly associated with performance in verbal memory and other cognitive domains, adjusting for potential confounders. RESULTS A decrease in ceramide C18:0 concentration was significantly associated with improvement in verbal memory performance (b[SE] = -0.51 [0.25], p = 0.04), visuospatial memory (b[SE] = -0.44 [0.22], p = 0.05), processing speed (b[SE] = -0.89 [0.32], p = 0.007), and global cognition (b[SE] = -1.47 [0.59], p = 0.01) over 6 months of CR. CONCLUSIONS Plasma ceramide C18:0 concentrations may be a sensitive marker of cognitive response to exercise in patients with CAD.
Collapse
Affiliation(s)
- Mahwesh Saleem
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Adam Dinoff
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Michelle M Mielke
- Departments of Neurology and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Paul I Oh
- Division of Clinical Pharmacology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Prathiba Shammi
- Neuropsychology, Sunnybrook HealthSciences Centre, Toronto, ON, Canada
| | - Xingshan Cao
- Evaluative Clinical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Toronto Rehabilitation Institute, Toronto, ON, Canada
| |
Collapse
|
22
|
Lu H, Cheng G, Hong F, Zhang L, Hu Y, Feng L. A Novel 2-Phenylamino-Quinazoline-Based Compound Expands the Neural Stem Cell Pool and Promotes the Hippocampal Neurogenesis and the Cognitive Ability of Adult Mice. Stem Cells 2018; 36:1273-1285. [PMID: 29726088 DOI: 10.1002/stem.2843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
Abstract
The adult neurogenesis occurs throughout the life of the mammalian hippocampus and is found to be essential for learning and memory. Identifying new ways to manipulate the number of neural stem cells (NSCs) and enhance endogenous neurogenesis in adults is very important. Here we found that a novel compound, N2-(4-isopropylphenyl)-5-(3-methoxyphenoxy)quinazoline-2,4-diamine (code-named Yhhu-3792), enhanced the self-renewal capability of NSCs in vitro and in vivo. In vitro, Yhhu-3792 increased the ratio of 5-Bromo-2-deoxyuridine+ /4'-6-diamidino-2-phenylindole+ embryonic NSCs and accelerated the growth of neurospheres significantly. We demonstrated that Yhhu-3792 activated Notch signaling pathway and promoted the expression of Notch target genes, Hes3 and Hes5. And the Notch signaling inhibitor DAPT could inhibit its function. Thus, we concluded Yhhu-3792 increased the number of embryonic NSCs via activating the Notch signaling pathway. We measured the effect of Yhhu-3792 on epidermal growth factor receptor signaling, which demonstrated Yhhu-3792 act via a different mechanism with the quinazoline parent chemical group. In the eight-week-old male C57BL/6 mice, chronic Yhhu-3792 administration expanded the NSCs pool and promoted endogenous neurogenesis in the hippocampal dentate gyrus (DG). It also increased the spatial and episodic memory abilities of mice, when evaluated with the Morris water maze and Fear conditioning tests. In conclusion, Yhhu-3792 could be a novel drug candidate to promote the self-renew of NSCs and adult neurogenesis. And it may have therapeutic potential in the impairment of learning and memory associated DG dysfunction. Stem Cells 2018;36:1273-1285.
Collapse
Affiliation(s)
- Hui Lu
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China.,State Key of Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai, People's Republic of China
| | - Feng Hong
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Youhong Hu
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.,State Key of Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai, People's Republic of China
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Yang T, Britt JK, Cintrón-Pérez CJ, Vázquez-Rosa E, Tobin KV, Stalker G, Hardie J, Taugher RJ, Wemmie J, Pieper AA, Lee A. Ca 2+-Binding Protein 1 Regulates Hippocampal-dependent Memory and Synaptic Plasticity. Neuroscience 2018; 380:90-102. [PMID: 29660444 DOI: 10.1016/j.neuroscience.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022]
Abstract
Ca2+-binding protein 1 (CaBP1) is a Ca2+-sensing protein similar to calmodulin that potently regulates voltage-gated Ca2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). By western blot, the largest CaBP1 splice variant, caldendrin, was detected in hippocampal lysates from wild-type (WT) but not C-KO mice. Compared to WT mice, C-KO mice exhibited mild deficits in spatial learning and memory in both the Barnes maze and in Morris water maze reversal learning. In contextual but not cued fear-conditioning assays, C-KO mice showed greater freezing responses than WT mice. In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories.
Collapse
Affiliation(s)
- Tian Yang
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Jeremiah K Britt
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Coral J Cintrón-Pérez
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Edwin Vázquez-Rosa
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin V Tobin
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Grant Stalker
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Jason Hardie
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Rebecca J Taugher
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - John Wemmie
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew A Pieper
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Free Radical, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Radiation Oncology Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Veterans Affairs, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Pappajohn Biomedical Institute and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Cipriani R, Chara JC, Rodríguez-Antigüedad A, Matute C. Effects of FTY720 on brain neurogenic niches in vitro and after kainic acid-induced injury. J Neuroinflammation 2017; 14:147. [PMID: 28738875 PMCID: PMC5525223 DOI: 10.1186/s12974-017-0922-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/14/2017] [Indexed: 01/28/2023] Open
Abstract
Background FTY720 (fingolimod, Gilenya™) is an oral, blood-brain barrier (BBB)-passing drug approved as immunomodulatory treatment for relapsing-remitting form of the multiple sclerosis (MS). In addition, FTY720 exerts several effects in the central nervous system (CNS), ranging from neuroprotection to reduction of neuroinflammation. However, the neurogenic and oligodendrogenic potential of FTY720 has been poorly investigated. In this study, we assessed the effect of FTY720 on the production of new neurons and oligodendrocytes from neural stem/precursor cells both in vitro and in vivo. Methods Neural stem cells (NSCs) derived from the young rat subventricular zone (SVZ) were exposed to FTY720 (10, 100 nM), and their differentiation into neurons and oligodendrocytes was measured using immunofluorescence for anti-β-III tubulin or CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase) as markers of mature neurons or oligodendrocytes, respectively. In addition, intracerebroventricular (icv) administration of kainic acid (KA; 0.5 μg/2 μl) in Sprague-Dawley rats was used as an in vivo model of neuronal death and inflammation. FTY720 was applied icv (1 μg/2 μl), together with KA, plus intraperitoneally (ip; 1 mg/kg) 24 h before, and daily, until sacrifice 8 days after KA injection. To visualize cell proliferation in the hippocampus and in white matter regions, rats were administered 5-bromo-2-deoxyuridine (BrdU) 100 mg/kg, ip injected every 2 days. Immunohistochemical analyses were performed on rat brain slices to measure the production of new neuronal precursors (doublecortin/DCX+ cells) and new oligodendrocytes precursors (proteoglycan/NG2+ cells). Results In this study, we observed that FTY720 increased postnatal NSCs differentiation into both neurons and oligodendrocytes in vitro. In turn, in adult animals, FTY720 enhanced the percentage of BrdU+ cells coexpressing DCX marker, both in basal (FTY720 alone) and in neurodegenerative (FTY720 + KA) conditions. However, FTY720 had only a partial effect on proliferation and differentiation of oligodendrocyte progenitor cell (OPC) population in vivo. Conclusions FTY720 promotes neurogenesis and oligodendrogenesis in vitro under basal conditions. In addition, it increases the generation of neuroblasts and oligodendrocytes after excitotoxic brain injury. This suggests that FTY720 has the potential to activate the neurogenic niche and thus favour tissue repair after lesion. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0922-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raffaela Cipriani
- Centro de Investigaciones Biomédicas en Red (CIBERNED), Achucarro Basque Center for Neuroscience and Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), E-48940, Leioa, Spain.
| | - Juan Carlos Chara
- Centro de Investigaciones Biomédicas en Red (CIBERNED), Achucarro Basque Center for Neuroscience and Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), E-48940, Leioa, Spain
| | | | - Carlos Matute
- Centro de Investigaciones Biomédicas en Red (CIBERNED), Achucarro Basque Center for Neuroscience and Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), E-48940, Leioa, Spain
| |
Collapse
|
25
|
Newton J, Hait NC, Maceyka M, Colaco A, Maczis M, Wassif CA, Cougnoux A, Porter FD, Milstien S, Platt N, Platt FM, Spiegel S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. FASEB J 2017; 31:1719-1730. [PMID: 28082351 DOI: 10.1096/fj.201601041r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/03/2017] [Indexed: 11/11/2022]
Abstract
Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2, and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease.-Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., Cougnoux, A., Porter, F. D., Milstien, S., Platt, N., Platt, F. M., Spiegel, S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts.
Collapse
Affiliation(s)
- Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Nitai C Hait
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Alexandria Colaco
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| | - Melissa Maczis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Nicholas Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA;
| |
Collapse
|
26
|
Effects of FTY720 (Fingolimod) on Proliferation, Differentiation, and Migration of Brain-Derived Neural Stem Cells. Stem Cells Int 2016; 2016:9671732. [PMID: 27829841 PMCID: PMC5088305 DOI: 10.1155/2016/9671732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022] Open
Abstract
Insufficient proliferation, differentiation, and migration are the main pitfalls of neural stem cells (NSCs) in reparative therapeutics for the central nervous system (CNS) diseases. The potent lipid mediator sphingosine-1-phosphate (S1P) regulates cells' biological behavior broadly in the CNS. However, the effects of activating S1P on NSCs are not quite clear. In the current study, FTY720 (Fingolimod), an analog of S1P, was employed to induce the proliferation, differentiation, and migration of cultured brain-derived NSCs. The results indicated that proliferation and migration ability of NSCs were promoted by FTY720. Though we observed no obvious neuron prefers differentiation of NSCs, there were more protoplasmic astrocytes developed in the presence of certain concentration of FTY720. This work gives more comprehensive understanding of how FTY720 affects NSCs.
Collapse
|
27
|
Sun Y, Hong F, Zhang L, Feng L. The sphingosine-1-phosphate analogue, FTY-720, promotes the proliferation of embryonic neural stem cells, enhances hippocampal neurogenesis and learning and memory abilities in adult mice. Br J Pharmacol 2016; 173:2793-807. [PMID: 27429358 DOI: 10.1111/bph.13557] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Fingolimod (FTY-720) is the first oral therapeutic drug approved for the relapsing-remitting forms of multiple sclerosis. Neural stem cells (NSCs) are capable of continuous self-renewal and differentiation. The dentate gyrus of the hippocampus in the adult mammalian brain contains a population of NSCs and is one of the regions where neurogenesis takes place. FTY-720 has been shown to have neuroprotective effects in several model systems, so we investigated the direct effects of FTY-720 on NSCs and adult neurogenesis. EXPERIMENTAL APPROACHES We assessed the effects of FTY-720 on the proliferation and differentiation of cultured embryonic hippocampal NSCs using the 5-bromo-2-deoxyuridine incorporation assay, the neurosphere formation assay and western blot analysis. Receptor selective agonists and antagonists were used to identify the mechanisms involved. Neurogenesis in the hippocampus of C57BL/6 mice was also assessed by immunohistochemistry. The Morris water maze and fear conditioning tests were used to detect the learning and memory abilities of mice. KEY RESULTS FTY-720 promoted the proliferation of embryonic hippocampal NSCs probably via the activation of ERK signalling, Gi/o proteins and S1P1 receptors. However, FTY-720 did not affect the differentiation of cultured hippocampal NSCs. In vivo, chronic treatment with FTY-720 promoted hippocampal neurogenesis in adult C57BL/6 mice and enhanced their learning and memory abilities. CONCLUSIONS AND IMPLICATIONS Our results suggest a new target for the activation of NSCs and provide an insight into the therapeutic effects of FTY-720 in neuropsychiatric disorders, neurodegenerative diseases and age-related cognitive decline where hippocampal neurogenesis is compromised.
Collapse
Affiliation(s)
- Yili Sun
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Feng Hong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|