1
|
Kooijmans ECM, Hoogendijk EO, Drapała N, Antonenko O, Burchell GL, Barańska I, Pokladníková J, Szczerbińska K, Fialová D, van Hout HPJ, Joling KJ. Defining and Categorizing Nonpharmacologic Interventions in the Older Population: A Systematic Review. J Am Med Dir Assoc 2024; 26:105306. [PMID: 39424279 DOI: 10.1016/j.jamda.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Nonpharmacologic interventions (NPIs) constitute an important part of treatment for older adults, cover a broad and diverse range of interventions, and have advantages over pharmacologic interventions (eg, limited adverse side effects). However, an unambiguous definition of NPIs is still lacking. Defining NPIs may facilitate research on this topic and enhance comparability of results between studies, and might help to face the challenges of recognition, acceptation, funding, and implementation. Therefore, the aim of this review was to provide an overview and comparison of the definitions of NPIs used in the current literature on older adults. DESIGN A systematic review was performed to provide an overview of the definitions of NPIs that are used in the current literature on older populations and to organize the characteristics involved in the definitions. SETTING AND PARTICIPANTS People ≥60 years of age were included, not limited to a specific setting. METHODS A systematic search was performed in the following 5 databases: PubMed, Embase, Clarivate Analytics/Web of Science Core Collection, Cumulative Index to Nursing and Allied Health Literature, and Wiley/Cochrane Library. The time frame within the databases was from inception to December 4, 2023. Review articles, editorials and consensus papers were included. RESULTS We included 28 articles. We organized the definitions of NPI according to 4 different aspects: types of interventions involved, target population, goals the interventions addressed, and requirements of the interventions. Definitions in the current literature can generally be divided into 2 groups: NPIs described as not involving medication, and more elaborated multidomain definitions. Based on the results, we formulated criteria for types of interventions that can be considered an NPI. CONCLUSIONS AND IMPLICATIONS Using current descriptions and characteristics, elements for a new definition for NPIs were proposed. To improve research in this field, consensus needs to be reached regarding elements covered by a definition of NPIs.
Collapse
Affiliation(s)
- Eline C M Kooijmans
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands.
| | - Emiel O Hoogendijk
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands; Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Natalia Drapała
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Olena Antonenko
- Department of Geriatrics and Gerontology, 1st Faculty of Medicine in Prague, Charles University, Czech Republic
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ilona Barańska
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Jitka Pokladníková
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králová, Charles University, Hradec Králové, Czech Republic
| | - Katarzyna Szczerbińska
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Daniela Fialová
- Department of Geriatrics and Gerontology, 1st Faculty of Medicine in Prague, Charles University, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králová, Charles University, Hradec Králové, Czech Republic
| | - Hein P J van Hout
- Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Karlijn J Joling
- Aging & Later Life, Amsterdam Public Health, Amsterdam, The Netherlands; Department of Medicine for Older People, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Farhan M. Revisiting the antioxidant-prooxidant conundrum in cancer research. Med Oncol 2024; 41:179. [PMID: 38896384 DOI: 10.1007/s12032-024-02386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/19/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
- Department of Basic Sciences, Preparatory Year, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| |
Collapse
|
3
|
Chavda VP, Chaudhari AZ, Balar PC, Gholap A, Vora LK. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother Res 2024; 38:3060-3079. [PMID: 38602108 DOI: 10.1002/ptr.8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Amit Z Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Amol Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | | |
Collapse
|
4
|
Mohammadi S, Ashtary-Larky D, Asbaghi O, Farrokhi V, Jadidi Y, Mofidi F, Mohammadian M, Afrisham R. Effects of silymarin supplementation on liver and kidney functions: A systematic review and dose-response meta-analysis. Phytother Res 2024; 38:2572-2593. [PMID: 38475999 DOI: 10.1002/ptr.8173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
It is suggested that supplementation with silymarin (SIL) has beneficial impacts on kidney and liver functions. This systematic review and dose-response meta-analysis assessed the impact of SIL administration on certain hepatic, renal, and oxidative stress markers. A systematic search was conducted in various databases to identify relevant trials published until January 2023. Randomized controlled trials (RCTs) that evaluated the effects of SIL on kidney and liver markers were included. A random-effects model was used for the analysis and 41 RCTs were included. The pooled results indicated that SIL supplementation led to a significant reduction in serum levels of alkaline phosphatase, alanine transaminase, creatinine, and aspartate aminotransferase, along with a substantial elevation in serum glutathione in the SIL-treated group compared to their untreated counterparts. In addition, there was a nonsignificant decrease in serum levels of gamma-glutamyl transferase, malondialdehyde (MDA), total bilirubin, albumin (Alb), total antioxidant capacity, and blood urea nitrogen. Sub-group analyses revealed a considerable decline in MDA and Alb serum values among SIL-treated participants with liver disease in trials with a longer duration (≥12 weeks). These findings suggest that SIL may ameliorate certain liver markers with potential hepatoprotective effects, specifically with long-term and high-dose supplementation. However, its nephroprotective effects and impact on oxidative stress markers were not observed. Additional high-quality RCTs with longer durations are required to determine the clinical efficacy of SIL supplementation on renal and oxidative stress markers.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mohammadian
- Department of Exercise Physiology, Islamic Azad University of Ahvaz, Ahvaz, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mohammadi S, Asbaghi O, Afrisham R, Farrokhi V, Jadidi Y, Mofidi F, Ashtary-Larky D. Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose-Response Meta-Analysis. Antioxidants (Basel) 2024; 13:390. [PMID: 38671838 PMCID: PMC11047742 DOI: 10.3390/antiox13040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
It has been suggested that silymarin (SIL) supplementation has positive effects on cardiovascular health and reduces the risk of cardiometabolic syndrome (CMS). This systematic review and dose-response meta-analysis assessed the impacts of SIL administration on cardiovascular risk factors. A systematic search of multiple databases was performed to identify eligible controlled trials published up to January 2023. The analysis used a random-effects model and included 33 trials with 1943 participants. It was revealed that SIL supplementation led to a notable reduction in serum levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -21.68 mg/dL, 95% CI: -31.37, -11.99; p < 0.001), diastolic blood pressure (DBP) (WMD: -1.25 mmHg; 95% CI: -2.25, -0.26; p = 0.013), total cholesterol (TC) (WMD: -13.97 mg/dL, 95% CI: -23.09, -4.85; p = 0.003), triglycerides (TG) (WMD: -26.22 mg/dL, 95% CI: -40.32, -12.12; p < 0.001), fasting insulin (WMD: -3.76 mU/mL, 95% CI: -4.80, -2.72; p < 0.001), low-density lipoprotein (LDL) (WMD: -17.13 mg/dL, 95% CI: -25.63, -8.63; p < 0.001), and hemoglobin A1C (HbA1c) (WMD: -0.85%, 95% CI: -1.27, -0.43; p < 0.001) in the SIL-treated groups compared to their untreated counterparts. In addition, there were no substantial differences in body mass index (BMI), systolic blood pressure (SBP), C-reactive protein (CRP), body weight, and high-density lipoprotein (HDL) between the two groups. These outcomes suggest that SIL consumption reduces certain CMS risk factors and has favorable impacts on lipid and glycemic profiles with potential hypotensive effects. These findings should be supported by additional trials with larger sample sizes and longer durations.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| |
Collapse
|
6
|
Bansal K, Sundram S, Malviya R. Herbal Components Inspiring Current Lifestyle Disease Treatment: Role of Nutraceuticals. Curr Drug Res Rev 2024; 16:111-127. [PMID: 37183457 DOI: 10.2174/2589977515666230512142020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Nutraceuticals are the foods that are used to prevent and cure diseases. Food and nutrients are essential for the body's normal function and aid in the maintenance of an individual's health and prevent various diseases. Nutraceuticals are medicinal foods that aid in the maintenance of health, the enhancement of immunity, and the prevention and treatment of specific diseases. The markets of nutraceuticals are one of the fastest-growing industry segments. The prime reason for this accelerated market growth lies in the fact that nutraceuticals are low cost, can prevent diseases to occur, hence, can save the health care cost, have more nutritional value, and many others. Nutraceuticals can be classified on different foundations based on what they promise, natural sources, and nutraceutical food available in the market. This article will discuss those classifications in detail along with the role of nutraceuticals in lifestyle diseases, regulations, market trends, and prospects of nutraceuticals. The article will also highlight the concern areas which play as the limiting factor in the nutraceuticals industry growth like lack of quality control, lack of data on its working, and many other things.
Collapse
Affiliation(s)
- Khushboo Bansal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Buddha Nagar, U.P., India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Buddha Nagar, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Buddha Nagar, U.P., India
| |
Collapse
|
7
|
Eleiwa NZ, El-Shabrawi AA, Ibrahim D, Abdelwarith AA, Younis EM, Davies SJ, Metwally MMM, Abu-Zeid EH. Dietary Curcumin Modulating Effect on Performance, Antioxidant Status, and Immune-Related Response of Broiler Chickens Exposed to Imidacloprid Insecticide. Animals (Basel) 2023; 13:3650. [PMID: 38067001 PMCID: PMC10705146 DOI: 10.3390/ani13233650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Birds appear to be especially vulnerable to adverse impacts from insecticides. This is especially true for imidacloprid (IMI), which is considered the most toxic to avian species. Recently, prospective studies aimed at including natural alternative products to alleviate the toxic impact that comes from insecticides have been increased. Focusing on herbal growth promoters and antioxidative medicament for the poultry industry, this ongoing experiment was conducted to examine the curcumin role (CUR) in mitigating IMI-prompted detrimental effects on broilers' performance, immunity, and antioxidant status. A total number of one hundred and fifty commercial meat-type Ross 308 broilers chicks (one-day-old) were randomly allocated into equal five groups (30 chicks/group and 10 birds/replicate). The first group (C) was the control; the second group (CUR) was fed a diet containing CUR at the level of 450 mg/kg; the third group (IMI) was fed control diet for 14 days and then was fed a diet containing IMI at the level of 50 mg/kg; the fourth group (CUR+IMI co-treated) was fed a diet containing CUR+IMI; and the fifth group (CUR+IMI pro/co-treated) was fed a diet containing CUR for 14 days as protective and then a diet containing CUR+IMI for the rest of the trial. CUR supplementation either in the (CUR pro/co-treated) or (CUR co-treated) groups significantly (p < 0.05) improved final body weight and total body weight gain while decreasing the total feed intake and feed conversion ratio when compared to the IMI-exposed and non-treated birds. CUR induced a significant (p < 0.05) enhancement in hematological indices, phagocytosis %, phagocytic index, intracellular killing capacity, total proteins, globulin, liver function enzymes, lysozyme activity, and immunoglobulin-G levels compared to IMI-exposed and non-treated birds. In addition, dietary supplementation of CUR significantly (p < 0.05) modulated oxidative stress-related biomarkers in splenic tissues (total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase) and decreased malondialdehyde levels (p < 0.05) when compared to IMI-exposed and non-treated birds. CUR significantly down-regulated mRNA levels expression of IL-1β, TNF-α, and TLR4 and up-regulated IL-10 mRNA expression levels in spleens of birds when compared to those exposed to IMI-and non-treated. Finally, our results provided new insight into IMI-induced immuno-toxicity in broiler chickens. Furthermore, for the first time, our study informed that CUR can cause an in vivo protective effect against IMI toxicity, principally as a protective and/or as concurrent supplementation during the exposure to IMI toxicity.
Collapse
Affiliation(s)
- Naglaa Z. Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (N.Z.E.); (A.A.E.-S.)
| | - Ahmed A. El-Shabrawi
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (N.Z.E.); (A.A.E.-S.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland;
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt;
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ehsan H. Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Annaji M, Mita N, Heard J, Kang X, Poudel I, Fasina O, Baskaran P, Boddu SHS, Tiwari AK, Chen P, Lyman CC, Babu RJ. 3D-Printed Capsaicin-Loaded Injectable Implants for Targeted Delivery in Obese Patients. AAPS PharmSciTech 2023; 24:200. [PMID: 37783858 DOI: 10.1208/s12249-023-02647-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - Jessica Heard
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Oladiran Fasina
- Department of Biosystems Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Padmamalini Baskaran
- College of Pharmacy, Howard University, Washington, District of Columbia, 20059, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio, 43614, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Candace C Lyman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA.
| |
Collapse
|
9
|
Nile A, Shin J, Shin J, Park GS, Lee S, Lee JH, Lee KW, Kim BG, Han SG, Saini RK, Oh JW. Cinnamaldehyde-Rich Cinnamon Extract Induces Cell Death in Colon Cancer Cell Lines HCT 116 and HT-29. Int J Mol Sci 2023; 24:ijms24098191. [PMID: 37175897 PMCID: PMC10178958 DOI: 10.3390/ijms24098191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Cinnamon is a natural spice with a wide range of pharmacological functions, including anti-microbial, antioxidant, and anti-tumor activities. The aim of this study is to investigate the effects of cinnamaldehyde-rich cinnamon extract (CRCE) on the colorectal cancer cell lines HCT 116 and HT-29. The gas chromatography mass spectrometry analysis of a lipophilic extract of cinnamon revealed the dominance of trans-cinnamaldehyde. Cells treated with CRCE (10-60 µg/mL) showed significantly decreased cell viability in a time- and dose-dependent manner. We also observed that cell proliferation and migration capacity were inhibited in CRCE-treated cells. In addition, a remarkable increase in the number of sub-G1-phase cells was observed with arrest at the G2 phase by CRCE treatment. CRCE also induced mitochondrial stress, and finally, CRCE treatment resulted in activation of apoptotic proteins Caspase-3, -9, and PARP and decreased levels of mu-2-related death-inducing gene protein expression with BH3-interacting domain death agonist (BID) activation.
Collapse
Affiliation(s)
- Arti Nile
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea
| | - Jisoo Shin
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea
| | - Gyun Seok Park
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea
| | - Suhyun Lee
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Beob Gyun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, 120 Neungdong-ro, Gwangjn-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Silymarin for treatment of adults with nonalcoholic fatty liver disease. Cochrane Database Syst Rev 2023; 2023:CD015524. [PMCID: PMC10074766 DOI: 10.1002/14651858.cd015524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of silymarin in adults with nonalcoholic fatty liver disease (NAFLD).
Collapse
|
11
|
ŞEN A. Complementary medicines used in ulcerative colitis and unintended interactions with cytochrome P450-dependent drug-metabolizing enzymes. Turk J Med Sci 2022; 52:1425-1447. [PMID: 36422483 PMCID: PMC10395683 DOI: 10.55730/1300-0144.5482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/19/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disease with multiple genetic and a variety of environmental risk factors. Although current drugs significantly aid in controlling the disease, many people have led to the application of complementary therapies due to the common belief that they are natural and safe, as well as due to the consideration of the side effect of current drugs. Curcumin, cannabinoids, wheatgrass, Boswellia, wormwood and Aloe vera are among the most commonly used complementary medicines in UC. However, these treatments may have adverse and toxic effects due to unintended interactions with drugs or drug-metabolizing enzymes such as cytochrome P450s; thus, being ignorant of these interactions might cause deleterious effects with severe consequences. In addition, the lack of complete and controlled long-term studies with the use of these complementary medicines regarding drug metabolism pose additional risk and unsafety. Thus, this review aims to give an overview of the potential interactions of drug-metabolizing enzymes with the complementary botanical medicines used in UC, drawing attention to possible adverse effects.
Collapse
Affiliation(s)
- Alaattin ŞEN
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gül University, Kayseri,
Turkey
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli,
Turkey
| |
Collapse
|
12
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
13
|
Shivanand P, Arbie NF, Krishnamoorthy S, Ahmad N. Agarwood-The Fragrant Molecules of a Wounded Tree. Molecules 2022; 27:3386. [PMID: 35684324 PMCID: PMC9181942 DOI: 10.3390/molecules27113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Agarwood, popularly known as oudh or gaharu, is a fragrant resinous wood of high commercial value, traded worldwide and primarily used for its distinctive fragrance in incense, perfumes, and medicine. This fragrant wood is created when Aquilaria trees are wounded and infected by fungi, producing resin as a defense mechanism. The depletion of natural agarwood caused by overharvesting amidst increasing demand has caused this fragrant defensive resin of endangered Aquilaria to become a rare and valuable commodity. Given that instances of natural infection are quite low, artificial induction, including biological inoculation, is being conducted to induce agarwood formation. A long-term investigation could unravel insights contributing toward Aquilaria being sustainably cultivated. This review will look at the different methods of induction, including physical, chemical, and biological, and compare the production, yield, and quality of such treatments with naturally formed agarwood. Pharmaceutical properties and medicinal benefits of fragrance-associated compounds such as chromones and terpenoids are also discussed.
Collapse
Affiliation(s)
- Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei; (N.F.A.); (N.A.)
| | - Nurul Fadhila Arbie
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei; (N.F.A.); (N.A.)
| | - Sarayu Krishnamoorthy
- Department of Civil Engineering, Environmental Water Resources Engineering Division, Indian Institute of Technology Madras, Chennai 600 036, India;
| | - Norhayati Ahmad
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei; (N.F.A.); (N.A.)
- Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Tunku Link, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
14
|
Nutraceuticals and Diet Supplements in Crohn's Disease: A General Overview of the Most Promising Approaches in the Clinic. Foods 2022; 11:foods11071044. [PMID: 35407131 PMCID: PMC8998137 DOI: 10.3390/foods11071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory gastrointestinal disorder requiring lifelong medications. The currently approved drugs for CD are associated with relevant side effects and several studies suggest an increased use of nutraceuticals among CD patients, seeking for what is perceived as a more "natural" approach in controlling this highly morbid condition. Nutraceuticals are foods or foods' components with beneficial health properties that could aid in CD treatment for their anti-inflammatory, analgesic and immunoregulatory activities that come along with safety, high tolerability, easy availability and affordability. Depending on their biological effect, nutraceuticals' support could be employed in different subsets of CD patients, both those with active disease, as adjunctive immunomodulatory therapies, and/or in quiescent disease to provide symptomatic relief in patients with residual functional symptoms. Despite the increasing interest of the general public, both limited research and lack of education from healthcare professionals regarding their real clinical effectiveness account for the increasing number of patients turning to unconventional sources. Professionals should recognize their widespread use and the evidence base for or against their efficacy to properly counsel IBD patients. Overall, nutraceuticals appear to be safe complements to conventional therapies; nonetheless, little quality evidence supports a positive impact on underlying inflammatory activity.
Collapse
|
15
|
Borymska W, Zych M, Dudek S, Kaczmarczyk-Sedlak I. Silymarin from Milk Thistle Fruits Counteracts Selected Pathological Changes in the Lenses of Type 1 Diabetic Rats. Nutrients 2022; 14:1450. [PMID: 35406062 PMCID: PMC9003010 DOI: 10.3390/nu14071450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a metabolic disease affecting many tissues and organs. The main etiological factor for diabetic complications is hyperglycemia and subsequent pathologies, such as oxidative stress. One of the organs susceptible to the development of diabetic complications is the eye with all of its elements, including the lens. The aim of this study was to evaluate the effect of silymarin, an extract obtained from milk thistle fruit husks, on the oxidative stress markers in the lenses of type 1 diabetic rats. The study was performed on male rats in which type 1 diabetes was induced with 60 mg/kg streptozotocin injection. Diabetic animals were treated via an intragastric tube with silymarin at 50 and 100 mg/kg doses for four weeks. Multiple oxidative stress and polyol pathway-related parameters were measured in the lenses, and auxiliary biochemical tests in the serum were conducted. Diabetes induced severe pathological changes both in the lenses and the serum, and silymarin counteracted several of them. Nevertheless, the qualitative analyses encompassing all tested parameters indicate that silymarin slightly improved the overall state of diabetic animals. Upon the obtained results, it can be concluded that silymarin reveals a faint positive effect on the lenses in type 1 diabetic rats.
Collapse
Affiliation(s)
- Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.Z.); (S.D.); (I.K.-S.)
| | | | | | | |
Collapse
|
16
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
17
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
18
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
19
|
Quijia CR, Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Res 2021; 36:147-163. [PMID: 34559416 DOI: 10.1002/ptr.7291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.
Collapse
Affiliation(s)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
20
|
Cai J, Yan R, Shi J, Chen J, Long M, Wu W, Kuca K. Antifungal and mycotoxin detoxification ability of essential oils: A review. Phytother Res 2021; 36:62-72. [PMID: 34528300 DOI: 10.1002/ptr.7281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
With increased popular awareness of food safety and environmental protection, plant essential oil has attracted interest due to the absence of residue, its high efficiency, antioxidant, immune regulation, antibacterial, insecticidal, and other advantages. Their application in degradation and elimination of mycotoxin toxicity has attracted increasing attention. This paper reviews the structure, antibacterial activity, antibacterial mechanism, and toxic effects of essential oils. The inhibitory effects of various essential oils on different mycotoxins were studied. The research progress on the inhibitory effects of plant essential oils on fungi and mycotoxins in recent years was summarized to provide reference for the application of plant essential oils.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rong Yan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jichao Shi
- Liaoning Service Development Center, Shenyang, China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
21
|
Dhritlahre RK, Ruchika, Padwad Y, Saneja A. Self-emulsifying formulations to augment therapeutic efficacy of nutraceuticals: From concepts to clinic. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Xia T, Li J, Ren X, Liu C, Sun C. Research progress of phenolic compounds regulating IL-6 to exert antitumor effects. Phytother Res 2021; 35:6720-6734. [PMID: 34427003 DOI: 10.1002/ptr.7258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Cytokine therapy, which activates the host immune system, has become an important and novel therapeutic approach to treat various cancers. Recent studies have shown that IL-6 is an important cytokine that regulates the homeostasis in vivo. However, excessive IL-6 plays a pathological role in a variety of acute and chronic inflammatory diseases, especially in cancer. IL-6 can transmit signals through JAK/STAT, RAS /MAPK, PI3K/ Akt, NF-κB, and other pathways to promote cancer progression. Phenolic compounds can effectively regulate the level of IL-6 in tumor cells and improve the tumor microenvironment. This article focuses on the phenolic compounds through the regulation of IL-6, participate in the prevention of cancer, inhibit the proliferation of cancer cells, reduce angiogenesis, improve therapeutic efficacy, and reduce side effects and other aspects. This will help to further advance research on cytokine therapy to reduce the burden of cancer and improve patient prognosis. However, current studies are mostly limited to animal and cellular experiments, and high-quality clinical studies are needed to further determine their antitumor efficacy in humans.
Collapse
Affiliation(s)
- Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
23
|
Heidari S, Mehri S, Hosseinzadeh H. The genus Glycyrrhiza (Fabaceae family) and its active constituents as protective agents against natural or chemical toxicities. Phytother Res 2021; 35:6552-6571. [PMID: 34414608 DOI: 10.1002/ptr.7238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Licorice is the dried roots and rhizomes of various species of the genus Glycyrrhiza (Fabaceae) that have been used in folk medicine from ancient times. Many important research projects have established several beneficial effects for this medicinal herb, including antiinflammatory, antimicrobial, antiviral, antiprotozoal, antioxidant, antihyperglycemic, antihyperlipidemic, hepatoprotective, and neuroprotective. Licorice contains important bioactive components, such as glycyrrhizin (glycyrrhizic, glycyrrhizinic acid), liquiritigenin, liquiritin, and glycyrrhetinic acid. The protective effects of licorice and its main chemical components against toxins and toxicants in several organs including the brain, heart, liver, kidney, and lung have been shown. In this comprehensive review article, the protective effects of these constituents against natural, industrial, environmental, and chemical toxicities with attention on the cellular and molecular mechanism are introduced. Also, it has been revealed that this plant and its main compounds can inhibit the toxicity of different toxins by the antioxidant, antiinflammatory, and anti-apoptotic properties as well as the modulation of Inhibitor of kappaB kinase (IKK), Extracellular signal-regulated protein kinase1/2 (ERK1/2), p38, inducible nitric oxide synthase, and nuclear factor-κB (NF-κB) signaling pathways. More high-quality investigations in both experimental and clinical studies need to firmly establish the efficacy of licorice and its main constituents against toxic agents.
Collapse
Affiliation(s)
- Somaye Heidari
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Vahdat-Lasemi F, Aghaee-Bakhtiari SH, Tasbandi A, Jaafari MR, Sahebkar A. Targeting interleukin-β by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother Res 2021; 35:5596-5622. [PMID: 34390063 DOI: 10.1002/ptr.7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Inflammation is the main contributing factor to atheroma formation in atherosclerosis. Interleukin-1 beta (IL-1β) is an inflammatory mediator found in endothelial cells and resident leukocytes. Canakinumab is a selective monoclonal antibody against IL-1β which attenuates inflammation and concurrently precipitates fatal infections and sepsis. Natural products derived from medicinal plants, herbal remedy and functional foods are widely used nowadays. Experimental and clinical trial evidence supports that some natural products such as curcumin, resveratrol, and quercetin have potential effects on IL-1β suppression. In this review, we tried to document findings that used medicinal plants and plant-based natural products for treating atherosclerosis and its related diseases through the suppression of IL-1β.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
25
|
Sabbaghzadegan S, Golsorkhi H, Soltani MH, Kamalinejad M, Bahrami M, Kabir A, Dadmehr M. Potential protective effects of Aloe vera gel on cardiovascular diseases: A mini-review. Phytother Res 2021; 35:6101-6113. [PMID: 34355443 DOI: 10.1002/ptr.7219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
Cardiovascular diseases (CVDs) comprise the most prevalent causes of morbidity and mortality in both men and women worldwide. CVDs are associated with several risk factors such as hyperlipidemia, diabetes mellitus, hypertension, obesity, tobacco smoking and an unhealthy diet. Currently, in addition to the use of related pharmacological treatments in the management of CVDs, the investigation of other suitable healthcare approaches for these disorders such as the identification of herbal medicines has been considered in the scientific communities. Aloe vera (L.) Burm.f. is a perennial medicinal plant. The innermost leaf layer of this plant contains transparent gel, which is used as food. Pre-clinical studies have shown several biological activities of A. vera gel (AVG), including antidiabetic, lipid-lowering, antioxidant, antiinflammatory, hepatoprotective, and immunomodulatory effects. Other pharmacological activities of AVG such as anti-fibrotic, anti-hypertensive, and anti-atherosclerotic effects have been reported. Moreover, several clinical studies have demonstrated the ameliorating effects of AVG on some markers of CVDs risk factors. Thus, this study was conducted to review clinical trials besides in vitro and in vivo studies on the cardiac beneficial effects of AVG. However, further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
- Saeideh Sabbaghzadegan
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haide Golsorkhi
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Kamalinejad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Dadmehr
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Kumar P, Mahato DK, Kamle M, Borah R, Sharma B, Pandhi S, Tripathi V, Yadav HS, Devi S, Patil U, Xiao J, Mishra AK. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother Res 2021; 35:6010-6029. [PMID: 34237796 DOI: 10.1002/ptr.7213] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Marijuana, or Cannabis sativa L., is a common psychoactive plant used for both recreational and medicinal purposes. In many countries, cannabis-based medicines have been legalized under certain conditions because of their immense prospects in medicinal applications. With a comprehensive insight into the prospects and challenges associated with the pharmacological use and global trade of C. sativa, this mini-review focuses on the medicinal importance of the plant and its legal status worldwide; the pharmacological compounds and its therapeutic potential along with the underlying public health concerns and future perspective are herein discussed. The existence of major compounds including Δ9 -tetrahydrocannabinol (Δ9 -THC), cannabidiol, cannabinol, and cannabichromene contributes to the medicinal effects of the cannabis plant. These compounds are also involved in the treatment of various types of cancer, epilepsy, and Parkinson's disease displaying several mechanisms of action. Cannabis sativa is a plant with significant pharmacological potential. However, several aspects of the plant need an in-depth understanding of the drug mechanism and its interaction with other drugs. Only after addressing these health concerns, legalization of cannabis could be utilized to its full potential as a future medicine.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Rituraj Borah
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Sheetal Devi
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, India
| | - Umesh Patil
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | | |
Collapse
|
27
|
Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 2021; 35:5936-5960. [PMID: 34219306 DOI: 10.1002/ptr.7205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
Collapse
Affiliation(s)
- Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharvind Balan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, Alhazmi HA, Al Bratty M, Ahsan W. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35:5440-5458. [PMID: 34184327 DOI: 10.1002/ptr.7176] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
29
|
Marmitt DJ, Bitencourt S, da Silva GR, Rempel C, Goettert MI. Traditional plants with antioxidant properties in clinical trials-A systematic review. Phytother Res 2021; 35:5647-5667. [PMID: 34165846 DOI: 10.1002/ptr.7202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
There is a trend toward the use of natural substances present in plants and vegetables. In general, foods rich in antioxidants are complex matrices; therefore, understanding its absorption effects is extremely relevant to know its bioactive potential. Thus, this systematic review focused on clinical trials involving plants (or compounds) registered on the National List of Medicinal Plants of Interest to the Unified Health System (RENISUS) with antioxidant properties. Following the reporting guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyzes studies of interest indexed in the PubMed and ClinicalTrials.gov databases were analyzed. Of the 59 clinical trials found, Allium sativum and Curcuma longa are the plant species with the highest percentage of clinical research. Prevention/attenuation of oxidative stress was one of the main antioxidant mechanisms indicated in the studies. The most tested compounds of the RENISUS plants in clinical trials were curcumin and soy isoflavone. In this review, we selected studies in advanced stages that highlight plants' value in optimizing antioxidant status; however, even with high-quality studies, it is not prudent to overstate the clinical efficacy of these plants.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Shanna Bitencourt
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | | | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Márcia Inês Goettert
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| |
Collapse
|
30
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
31
|
Sirotkin AV. Effects of resveratrol on female reproduction: A review. Phytother Res 2021; 35:5502-5513. [PMID: 34101259 DOI: 10.1002/ptr.7185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
The present review summarizes the current knowledge concerning physiological effects of resveratrol (RSV) with emphasis on the RSV action on female reproductive processes. The review outlines provenance, properties, mechanisms of action, physiological and therapeutic actions of RSV on female reproduction and other physiological processes, as well as areas of possible application of R. This review is based on the search for the related full papers indexed in Medline/Pubmed, Web of Science and SCOPUS databases between the year 2000 and 2021 according to the criteria of preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews and other related guidelines. The analysis of the available information suggests that RSV has a number of properties which enable its influence on various physiological processes including female reproduction at various regulatory levels via various extra- and intracellular signalling pathways. Despite some contradictions and limitations in the available data, they indicate applicability of both stimulatory and inhibitory effects of RSV for control and influence of various reproductive and non-reproductive processes and treatment of their disorders in phytotherapy, animal production, medicine, biotechnology and assisted reproduction. To establish the clinical efficacy of RSV, further high quality studies are needed.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Dept. Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| |
Collapse
|
32
|
Jalali A, Firouzabadi N, Zarshenas MM. Pharmacogenetic-based management of depression: Role of traditional Persian medicine. Phytother Res 2021; 35:5031-5052. [PMID: 34041799 DOI: 10.1002/ptr.7134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Depression is one of the most common mental disorders worldwide. The genetic factors are linked to depression and anti-depressant outcomes. Traditional Persian medicine (TPM) manuscripts have provided various anti-depressant remedies, which may be useful in depression management. This review has studied the bioactive compounds, underlying mechanisms, and treatment outcomes of the medicinal plants traditionally mentioned effective for depression from "The storehouse of medicament" (a famous pharmacopeia of TPM) to merge those with the novel genetics science and serve new scope in depression prevention and management. This review paper has been conducted in two sections: (1) Collecting medicinal plants and their bioactive components from "The storehouse of medicament," "Physician's Desk Reference (PDR) for Herbal Medicines," and "Google scholar" database. (2) The critical key factors and genes in depression pathophysiology, prevention, and treatment were clarified. Subsequently, the association between bioactive components' underlying mechanism and depression treatment outcomes via considering polymorphisms in related genes was derived. Taken together, α-Mangostin, β-carotene, β-pinene, apigenin, caffeic acid, catechin, chlorogenic acid, citral, ellagic acid, esculetin, ferulic acid, gallic acid, gentiopicroside, hyperoside, kaempferol, limonene, linalool, lycopene, naringin, protocatechuic acid, quercetin, resveratrol, rosmarinic acid, and umbelliferone are suitable for future pharmacogenetics-based studies in the management of depression.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Barman R, Bora PK, Saikia J, Kemprai P, Saikia SP, Haldar S, Banik D. Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species. Phytother Res 2021; 35:4632-4659. [PMID: 33987899 DOI: 10.1002/ptr.7098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest species of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diarrhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic agents. Nutmegs are cultivated around the tropics for high-value commercial spice, used in global cuisine. A thorough literature survey of peer-reviewed publications, scientific online databases, authentic webpages, and regulatory guidelines found major phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavonoids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immunomodulatory, antinociceptive, anticancer, antimicrobial, antiprotozoal, antidiabetic, antidiarrhoeal activities, and toxicity through in-vitro, in-vivo studies. Human clinical trials were very few. Most of the pharmacological studies were not conducted as per current guidelines of natural products to ensure repeatability, safety, and translational use in human therapeutics. Rigorous pharmacological evaluation and randomized double-blind clinical trials are recommended to analyze the efficacy and therapeutic potential of nutmeg and wild nutmegs in anxiety, Alzheimer's disease, autism, schizophrenia, stroke, cancer, and others.
Collapse
Affiliation(s)
- Rubi Barman
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
34
|
Jadhav AK, Karuppayil SM. Andrographis paniculata (Burm. F) Wall ex Nees: Antiviral properties. Phytother Res 2021; 35:5365-5373. [PMID: 33929758 DOI: 10.1002/ptr.7145] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Andrographis paniculata is home to a rich variety of molecules especially andrographolide and its derivatives. Clinical properties of the andrographolide are multifarious and include: analgesic, antipyretic, antiretroviral, antiproliferative, antimalarial, antithrombotic, antihyperglycemic, antiurolethial, antilesihmaniasis, hepatoprotective, immune-modulatory, protective against alcohol induced toxicity and cardioproetcive activity and anticancer activity. Andrographolide, neoandrographolide, dehydroandrographolide and several natural and synthetic derivatives of it: 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide, dehydroandrographolide succinic acid monoester (DAMS), 14-ά-lipoyl andrographolide (AL-1), 14-acetyl-3,9-isopropyl-ideneandrographolide, 14-acetylandrographolide, 3,14,19-triacetylandrographolide, and 3,9-isopropyl-idene andrographolide, are shown to possess significant antiviral activity against HIV, influenza A, HBV, HCV, HPP and HSV. Studies on SARS CoV 2 is restricted to in silico molecular docking studies on viral targets and selected host target proteins. The main targets of andrographolide and its derivatives are fusion and adsorption of virus to the host cell, binding to viral receptor and co-receptor, enzymes involved in DNA/RNA/Genome replication by the virus, translation, post-translation and reverse transcription. Andrographolide as a drug is yet to reach its full therapeutic potential since this molecule shows low bioavailability. Andrographolide therapy is in need of an appropriate delivery system that may increase its bioavailability. Further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
- Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine, Centre For Interdisciplinary Research, DY Patil Education Society (Deemed to be University) Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Centre For Interdisciplinary Research, DY Patil Education Society (Deemed to be University) Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| |
Collapse
|
35
|
Santonastaso M, Mottola F, Iovine C, Colacurci N, Rocco L. Protective Effects of Curcumin on the Outcome of Cryopreservation in Human Sperm. Reprod Sci 2021; 28:2895-2905. [PMID: 33861392 PMCID: PMC8523395 DOI: 10.1007/s43032-021-00572-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Cryopreservation causes decreased sperm fertility potential due to reactive oxygen species (ROS) production and physical-chemical damage, resulting in reduced sperm viability and motility. The addition of antioxidants to freezing media could protect sperm from cryo-damage, counteracting the harmful effects of ROS. The aim of this study was to assess the effects of curcumin supplementation in freezing medium on preventing cryo-damage in human semen. Semen samples collected from fertile men were cryopreserved in freezing medium supplemented with different concentrations of curcumin (2.5, 5, 10, and 20 μM). After freezing-thawing, sperm parameters, DNA fragmentation, intracellular ROS, and glutathione peroxidase 4 (GPX4) gene expression were evaluated. Supplementation with 20 μM curcumin in freezing medium caused increases in progressive and nonprogressive motility and significant reductions in intracellular ROS and DNA fragmentation in frozen-thawed sperm cells. Following cryopreservation, GPX4 mRNA expression was significantly upregulated in thawed semen supplemented with 20 μM curcumin compared to the control. The results showed that curcumin supplementation in freezing medium was protective against human sperm parameters and sperm DNA, counteracting oxidative damage induced by the freeze-thaw process.
Collapse
Affiliation(s)
- Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Colacurci
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
36
|
Bhatia M, Bhalerao M, Cruz-Martins N, Kumar D. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytother Res 2021; 35:4913-4929. [PMID: 33837579 DOI: 10.1002/ptr.7121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Cancer is the second-leading cause of death worldwide. Till date, many such effective treatments are available, for example chemotherapy, surgery, and radiation therapy, but there are severe associated side effects, such as increased infection risk, constipation, hair loss, anaemia, among others. Thus, the need for effective therapeutic strategies and screening methodology arises. Researchers around the world are increasingly trying to discover anticancer therapies with as few side effects as possible and many are now focusing on phytochemicals, like curcumin. Curcumin is a bright yellow substance isolated from the plant rhizomes of Curcuma longa L. To this molecule a high therapeutic benefit has been underlined, being able to alter the development of cancer by different mechanisms, such as regulating multiple microRNA expression, modifying a series of signalling pathways, that is, Akt, Bcl-2, PTEN, p53, Notch, and Erbb. Another major pathway that curcumin targets is the matrix metalloproteinase (MMP) gene expression. In fact, MMPs are responsible for the degradation of the cell-extracellular matrix, which can lead to the diseased condition and many different pathways contribute to its activity, such as JAK/STAT, NF-κB, MAPK/ERK, COX-2, ROS, TGF-β, among others. In this review, we have attempted to describe the curcumin regulatory effect on different cell signalling pathways involved in the progression of different types of cancers.
Collapse
Affiliation(s)
- Muskan Bhatia
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Mihir Bhalerao
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Dileep Kumar
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
37
|
Beltrame BM, Klein-Junior LC, Schwanz M, Henriques AT. Psidium L. genus: A review on its chemical characterization, preclinical and clinical studies. Phytother Res 2021; 35:4795-4803. [PMID: 33826191 DOI: 10.1002/ptr.7112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
The Myrtaceae family is considered one of the largest known botanical families and the genus Psidium is among the most economically interesting. Psidium genus comprises approximately 112 species, and it has been extensively studied, mainly because of Psidium guavaja species. Phytochemical investigations confirmed the presence of phenolics as the main compounds, as well as the essential oils, which were also widely investigated. Pharmacological studies report analgesic, anthelminthic, acaricidal, antihiperglicemic, among other biological activities for different species. The present review covers the relevant literature until 2019 and outlines the current data on chemical composition, preclinical and clinical studies on Psidium species, as well as the main possible mechanisms of action responsible for the described activities. Therefore, it can provide a reference for pharmaceutical research and clinical application of this genus.
Collapse
Affiliation(s)
- Betina M Beltrame
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Melissa Schwanz
- Pharmacognosy Laboratory, Life Sciences Knowledge Area, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Amélia T Henriques
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
38
|
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35:4703-4726. [DOI: 10.1002/ptr.7100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Post‐graduate Program in Biotechnology Taquari Valley University – Univates Lajeado RS Brazil
| | | |
Collapse
|
39
|
Nounou MI, Eassa HA, Helal NA, AboulFotouh K, Mansoor I, Latz IK, Zheng C, Eassa HA, Mohamed D, Huynh DM, Wiss AR, Sweeney J, Oakes MT, Mikhail MM, Amine N, Kaur H, Echeverry N, Orzechowski K, Szollosi D. The safety, efficacy and pharmaceutical quality of male enhancement nutraceuticals bought online: Truth versus claim. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:232-242. [PMID: 33736960 DOI: 10.1016/j.joim.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Nutraceutical products are widely used for their claimed therapeutic benefits. However, falsified or adulterated nutraceuticals present a major health threat to consumers. This study investigates the pharmaceutical quality, safety and anti-inflammatory effects of six male enhancement nutraceuticals that claim to be 100% natural. METHODS Three batches of six male enhancement products were tested to detect the presence and levels of adulterants via high-performance liquid chromatography (HPLC). The pharmaceutical quality of the selected nutraceuticals was tested with near infrared spectroscopy (NIR) and SeDeM. The cytotoxic effects of these products on HepG2 cells were determined through cell proliferation (XTT) and lactate dehydrogenase (LDH) cytotoxicity assays. Lastly, the in vitro inflammatory effects of these products were investigated using murine J774 macrophages through cytokine release analysis. RESULTS HPLC analysis detected the presence of sildenafil citrate, a vasodilator, and the active ingredient in Viagra and Revatio, in all batches of the products we analyzed. Amount of sildenafil citrate ranged from 0.45 mg to 51.85 mg among different batches. NIR assessment showed inter- and intra-batch heterogeneity in product composition. Results of the XTT and LDH assays showed significant cytotoxic effects of the analyzed products. XTT analysis revealed that the viability of HepG2 treated with tested products varied from 27.57% to 41.43%. Interestingly, the male enhancement products also showed anti-inflammatory effects. CONCLUSION Despite their labeling as 100% natural, all products tested in this study contained levels of sildenafil citrate, which was not reported on the packaging. There was a lack of pharmaceutical uniformity among products of the same batch and across different batches. Additionally, the products we tested had cytotoxic effects. These study findings highlight the adulteration, poor quality and hazard of these nutraceuticals. Therefore, strict regulation of these products and standardization of the definition of nutraceuticals are urgently needed. Further, these falsely advertised products should be withdrawn from the market due to potential adverse effects on the health of their consumers.
Collapse
Affiliation(s)
- Mohamed Ismail Nounou
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Heba A Eassa
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, AL-Azhar University, Cairo 11651, Egypt.
| | - Nada A Helal
- Pharmaceutical Sciences Department, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843, USA
| | - Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ihab Mansoor
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Isabel K Latz
- Department of Public Health Sciences, College of Health Sciences, The University of Texas at El Paso, TX 79968, USA
| | - Cindy Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Hadeer A Eassa
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32897, Egypt
| | - Dina Mohamed
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Diana M Huynh
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Abigail R Wiss
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Jessica Sweeney
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Monica T Oakes
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Mark M Mikhail
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Nadine Amine
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Harshvir Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Natalia Echeverry
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Kamila Orzechowski
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| | - Doreen Szollosi
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, Connecticut 06103, USA
| |
Collapse
|
40
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
41
|
Saeedi M, Khezri K, Seyed Zakaryaei A, Mohammadamini H. A comprehensive review of the therapeutic potential of α-arbutin. Phytother Res 2021; 35:4136-4154. [PMID: 33724594 DOI: 10.1002/ptr.7076] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Cosmetic dermatology preparations such as bleaching agents are ingredients with skin-related biological activities for increasing and improving skin beauty. The possibility of controlling skin hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. Recently, cosmetics containing herbal and botanical ingredients have attracted many interests for consumers of cosmetic products because these preparations are found safer than other preparations with synthetic components. However, high-quality trial studies in larger samples are needed to confirm safety and clinical efficacy of phytotherapeutic agents with high therapeutic index. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside) is a bioactive hydrophilic polyphenol with two isomers including alpha-arbutin (4-hydroxyphenyl-α-glucopyranoside) and β-arbutin (4-hydroxyphenyl-β-glucopyranoside). It is used as a medicinal plant in phytopharmacy. Studies have shown that alpha-arbutin is 10 times more effective than natural arbutin. A comparison of IC50 values showed that α-arbutin (with concentration 2.0 mM) has a more potent inhibitory activity on human tyrosinase against natural arbutin (with higher concentration than 30 mM). A review of recent studies showed that arbutin could be beneficial in treatment of various diseases such as hyperpigmentation disorders, types of cancers, central nervous system disorders, osteoporosis, diabetes, etc. This study was designed to describe the therapeutic efficiencies of arbutin.
Collapse
Affiliation(s)
- Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
42
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
43
|
Johnson JB, Mani JS, Broszczak D, Prasad SS, Ekanayake CP, Strappe P, Valeris P, Naiker M. Hitting the sweet spot: A systematic review of the bioactivity and health benefits of phenolic glycosides from medicinally used plants. Phytother Res 2021; 35:3484-3508. [PMID: 33615599 DOI: 10.1002/ptr.7042] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/01/2023]
Abstract
Phenolic acid and flavonoid glycosides form a varied class of naturally occurring compounds, characterised by high polarity-resulting from the glycone moiety-and the presence of multiple phenol functionalities, which often leads to strong antioxidant activity. Phenolic glycosides, and in particular flavonoid glycosides, may possess strong bioactive properties with broad spectrum activity. This systematic literature review provides a detailed overview of 28 studies examining the biological activity of phenolic and flavonoid glycosides from plant sources, highlighting the potential of these compounds as therapeutic agents. The activity of glycosides depends upon the biological activity type, identity of the aglycone and the identity and specific location of the glycone moiety. From studies reporting the activity of both glycosides and their respective aglycones, phenolic glycosides appear to generally be a storage/reserve pool of precursors of more bioactive compounds. The glycosylated compounds are likely to be more bioavailable compared to their aglycone forms, due to the presence of the sugar moieties. Hydrolysis of the glycoside in the in vivo environment would release the free aglycone, potentiating their biological activity. However, further high-quality studies are needed to firmly establish the clinical efficacy of glycosides from many of the plant species studied.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| | - Daniel Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shirtika S Prasad
- Faculty of Science, Technology and Engineering, The University of the South Pacific, Suva, Fiji
| | - Charitha P Ekanayake
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Padraig Strappe
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia
| | - Peter Valeris
- Shimadzu Scientific Instruments (Oceania) Pty Ltd, Rydalmere, New South Wales, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| |
Collapse
|
44
|
Jurcau A. The Role of Natural Antioxidants in the Prevention of Dementia-Where Do We Stand and Future Perspectives. Nutrients 2021; 13:282. [PMID: 33498262 PMCID: PMC7909256 DOI: 10.3390/nu13020282] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Dementia, and especially Alzheimer's disease (AD), puts significant burden on global healthcare expenditure through its increasing prevalence. Research has convincingly demonstrated the implication of oxidative stress in the pathogenesis of dementia as well as of the conditions which increase the risk of developing dementia. However, drugs which target single pathways have so far failed in providing significant neuroprotection. Natural antioxidants, due to their effects in multiple pathways through which oxidative stress leads to neurodegeneration and triggers neuroinflammation, could prove valuable weapons in our fight against dementia. Although efficient in vitro and in animal models of AD, natural antioxidants in human trials have many drawbacks related to the limited bioavailability, unknown optimal dose, or proper timing of the treatment. Nonetheless, trials evaluating several of these natural compounds are ongoing, as are attempts to modify these compounds to achieve improved bioavailability.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, nr 1 Universitatii Street, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “Dr. G. Curteanu”, nr 12 Corneliu Coposu Street, 410469 Oradea, Romania
| |
Collapse
|
45
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
46
|
Mohit M, Farrokhzad A, Faraji SN, Heidarzadeh-Esfahani N, Kafeshani M. Effect of Nigella sativa L. supplementation on inflammatory and oxidative stress indicators: A systematic review and meta-analysis of controlled clinical trials. Complement Ther Med 2020; 54:102535. [PMID: 33183658 DOI: 10.1016/j.ctim.2020.102535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022] Open
Abstract
AIMS The objective of the present study was to perform a systematic review and meta-analysis on randomized controlled trials (RCTs) assessing the effects of Nigella sativa L. supplementation on the circulating inflammatory and oxidative stress markers, including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), total antioxidant capacity (TAC) and malondialdehyde (MDA). METHODS Systematic search was performed up to March 2020 using PubMed, Scopus, and ISI web of science databases. Two reviewers independently assessed study eligibility, extracted data, and evaluated methodological quality of included primary studies. Statistical heterogeneity was assessed using I-square (I2) statistic. Data were pooled by using the random-effect model and standardized mean difference (SMD) was considered as the summary effect size. RESULTS Twelve trials were identified to be suitable for our meta-analysis. The pooled results using random effects model indicated that Nigella sativa supplementation significantly reduced CRP (SMD: -0.35; 95% CI: -0.59, -0.12, P < 0.001, I2 = 10.5%) and MDA concentrations (SMD: -0.56; 95% CI: -0.98, -0.15, P < 0.001, I2 = 64.7%). Moreover, Nigella sativa supplementation increased TAC (SMD: 0.48; 95% CI: 0.09, 0.87, P = 0.01, I2 = 65.6%) levels; however, it did not affect TNF-α (SMD: -0.35; 95% CI: -0.70, 0.01, P = 0.05, I2 = 58.2%). CONCLUSION Nigella sativa supplementation is associated with improved inflammation and oxidative status. Additional prospective studies are recommended using higher supplementation doses and longer intervention period.
Collapse
Affiliation(s)
- Mohsen Mohit
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Nooreddin Faraji
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Heidarzadeh-Esfahani
- Department of Nutrition Science, School of Nutrition Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Kafeshani
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
47
|
Zabaleta ME, Forbes-Hernández TY, Simal-Gandara J, Quiles JL, Cianciosi D, Bullon B, Giampieri F, Battino M. Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Res Int 2020; 137:109623. [DOI: 10.1016/j.foodres.2020.109623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
|
48
|
Businaro R, Maggi E, Armeli F, Murray A, Laskin DL. Nutraceuticals as potential therapeutics for vesicant-induced pulmonary fibrosis. Ann N Y Acad Sci 2020; 1480:5-13. [PMID: 32725637 PMCID: PMC7936651 DOI: 10.1111/nyas.14442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Exposure to vesicants, including sulfur mustard and nitrogen mustard, causes damage to the epithelia of the respiratory tract and the lung. With time, this progresses to chronic disease, most notably, pulmonary fibrosis. The pathogenic process involves persistent inflammation and the release of cytotoxic oxidants, cytokines, chemokines, and profibrotic growth factors, which leads to the collapse of lung architecture, with fibrotic involution of the lung parenchyma. At present, there are no effective treatments available to combat this pathological process. Recently, much interest has focused on nutraceuticals, substances derived from plants, herbs, and fruits, that exert pleiotropic effects on inflammatory cells and parenchymal cells that may be useful in reducing fibrogenesis. Some promising results have been obtained with nutraceuticals in experimental animal models of inflammation-driven fibrosis. This review summarizes the current knowledge on the putative preventive/therapeutic efficacy of nutraceuticals in progressive pulmonary fibrosis, with a focus on their activity against inflammatory reactions and profibrotic cell differentiation.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
49
|
De Filippis A, Ullah H, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M. Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for their Treatment. Int J Mol Sci 2020; 21:E4929. [PMID: 32668581 PMCID: PMC7404341 DOI: 10.3390/ijms21144929] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) diseases, which include gastrointestinal reflux disease, gastric ulceration, inflammatory bowel disease, and other functional GI disorders, have become prevalent in a large part of the world population. Metabolic syndrome (MS) is cluster of disorders including obesity, hyperglycemia, hyperlipidemia, and hypertension, and is associated with high rate of morbidity and mortality. Gut dysbiosis is one of the contributing factors to the pathogenesis of both GI disorder and MS, and restoration of normal flora can provide a potential protective approach in both these conditions. Bioactive dietary components are known to play a significant role in the maintenance of health and wellness, as they have the potential to modify risk factors for a large number of serious disorders. Different classes of functional dietary components, such as dietary fibers, probiotics, prebiotics, polyunsaturated fatty acids, polyphenols, and spices, possess positive impacts on human health and can be useful as alternative treatments for GI disorders and metabolic dysregulation, as they can modify the risk factors associated with these pathologies. Their regular intake in sufficient amounts also aids in the restoration of normal intestinal flora, resulting in positive regulation of insulin signaling, metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. This review is designed to focus on the health benefits of bioactive dietary components, with the aim of preventing the development or halting the progression of GI disorders and MS through an improvement of the most important risk factors including gut dysbiosis.
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Alessandra Baldi
- TefarcoInnova, National Inter-University Consortium of Innovative Pharmaceutical Technologies—Parma, 43124 Parma, Italy;
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Ariyawan Tantipongpiradet
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
50
|
Wang X, Du S, Zhang R, Jia X, Yang T, Zhang X. Drug-drug cocrystals: Opportunities and challenges. Asian J Pharm Sci 2020; 16:307-317. [PMID: 34276820 PMCID: PMC8261079 DOI: 10.1016/j.ajps.2020.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, drug-drug cocrystal attracts more and more attention. It offers a low risk, low-cost but high reward route to new and better medicines and could improve the physiochemical and biopharmaceutical properties of a medicine by addition of a suitable therapeutically effective component without any chemical modification. Having so many advantages, to date, the reported drug-drug cocrystals are rare. Here we review the drug-drug cocrystals that reported in last decade and shed light on the opportunities and challenges for the development of drug-drug cocrystals.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Phamacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuzhang Du
- Department of Phamacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rui Zhang
- Department of Phamacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xuedong Jia
- Department of Phamacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ting Yang
- Department of Phamacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Phamacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|