1
|
McIntosh R, Lobo J, Szeto A, Hidalgo M, Kolber M. Medial prefrontal cortex connectivity with the nucleus accumbens is related to HIV serostatus, perceptions of psychological stress, and monocyte expression of TNF-a. Brain Behav Immun Health 2024; 41:100844. [PMID: 39328275 PMCID: PMC11424805 DOI: 10.1016/j.bbih.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Post-menopausal persons living with HIV (PWH) report elevated levels of psychological stress and monocyte activation compared to persons living without HIV (PWOH). Resting state functional connectivity (rsFC) of mesolimbic brain regions underpinning stress and emotion regulation are susceptible to inflammatory insult. Although psychological stress is elevated, rsFC reduced, and CD16+ monocytes overexpressed in the brains of PWH, it is unclear whether the relationships amongst these variables differ compared to PWOH. An ethnically diverse sample of postmenopausal women, 24 PWH and 30 PWOH provided self-report mood surveys and provided peripheral blood specimens to quantify LPS-stimulated CD16+/- expression of TNF-α via flow cytometric analysis. An anatomical and resting state functional MRI scan were used to derive time-series metrics of connectivity between the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAcc) as well as the amygdala. A positive association was observed between levels of perceived stress and CD16+/- TNF-α in both LPS-stimulated and unstimulated cells. PLWH showed lower connectivity between mPFC and NAcc. In turn, lower rsFC between these regions predicted greater psychological stress and proportion of CD16-, but not CD16+, cells expression of TNF-α. Neuroimmune effects of monocyte inflammation on the functional connectivity of mesolimbic regions critical for discrimination of uncertainty-safety and reward signals were observed in an ethnically diverse sample of postmenopausal women living with and without HIV. PWH showed lower mPFC-NAcc functional connectivity, which in turn was associated with greater perceived stress.
Collapse
Affiliation(s)
- Roger McIntosh
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | - Judith Lobo
- University of California San Diego, HIV Neurobehavioral Research Program, United States
| | - Angela Szeto
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | | | - Michael Kolber
- University of Miami, Miller School of Medicine, United States
| |
Collapse
|
2
|
Chen PH, Chang CK, Lin YK, Chiang SJ, Trang NN. Association of circulating monocyte number and monocyte-lymphocyte ratio with cardiovascular disease in patients with bipolar disorder. BMC Psychiatry 2024; 24:679. [PMID: 39394117 PMCID: PMC11468788 DOI: 10.1186/s12888-024-06105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of excessive and premature mortality in patients with bipolar disorder (BD). Despite immune cells participating considerably in the pathogenesis of CVD, limited data are available regarding leukocyte phenotypes in patients with BD and CVD. This study aimed to evaluate associations between circulating leukocyte subset and CVD among patients with BD. METHODS A total of 109 patients with BD-I and cardiologist-confirmed CVD diagnosis (i.e., case) were matched with 109 BD-I patients without CVD (i.e., control) according to the age (± 2 years), sex, and date of most recent psychiatric admission because of acute mood episode (± 2 years). Leukocyte subset data were retrieved from complete blood count tests performed on the next morning after the most recent acute psychiatric admission. RESULTS During the most recent acute psychiatric hospitalization, circulating monocyte counts in the case group were significantly higher than those in the age- and sex-matched controls (p = 0.020). In addition, monocyte-lymphocyte ratios (MLRs) in the case group were significantly higher than those in the control group (p = 0.032). Multiple logistic regression showed that together with serum levels of uric acid and manic symptoms, circulating monocyte counts (95% CI, OR: 1.01-1.05) and MLRs (95% CI, OR: 1.01-1.09) were significantly associated with CVD in patients with BD, respectively. CONCLUSIONS Monocyte activation in an acute manic episode may play a critical role in the pathogenesis of CVD among patients with BD. Future research is required to investigate markers of monocyte activation and indices of cardiovascular structure and function across the different mood states of BD.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan.
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chi-Kang Chang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Shuo-Ju Chiang
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
3
|
Zhang W, Wang Q, Liu H, Hong F, Tang Q, Hu C, Xu T, Lu H, Ye L, Zhu Y, Song L. Systemic inflammation markers and the prevalence of hypertension in 8- to 17-year-old children and adolescents: A NHANES cross-sectional study. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00330-2. [PMID: 39490278 DOI: 10.1016/j.numecd.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS The recent emphasis on systemic inflammation markers has focused primarily on their association with cardiac disorders, particularly the prevalence of hypertension, in adults but not children and adolescents. This research aimed to explore the associations between systemic inflammation markers and the occurrence of hypertension in 8- to 17-year-old children and adolescents in the United States. METHODS AND RESULTS Data from 6095 participants under 18 years of age were obtained from the National Health and Nutritional Examination Survey (NHANES: 1999-2020). This study examined the associations between the incidence of hypertension and four indicators of systemic inflammation: the systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR). Multivariate logistic regression analysis results are represented as odds ratios (ORs) and 95 % confidence intervals (CIs), and subgroup analyses were conducted to further explore associations. After fully adjusting for potential confounding covariates, the SII, NLR, and PLR were positively associated with hypertension. Compared with individuals in the bottom quartiles, those in the top SII, NLR, and PLR quartiles were 2.12, 2.11, and 1.57 times more likely to have hypertension, respectively. Conversely, the LMR was negatively associated with hypertension incidence, particularly among those in the highest LMR quartiles (OR = 0.59, 95 % CI = 0.39-0.88; P = 0.009). Subgroup analyses revealed that the four indicators exhibited strong correlations with hypertension in male subjects. CONCLUSION This study revealed significant relationships between systemic inflammatory markers and hypertension incidence, highlighting the potential of these markers as hypertension risk indicators, particularly among male patients.
Collapse
Affiliation(s)
- Weiyan Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China; Children's Hospital of Soochow University, Jiangsu, China
| | - Qingfeng Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, China
| | - Hui Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, China
| | - Fei Hong
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Qingying Tang
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Caiyu Hu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Ting Xu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Hongyi Lu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Lei Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Yuanyuan Zhu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Lei Song
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China.
| |
Collapse
|
4
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Efentakis P, Symeonidi L, Gianniou DD, Mikropoulou EV, Giardoglou P, Valakos D, Vatsellas G, Tsota M, Kostomitsopoulos N, Smyrnioudis I, Trougakos IP, Halabalaki M, Dedoussis GV, Andreadou I. Antihypertensive Potential of Pistacia lentiscus var. Chia: Molecular Insights and Therapeutic Implications. Nutrients 2024; 16:2152. [PMID: 38999899 PMCID: PMC11243328 DOI: 10.3390/nu16132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Hypertension poses a significant global health burden and is associated with cardiovascular morbidity. Chios mastic gum (CMG), derived from Pistacia lentiscus var. Chia, shows potential as a phytotherapeutic agent, due to its multifaceted beneficial effects. However, its anti-hypertensive effects and vascular, circulatory, and renal-related dysfunction, have not been thoroughly investigated. Herein, we aimed to explore the antihypertensive potential of CMG, focusing on vascular and renal endothelium, in vivo. Methods: Two models of hypertension in male rats, induced by Angiotensin II and Deoxycorticosterone acetate (DOCA)-high-salt administration, were utilized. CMG was administered at 220 mg/kg daily for four weeks after hypertension onset and blood pressure was measured non-invasively. Whole blood RNA sequencing, metabolomics, real-time PCR, and Western blot analyses of kidney and aorta tissues were additionally performed. Results: CMG significantly lowered systolic, diastolic, and mean blood pressure in both models. RNA sequencing revealed that CMG modulated immunity in the Angiotensin II model and metabolism in the DOCA-HS model. CMG downregulated genes related to oxidative stress and endothelial dysfunction and upregulated endothelial markers such as Vegfa. Metabolomic analysis indicated improved endothelial homeostasis via lysophosphatidylinositol upregulation. Conclusions: CMG emerges as a potent natural antihypertensive therapy, demonstrating beneficial effects on blood pressure and renal endothelial function.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| | - Lydia Symeonidi
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Panagiota Giardoglou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.V.); (N.K.)
| | - Giannis Vatsellas
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Maria Tsota
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Nikolaos Kostomitsopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.V.); (N.K.)
| | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Georgios V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| |
Collapse
|
6
|
Nachiappa Ganesh R, Garcia G, Truong L. Monocytes and Macrophages in Kidney Disease and Homeostasis. Int J Mol Sci 2024; 25:3763. [PMID: 38612574 PMCID: PMC11012230 DOI: 10.3390/ijms25073763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The monocyte-macrophage lineage of inflammatory cells is characterized by significant morphologic and functional plasticity. Macrophages have broad M1 and M2 phenotype subgroups with distinctive functions and dual reno-toxic and reno-protective effects. Macrophages are a major contributor to injury in immune-complex-mediated, as well as pauci-immune, glomerulonephritis. Macrophages are also implicated in tubulointerstitial and vascular disease, though there have not been many human studies. Patrolling monocytes in the intravascular compartment have been reported in auto-immune injury in the renal parenchyma, manifesting as acute kidney injury. Insights into the pathogenetic roles of macrophages in renal disease suggest potentially novel therapeutic and prognostic biomarkers and targeted therapy. This review provides a concise overview of the macrophage-induced pathogenetic mechanism as a background for the latest findings about macrophages' roles in different renal compartments and common renal diseases.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Gabriela Garcia
- Department of Medicine, Renal Division, University of Colorado, Anschutz Medical Campus, Aurora, CO 605006, USA;
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
7
|
Ye HL, Zhi MF, Chen BY, Lin WZ, Li YL, Huang SJ, Zhou LJ, Xu S, Zhang J, Zhang WC, Feng Q, Duan SZ. Alterations of oral and gut viromes in hypertension and/or periodontitis. mSystems 2024; 9:e0116923. [PMID: 38108668 PMCID: PMC10804974 DOI: 10.1128/msystems.01169-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
The microbiota plays an important role in both hypertension (HTN) and periodontitis (PD), and PD exacerbates the development of HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, which is also a member of the microbiota. We collected 180 samples of subgingival plaques, saliva, and feces from a cohort of healthy subjects (nHTNnPD), subjects with HTN (HTNnPD) or PD (PDnHTN), and subjects with both HTN and PD (HTNPD). We performed metagenomic sequencing to assess the roles of the oral and gut viromes in HTN and PD. The HTNnPD, PDnHTN, and HTNPD groups all showed significantly distinct beta diversity from the nHTNnPD group in saliva. We analyzed alterations in oral and gut viral composition in HTN and/or PD and identified significantly changed viruses in each group. Many viruses across three sites were significantly associated with blood pressure and other clinical parameters. Combined with these clinical associations, we found that Gillianvirus in subgingival plaques was negatively associated with HTN and that Torbevirus in saliva was positively associated with HTN. We found that Pepyhexavirus from subgingival plaques was indicated to be transferred to the gut. We finally evaluated viral-bacterial transkingdom interactions and found that viruses and bacteria may cooperate to affect HTN and PD. Correspondingly, HTN and PD may synergize to improve communications between viruses and bacteria.IMPORTANCEPeriodontitis (PD) and hypertension (HTN) are both highly prevalent worldwide and cause serious adverse outcomes. Increasing studies have shown that PD exacerbates HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, even though viruses are common inhabitants in humans. Alterations in oral and gut viral diversity and composition contribute to diseases. The present study, for the first time, profiled the oral and gut viromes in HTN and/or PD. We identified key indicator viruses and their clinical implications in HTN and/or PD. We also investigated interactions between viruses and bacteria. This work improved the overall understanding of the viromes in HTN and PD, providing vital insights into the role of the virome in the development of HTN and PD.
Collapse
Affiliation(s)
- Hui-Lin Ye
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Meng-Fan Zhi
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Barhoumi T, Todryk S. Role of monocytes/macrophages in renin-angiotensin system-induced hypertension and end organ damage. Front Physiol 2023; 14:1199934. [PMID: 37854465 PMCID: PMC10579565 DOI: 10.3389/fphys.2023.1199934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The renin-angiotensin system (RAS) is a central modulator of cardiovascular physiology. Pathophysiology of hypertension is commonly accompanied by hyper-activation of RAS. Angiotensin II receptor blockers (ARBs) and Angiotensin-converting enzyme (ACE) inhibitors are the gold standard treatment for hypertension. Recently, several studies highlighted the crucial role of immune system in hypertension. Angiotensin-II-induced hypertension is associated with low grade inflammation characterized by innate and adaptive immune system dysfunction. Throughout the progression of hypertension, monocyte/macrophage cells appear to have a crucial role in vascular inflammation and interaction with the arterial wall. Since myelomonocytic cells potentially play a key role in angiotensin-II-induced hypertension and organ damage, pharmacological targeting of RAS components in monocyte/macrophages may possibly present an innovative strategy for treatment of hypertension and related pathology.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
9
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
10
|
Xiu J, Lin X, Chen Q, Yu P, Lu J, Yang Y, Chen W, Bao K, Wang J, Zhu J, Zhang X, Pan Y, Tu J, Chen K, Chen L. The aggregate index of systemic inflammation (AISI): a novel predictor for hypertension. Front Cardiovasc Med 2023; 10:1163900. [PMID: 37265570 PMCID: PMC10229810 DOI: 10.3389/fcvm.2023.1163900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Inflammation plays an important role in the pathophysiology of hypertension (HTN). Aggregate index of systemic inflammation (AISI), as a new inflammatory and prognostic marker has emerged recently. Our goal was to determine whether there was a relationship between HTN and AISI. Methods We analyzed patients with HTN from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. The primary end point was cardiovascular mortality. A total of 23,765 participants were divided into four groups according to the AISI quartile level. The association between AISI and cardiovascular mortality in patients with HTN was assessed by survival curves and Cox regression analyses based on NHANES recommended weights. Results High levels of AISI were significantly associated with cardiovascular mortality in patients with HTN. After full adjustment for confounders, there was no significant difference in the risk of cardiovascular mortality in Q2 and Q3 compared to Q1, while Q4 (HR: 1.91, 95% CI: 1.42-2.58; P < 0.001) had a higher risk of cardiovascular mortality compared to Q1. Results remained similar in subgroup analyses stratified by age (P for interaction = 0.568), gender (P for interaction = 0.059), and obesity (P for interaction = 0.289). Conclusions In adults with HTN, elevated AISI levels are significantly associated with an increased risk of cardiovascular mortality and may serve as an early warning parameter for poor prognosis.
Collapse
Affiliation(s)
- Jiaming Xiu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xueqin Lin
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qiansheng Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Pei Yu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jin Lu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanfang Yang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Weihua Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kunming Bao
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Junjie Wang
- Department of Cardiology, Fuzhou First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinlong Zhu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiaoying Zhang
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yuxiong Pan
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jiabin Tu
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Liling Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
11
|
Chen BY, Lin WZ, Li YL, Bi C, Du LJ, Liu Y, Zhou LJ, Liu T, Xu S, Shi CJ, Zhu H, Wang YL, Sun JY, Liu Y, Zhang WC, Zhang Z, Zhang HL, Zhu YQ, Duan SZ. Characteristics and Correlations of the Oral and Gut Fungal Microbiome with Hypertension. Microbiol Spectr 2023; 11:e0195622. [PMID: 36475759 PMCID: PMC9927468 DOI: 10.1128/spectrum.01956-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
The mycobiome is an essential constituent of the human microbiome and is associated with various diseases. However, the role of oral and gut fungi in hypertension (HTN) remains largely unexplored. In this study, saliva, subgingival plaques, and feces were collected from 36 participants with HTN and 24 healthy controls for metagenomic sequencing. The obtained sequences were analyzed using the Kraken2 taxonomic annotation pipeline to assess fungal composition and diversity. Correlations between oral and gut fungi and clinic parameters, between fungi within the same sample types, and between different sample types were identified by Spearman's correlation analysis. Overall, the subgingival fungal microbiome had substantially higher alpha diversity than the salivary and fecal fungal microbiomes. The fungal microbiomes of the three sample types displayed distinct beta diversity from each other. Oral fungi but not gut fungi in HTN had beta diversity significantly different from that of controls. Among the fungi shared in the oral cavity and gut, Exophiala was the genus with the most notable changes. Exophiala spinifera was the most abundant salivary species in HTN. Some fungal species directly correlated with blood pressure, including gut Exophiala xenobiotica and Exophiala mesophila. The markedly impaired ecological cocorrelation networks of oral and gut fungi in HTN suggested compromised association among fungal species. Most fungi were shared in the oral cavity and gut, and their correlations suggested the potential interplays between oral and gut fungi. In conclusion, the oral cavity and intestine have unique fungal ecological environments. The fungal enrichment and ecology in HTN, the correlations between oral and gut fungi, and the associations between oral and gut fungi and clinical parameters suggest an important role that the fungal microbiome may play in HTN. IMPORTANCE Our study fills the gap in human studies investigating the oral and gut fungal microbiota in association with blood pressure. It characterizes the diversity and composition of the oral and gut fungal microbiome in human subjects, elucidates the dysbiosis of fungal ecology in a hypertensive population, and establishes oral-gut fungal correlations and fungus-clinical parameter correlations. Targeting fungi in the oral cavity and/or gut may provide novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao Bi
- Department of Stomatology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao-Ji Shi
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-li Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Qin Zhu
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Domingues da Silva CHN, Leite Guedes IH, de Lima JCS, Sobrinho JMDR, dos Santos AA. Responses Triggered by the Immune System in Hypertensive Conditions and Repercussions on Target Organ Damage: A Review. Curr Cardiol Rev 2023; 19:e200922208959. [PMID: 36125837 PMCID: PMC10201903 DOI: 10.2174/1573403x18666220920090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hypertension is a chronic, multifactorial clinical condition characterized by sustained high blood pressure levels. It is often associated with functional-structural alterations of target organs, which include heart, brain, kidneys, and vasculature. OBJECTIVE This study highlights the recent correlation between the immune system and hypertension and its repercussions on target-organ damage. METHODS The descriptors used for the search of the study were "hypertension", "immunity", and "target organs". The methodology of the study followed the main recommendations of the PRISMA statement. RESULTS The damage to the vasculature arises mainly from the migration of T cells and monocytes that become pro-inflammatory in the adventitia, releasing TNF-α, IFN-γ, and IL-17, which induce endothelial damage and hinder vascular relaxation. In the renal context, the inflammatory process associated with hypertension culminates in renal invasion by leukocytes, which contribute to the injury of this organ by mechanisms of intense sympathetic stimulation, activation of the reninangiotensin system, sodium retention, and aggravation of oxidative stress. In the cardiac context, hypertension increases the expression of pro-inflammatory elements, such as B, T, and NK cells, in addition to the secretion of IFN-γ, IL-17, IL-23, and TNF-α from angiotensin II, reactive oxygen species, and aldosterone. This pro-inflammatory action is also involved in brain damage through SphK1. In view of the above, the participation of the immune system in hypertension-induced injuries seems to be unequivocal. CONCLUSION Therefore, understanding the multifactorial mechanisms related to hypertension will certainly allow for more efficient interventions in this condition, preventing target organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Angela Amancio dos Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Joao Pessoa 58051-085, Brazil
| |
Collapse
|
13
|
Lymphocyte to monocyte ratio and blood pressure variability in childhood hypertension-a pilot study. Pediatr Res 2023; 93:137-142. [PMID: 35379928 DOI: 10.1038/s41390-022-02056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The investigation of inflammatory background of hypertension (HTN) concentrates mainly on patients with primary HTN. The aim of the study was to analyze the role of new parameters of inflammation-lymphocyte to monocyte ratio (LMR), neutrophil to lymphocyte ratio (NLR), and platelet to lymphocyte ratio (PLR), in the population of children with primary (pHTN) and secondary renal hypertension (rHTN). MATERIAL AND METHODS The study group consisted of 70 children with pHTN, 46 patients with rHTN, and 30 age-matched normotensive controls. The retrospective analysis focused on the evaluation of LMR, NLR, and PLR values in relation to blood pressure (BP) parameters from in-office and ambulatory BP monitoring measurements. Twenty-four hours, daytime, and nighttime periods were evaluated. Blood pressure variability (BPV) was defined by standard deviation and coefficient of variation of analyzed values. RESULTS LMR and NLR values in HTN patients differed significantly vs. controls. Dippers with pHTN demonstrated significant correlations between LMR, NLR, PLR, and markers of BPV, in 24 h and daytime diastolic BP and mean arterial pressure. In dippers with rHTN such correlations concerned only LMR. CONCLUSIONS LMR may become a promising marker of BPV, useful in children with primary and secondary hypertension. IMPACT Lymphocyte to monocyte ratio is a novel marker of blood pressure variability, connected to target-organ damage, in children with primary and secondary renal hypertension. Our study analyzes for the first time the connections between blood cell count-driven inflammatory markers (lymphocyte to monocyte, neutrophil to lymphocyte, and platelet to lymphocyte ratios) and parameters of blood pressure variability, and compares those ratios in children with primary and secondary hypertension. The increasing incidence of hypertension among children urges the search for simple methods of assessment of its complications. LMR may be of added value in the analysis of the inflammatory background of hypertension.
Collapse
|
14
|
Cincotta AH, Cersosimo E, Alatrach M, Ezrokhi M, Agyin C, Adams J, Chilton R, Triplitt C, Chamarthi B, Cominos N, DeFronzo RA. Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects. Int J Mol Sci 2022; 23:ijms23168851. [PMID: 36012132 PMCID: PMC9407769 DOI: 10.3390/ijms23168851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Anthony H. Cincotta
- VeroScience LLC, Tiverton, RI 02878, USA
- Correspondence: ; Tel.: +1-401-816-0525
| | - Eugenio Cersosimo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mariam Alatrach
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Christina Agyin
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - John Adams
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Chilton
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Curtis Triplitt
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | - Ralph A. DeFronzo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
HAUS Augmin-Like Complex Subunit 1 Influences Tumour Microenvironment and Prognostic Outcomes in Glioma. JOURNAL OF ONCOLOGY 2022; 2022:8027686. [PMID: 35865089 PMCID: PMC9296284 DOI: 10.1155/2022/8027686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Background. The expression of HAUS Augmin-like complex subunit 1 (HAUS1), a protein-coding gene, is low in normal samples among various cancers with pan-cancer analysis. The depletion of HAUS1 in cells decreases the G2/M cell compartment and induces apoptosis. However, the detailed expression pattern of HAUS1 and its correlation with immune infiltration in glioma (LGG and GBM) (LGG: low-grade glioma; GBM: glioblastoma) remain unknown. Therefore, in this study, we examined the role and prognostic value of HAUS1 in glioma. Methods. Transcriptional expression data of HAUS1 were collected from the CGGA and TCGA databases. The Kaplan–Meier analysis, univariate and multivariate Cox analyses, and receiver operating characteristic (ROC) curves were used to analyse the clinical significance of HAUS1 in glioma. The STRING database was used to analyse protein-protein interactions (PPI), and the “ClusterProfiler” package was used for functional enrichment analysis to examine the possible biological roles of HAUS1. In addition, the HAUS1 promoter methylation modification was analysed using MEXPRESS, and the association between HAUS1 expression and tumour-infiltrating immune cells was investigated using CIBERSORT. Results. Based on the data retrieved from TCGA (703 samples) and CGGA (1018 samples), an elevated expression of HAUS1 was observed in glioma samples, which was associated with poorer survival of patients, unfavourable clinical characteristics, 1p/19q codeletion status, WHO grade, and IDH mutation status. Furthermore, multivariate and univariate Cox analyses revealed that HAUS1 was an independent predictor of glioma. HAUS1 expression level was associated with several tumour-infiltrating immune cells, such as Th2 cells, macrophages, and activated dendritic cells. The outcomes of ROC curve analysis showed that HAUS1 was good to prognosticate immune infiltrating levels in glioma with a higher area under the curve (AUC) value (AUC = 0.974). Conclusions. HAUS1 was upregulated and served as a biomarker for poor prognosis in patients with glioma. High HAUS1 expression was associated with several tumour-infiltrating immune cells such as Th2 cells, macrophages, and activated dendritic cells, which had high infiltration levels. Therefore, these findings suggest that HAUS1 is a potential biomarker for predicting the prognosis of patients with glioma and plays a pivotal role in immune infiltration in glioma.
Collapse
|
16
|
Hengel FE, Benitah JP, Wenzel UO. Mosaic theory revised: inflammation and salt play central roles in arterial hypertension. Cell Mol Immunol 2022; 19:561-576. [PMID: 35354938 PMCID: PMC9061754 DOI: 10.1038/s41423-022-00851-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The mosaic theory of hypertension was advocated by Irvine Page ~80 years ago and suggested that hypertension resulted from the close interactions of different causes. Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by the proposed mechanisms that result in hemodynamic injury. Inflammation plays an important role in the pathophysiology and contributes to the deleterious consequences of arterial hypertension. Sodium intake is indispensable for normal body function but can be detrimental when it exceeds dietary requirements. Recent data show that sodium levels also modulate the function of monocytes/macrophages, dendritic cells, and different T-cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome due to high-salt intake. The purpose of this review is to propose a revised and extended version of the mosaic theory by summarizing and integrating recent advances in salt, immunity, and hypertension research. Salt and inflammation are placed in the middle of the mosaic because both factors influence each of the remaining pieces.
Collapse
|
17
|
Yang Q, Wang P, Cai Y, Cui Y, Cui J, Du X, Chen Y, Zhang T. Circulating MicroRNA-505 May Serve as a Prognostic Biomarker for Hypertension-Associated Endothelial Dysfunction and Inflammation. Front Cardiovasc Med 2022; 9:834121. [PMID: 35571179 PMCID: PMC9099007 DOI: 10.3389/fcvm.2022.834121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Our previous study has reported that the plasma microRNA-505 (miR-505) is elevated in hypertensive patients. However, the pathophysiological significance of miR-505 in hypertension remains to be elucidated. Hypertension is not only a vascular disorder, but also an inflammatory condition. The current study therefore aims to further investigate the pathophysiological implications of miR-505 in hypertension-associated vascular and inflammatory changes. In vivo experiments reveal that the plasma level of miR-505 is elevated in spontaneously hypertensive rats and angiotensin II-infused mice. In addition, miR-505 agomir treatment results in elevated blood pressure, endothelial dysfunction, increased vascular expression of inflammatory genes and renal inflammatory injuries as well as pre-activation of PBMCs in mice. In vitro experiments further demonstrate that miR-505 agomir increases the expression of IL1B and TNFA, whereas miR-505 antagomir attenuates TNF-α-induced upregulation of IL1B and TNFA in endothelial cells, HUVECs. In addition, miR-505 modulates the levels of endothelial activation markers VCAM1 and E-selectin in HUVECs as well as the adhesion of THP-1 monocytes to HUVECs. Lastly, the plasma level of miR-505 is positively correlated with systolic blood pressure and the level of C-reactive protein in human subjects. Our work links for the first time miR-505 to endothelial dysfunction and inflammation under hypertensive conditions, supporting the translational value of miR-505 in prognosticating hypertension-associated endothelial impairment and inflammatory injuries in target organs such as the vessels and kidneys.
Collapse
Affiliation(s)
- Qinbo Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Peiwei Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiqing Cai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yimeng Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Chen,
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Teng Zhang,
| |
Collapse
|
18
|
Correia MJ, Pimpão AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA. Cysteine as a Multifaceted Player in Kidney, the Cysteine-Related Thiolome and Its Implications for Precision Medicine. Molecules 2022; 27:1416. [PMID: 35209204 PMCID: PMC8874463 DOI: 10.3390/molecules27041416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Dalila G. F. Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Joaquim Calado
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Nephrology Department, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Manuel S. Almeida
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Patrícia Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| |
Collapse
|
19
|
Hamelin Morrissette J, Tremblay D, Marcotte-Chénard A, Lizotte F, Brunet MA, Laurent B, Riesco E, Geraldes P. Transcriptomic modulation in response to high-intensity interval training in monocytes of older women with type 2 diabetes. Eur J Appl Physiol 2022; 122:1085-1095. [PMID: 35182182 DOI: 10.1007/s00421-022-04911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/04/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Type 2 diabetes is associated with a higher risk of cardiovascular diseases, lowering the quality of life and increasing mortality rates of affected individuals. Circulating monocytes are tightly involved in the atherosclerosis process leading to cardiovascular diseases (CVD), and their inflammatory profile can be modified by exercise. The objective was to exploratory identify genes associated with CVD that could be regulated by high-intensity interval training (HIIT) in monocytes of type 2 diabetes patients. METHODS Next-generation RNA sequencing (RNA-seq) analyses were conducted on isolated circulating monocytes (CD14+) of six women aged 60 and over with type 2 diabetes who completed a 12-week supervised HIIT intervention on a treadmill. RESULTS Following the intervention, a reduction of resting diastolic blood pressure was observed. Concomitant with this result, 56 genes were found to be downregulated following HIIT intervention in isolated monocytes. A large proportion of the regulated genes was involved in cellular adhesion, migration and differentiation into an "atherosclerosis-specific" macrophage phenotype. CONCLUSION The downregulation of transcripts in monocytes globally suggests a favorable cardiovascular effect of the HIIT in older women with type 2 diabetes. In the context of precision medicine and personalized exercise prescription, shedding light on the fundamental mechanisms underlying HIIT effects on the gene profile of immune cells is essential to develop efficient nonpharmacological strategies to prevent CVD in high-risk population.
Collapse
Affiliation(s)
| | - Dominic Tremblay
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada
| | | | - Farah Lizotte
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada
| | - Marie A Brunet
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada.,Medical Genetics Service, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, J1H 4C4, Canada.,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Eléonor Riesco
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, J1H 4C4, Canada.,Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Pedro Geraldes
- Faculty of Medicine and Health Sciences, Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 12e Avenue N, Sherbrooke, QC, J1H 5H3, Canada. .,Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
20
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
21
|
Guha A, Wang X, Harris RA, Nelson AG, Stepp D, Klaassen Z, Raval P, Cortes J, Coughlin SS, Bogdanov VY, Moore JX, Desai N, Miller DD, Lu XY, Kim HW, Weintraub NL. Obesity and the Bidirectional Risk of Cancer and Cardiovascular Diseases in African Americans: Disparity vs. Ancestry. Front Cardiovasc Med 2021; 8:761488. [PMID: 34733899 PMCID: PMC8558482 DOI: 10.3389/fcvm.2021.761488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer often occur in the same individuals, in part due to the shared risk factors such as obesity. Obesity promotes adipose inflammation, which is pathogenically linked to both cardiovascular disease and cancer. Compared with Caucasians, the prevalence of obesity is significantly higher in African Americans (AA), who exhibit more pronounced inflammation and, in turn, suffer from a higher burden of CVD and cancer-related mortality. The mechanisms that underlie this association among obesity, inflammation, and the bidirectional risk of CVD and cancer, particularly in AA, remain to be determined. Socio-economic disparities such as lack of access to healthy and affordable food may promote obesity and exacerbate hypertension and other CVD risk factors in AA. In turn, the resulting pro-inflammatory milieu contributes to the higher burden of CVD and cancer in AA. Additionally, biological factors that regulate systemic inflammation may be contributory. Mutations in atypical chemokine receptor 1 (ACKR1), otherwise known as the Duffy antigen receptor for chemokines (DARC), confer protection against malaria. Many AAs carry a mutation in the gene encoding this receptor, resulting in loss of its expression. ACKR1 functions as a decoy chemokine receptor, thus dampening chemokine receptor activation and inflammation. Published and preliminary data in humans and mice genetically deficient in ACKR1 suggest that this common gene mutation may contribute to ethnic susceptibility to obesity-related disease, CVD, and cancer. In this narrative review, we present the evidence regarding obesity-related disparities in the bidirectional risk of CVD and cancer and also discuss the potential association of gene polymorphisms in AAs with emphasis on ACKR1.
Collapse
Affiliation(s)
- Avirup Guha
- Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH, United States
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xiaoling Wang
- Georgia Prevention Institute, Augusta University, Augusta, GA, United States
| | - Ryan A. Harris
- Georgia Prevention Institute, Augusta University, Augusta, GA, United States
| | - Anna-Gay Nelson
- Department of Chemistry, Paine College, Augusta, GA, United States
| | - David Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Zachary Klaassen
- Section of Urology, Department of Surgery, Medical College of Georgia at Augusta University, Georgia Cancer Center, Augusta, GA, United States
| | - Priyanka Raval
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Jorge Cortes
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Steven S. Coughlin
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | | | - Justin X. Moore
- Cancer Prevention, Control, and Population Health Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Nihar Desai
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Center for Outcomes Research and Evaluation, New Haven, CT, United States
| | - D. Douglas Miller
- Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Neal L. Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
22
|
Correia MJ, Pimpão AB, Lopes-Coelho F, Sequeira CO, Coelho NR, Gonçalves-Dias C, Barouki R, Coumoul X, Serpa J, Morello J, Monteiro EC, Pereira SA. Aryl Hydrocarbon Receptor and Cysteine Redox Dynamics Underlie (Mal)adaptive Mechanisms to Chronic Intermittent Hypoxia in Kidney Cortex. Antioxidants (Basel) 2021; 10:antiox10091484. [PMID: 34573115 PMCID: PMC8469308 DOI: 10.3390/antiox10091484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that an interplay between aryl hydrocarbon receptor (AhR) and cysteine-related thiolome at the kidney cortex underlies the mechanisms of (mal)adaptation to chronic intermittent hypoxia (CIH), promoting arterial hypertension (HTN). Using a rat model of CIH-HTN, we investigated the impact of short-term (1 and 7 days), mid-term (14 and 21 days, pre-HTN), and long-term intermittent hypoxia (IH) (up to 60 days, established HTN) on CYP1A1 protein level (a sensitive hallmark of AhR activation) and cysteine-related thiol pools. We found that acute and chronic IH had opposite effects on CYP1A1 and the thiolome. While short-term IH decreased CYP1A1 and increased protein-S-thiolation, long-term IH increased CYP1A1 and free oxidized cysteine. In addition, an in vitro administration of cystine, but not cysteine, to human endothelial cells increased Cyp1a1 expression, supporting cystine as a putative AhR activator. This study supports CYP1A1 as a biomarker of obstructive sleep apnea (OSA) severity and oxidized pools of cysteine as risk indicator of OSA-HTN. This work contributes to a better understanding of the mechanisms underlying the phenotype of OSA-HTN, mimicked by this model, which is in line with precision medicine challenges in OSA.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Filipa Lopes-Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Nuno R. Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Clara Gonçalves-Dias
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Robert Barouki
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Correspondence:
| |
Collapse
|
23
|
Wenzel UO, Ehmke H, Bode M. Immune mechanisms in arterial hypertension. Recent advances. Cell Tissue Res 2021; 385:393-404. [PMID: 33394136 PMCID: PMC8523494 DOI: 10.1007/s00441-020-03409-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by hemodynamic injury. Inflammation also plays an important role in the pathophysiology and contributes to the deleterious consequences of this disease. Cells of the innate immune system including monocyte/macrophages and dendritic cells can promote blood pressure elevation via effects mostly on kidney and vascular function. Moreover, convincing evidence shows that T and B cells from the adaptive immune system are involved in hypertension and hypertensive end-organ damage. Skin monocyte/macrophages, regulatory T cells, natural killer T cells, and myeloid-derived suppressor cells have been shown to exert blood pressure controlling effects. Sodium intake is undoubtedly indispensable for normal body function but can be detrimental when taken in excess of dietary requirements. Sodium levels also modulate the function of monocyte/macrophages, dendritic cells, and different T cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome that can be found after high salt intake. Modulation of the immune response can reduce severity of blood pressure elevation and hypertensive end-organ damage in several animal models. The purpose of this review is to briefly summarize recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
24
|
Valizadeh R, Karampour S, Saiiari A, Sadeghi S. The effect of one bout submaximal endurance exercise on the innate and adaptive immune responses of hypertensive patients. J Sports Med Phys Fitness 2021; 62:244-249. [PMID: 34028235 DOI: 10.23736/s0022-4707.21.11941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Changes in some of the immune system factors are associated with a risk of cardiovascular disease. Therefore, the purpose of this study was to investigate the effect of one bout submaximal endurance exercise (OBSEE) on the innate and adaptive responses of hypertensive patients. METHODS From among 70 men with hypertension, 20 men (Mean ± SD, age: 60.25 ± 4.59 yrs, body mass index (BMI): 29.57 ± 3.68 k/m2, and the maximal oxygen uptake (VO2max): 34.83 ± 2.11 ml/kg/min) were chosen. The statistical sample performed OBSEE for 30 minutes and at 60-65% of the maximum heart rate reserve (MHRR). Blood sampling was performed to measure the response of immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), white blood cells (WBCs), neutrophil (NEUT), basophil (BASO), eosinophil (EO), monocyte (MONO) and lymphocyte (LYMPH) of hypertensive patients before and immediately after exercise. Plasma volume changes (PVCs) were also calculated in order to find out accurate effectiveness of exercise. Shapiro-Wilk test was used to normalize the research data. To analyze the data, paired sample t-test was used at significant level (P ≤ 0.05). The hypothesis test was performed using SPSS software version 19. RESULTS The results after adjusting for PVCs showed that OBSEE significantly increased WBCs (P = 0.001) in hypertensive patients. On the other hand, a significant decrease was observed in EO (P = 0.001) and MONO (P = 0.001) levels after OBSEE. Significant changes were not found in NEUT (P = 0.072), BASO (P = 0.106), LYMPH (P = 0.440), IgA (P = 0.382), IgG (P = 0.245) and IgM (P = 0.081) levels. CONCLUSIONS It seems that OBSEE can reduce the risk of hypertension caused by elevated EO and MONO in hypertensive patients.
Collapse
Affiliation(s)
- Rohollah Valizadeh
- Department of Physical Education, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran -
| | - Sepideh Karampour
- Department of Physical Education, Karoon City, Education Office, Karoon, Iran
| | - Abdulamir Saiiari
- Department of Exercise Physiology, Abadan Branch, Islamic Azad University, Abadan, Iran
| | - Somayeh Sadeghi
- Department of Physical Education, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| |
Collapse
|
25
|
Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller-Schön S, Bayo Jimenez MT, Hahad O, Oelze M, Jiang S, Wenzel P, Sommer CJ, Frauenknecht KBM, Waisman A, Gericke A, Daiber A, Münzel T, Steven S. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol 2021; 116:31. [PMID: 33929610 PMCID: PMC8087569 DOI: 10.1007/s00395-021-00869-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Johanna Helmstädter
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Schramm
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Sebastian Steven
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
26
|
CRIP1 expression in monocytes related to hypertension. Clin Sci (Lond) 2021; 135:911-924. [PMID: 33782695 DOI: 10.1042/cs20201372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
Hypertension is a complex and multifactorial disorder caused by lifestyle and environmental factors, inflammation and disease-related genetic factors and is a risk factor for stroke, ischemic heart disease and renal failure. Although circulating monocytes and tissue macrophages contribute to the pathogenesis of hypertension, the underlying mechanisms are poorly understood. Cysteine rich protein 1 (CRIP1) is highly expressed in immune cells, and CRIP1 mRNA expression in monocytes associates with blood pressure (BP) and is up-regulated by proinflammatory modulation suggesting a link between CRIP1 and BP regulation through the immune system. To address this functional link, we studied CRIP1 expression in immune cells in relation to BP using a human cohort study and hypertensive mouse models. CRIP1 expression in splenic monocytes/macrophages and in circulating monocytes was significantly affected by angiotensin II (Ang II) in a BP-elevating dose (2 mg/kg/day). In the human cohort study, monocytic CRIP1 expression levels were associated with elevated BP, whereas upon differentiation of monocytes to macrophages this association along with the CRIP1 expression level was diminished. In conclusion, CRIP1-positive circulating and splenic monocytes seem to play an important role in hypertension related inflammatory processes through endogenous hormones such as Ang II. These findings suggest that CRIP1 may affect the interaction between the immune system, in particular monocytes, and the pathogenesis of hypertension.
Collapse
|
27
|
Geng Z, Tao Y, Zheng F, Wu L, Wang Y, Wang Y, Sun Y, Fu S, Wang W, Xie C, Zhang Y, Gong F. Altered Monocyte Subsets in Kawasaki Disease Revealed by Single-cell RNA-Sequencing. J Inflamm Res 2021; 14:885-896. [PMID: 33758528 PMCID: PMC7981157 DOI: 10.2147/jir.s293993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Kawasaki disease (KD) is characterized by a disorder of immune response, and its etiology remains unknown. Monocyte is an important member of the body’s innate immune system; however its role in KD is still elusive due to its ambiguous heterogeneity and complex functions. We aim to comprehensively delineate monocyte heterogeneity in healthy and KD infants and to reveal the underlying mechanism for KD. Methods Peripheral monocytes were enriched from peripheral blood samples of two healthy infants and two KD infants. scRNA-seq was performed to acquire the transcriptomic atlas of monocytes. Bio-information analysis was utilized to identify monocyte subsets and explore their functions and differentiation states. SELL+CD14+CD16- monocytes were validated using flow cytometry. Results Three monocyte subsets were identified in healthy infants, including CD14+CD16- monocytes, CD14+CD16+ monocytes, and CD14LowCD16+ monocytes. Cell trajectory analysis revealed that the three monocyte subsets represent a linear differentiation, and possess different biological functions. Furthermore, SELL+CD14+CD16- monocytes, which were poorly differentiated and relating to neutrophil activation, were found to be expanded in KD. Conclusion Our findings provide a valuable resource for deciphering the monocyte heterogeneity in healthy infants and uncover the altered monocyte subsets in KD patients, suggesting potential biomarkers for KD diagnosis and treatment.
Collapse
Affiliation(s)
- Zhimin Geng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Yijing Tao
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Fenglei Zheng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Linlin Wu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Yujia Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Yameng Sun
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Songling Fu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Xie
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Yiying Zhang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| | - Fangqi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
28
|
Gavriliouk EV, Evsegneeva IV, Mikhin VP. Antihypertensive Pharmacotherapy in Correcting the Indicators of Innate Immunity in Patients with Essential Arterial Hypertension. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.58787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The study of indicators of innate immunity in patients with arterial hypertension in clinical trials makes it necessary to correct them in order to reduce vascular inflammation in arterial hypertension to prevent damage to target organs and development of cardiovascular complications. The aim of the study was to assess the effectiveness of antihypertensive therapy to correct indicators of innate immunity in patients with essential arterial hypertension.
Materials and methods: Patients with essential arterial hypertension (EAH) (II stage, 3rd degree) were divided into 3 groups: the 1st group included the patients with hypertrophy of the left ventricular myocardium; the 2nd group included the patients with atherosclerotic vascular lesions; the 3rd group included the patients with chronic kidney disease. As an initial antihypertensive pharmacotherapy, all the patients with essential arterial hypertension were prescribed perindopril (5–10 mg/day) and amlodipine (5–10 mg/day).
Results and discussion: Changes in innate immunity indices in patients with essential arterial hypertension (II stage, 3rd degree) are differentiated depending on the affected target organ. The antihypertensive pharmacotherapy with perindopril and amlodipine in patients with essential arterial hypertension has various corrective effects on impaired innate immunity, depending on the nature of target organ damage. Regardless of target organ damage, ноу antihypertensive therapy with perindopril and amlodipine does not affect the reduced functional and increased metabolic activities of peripheral blood neutrophils.
Conclusion: The results obtained dictate the need for further clinical studies of other classes of antihypertensive drugs and their combinations in the correction of innate immunity indices in order to effectively prevent the progression of target organ damage.
Graphical abstract
Collapse
|
29
|
Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney Int 2020; 98:1193-1209. [PMID: 32569653 PMCID: PMC7652550 DOI: 10.1016/j.kint.2020.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
The endothelin system may be an important player in hypertensive end-organ injury as endothelin-1 increases blood pressure and is pro-inflammatory. The immune system is emerging as an important regulator of blood pressure and we have shown that the early hypertensive response to angiotensin-II infusion was amplified in mice deficient of myeloid endothelin-B (ETB) receptors (LysM-CreEdnrblox/lox). Hypothesizing that these mice would display enhanced organ injury, we gave angiotensin-II to LysM-CreEdnrblox/lox and littermate controls (Ednrblox/lox) for six weeks. Unexpectedly, LysM-CreEdnrblox/lox mice were significantly protected from organ injury, with less proteinuria, glomerulosclerosis and inflammation of the kidney compared to controls. In the eye, LysM-CreEdnrblox/lox mice had fewer retinal hemorrhages, less microglial activation and less vessel rarefaction. Cardiac remodeling and dysfunction were similar in both groups at week six but LysM-CreEdnrblox/lox mice had better endothelial function. Although blood pressure was initially higher in LysM-CreEdnrblox/lox mice, this was not sustained. A natriuretic switch at about two weeks, due to enhanced ETB signaling in the kidney, induced a hypertensive reversal. By week six, blood pressure was lower in LysM-CreEdnrblox/lox mice than in controls. At six weeks, macrophages from LysM-CreEdnrblox/lox mice were more anti-inflammatory and had greater phagocytic ability compared to the macrophages of Ednrblox/lox mice. Thus, myeloid cell ETB receptor signaling drives this injury both through amplifying hypertension and by inflammatory polarization of macrophages.
Collapse
|
30
|
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36:659-670. [PMID: 32389339 PMCID: PMC7225748 DOI: 10.1016/j.cjca.2020.02.081] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
31
|
Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7092151. [PMID: 31341533 PMCID: PMC6612399 DOI: 10.1155/2019/7092151] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.
Collapse
|
32
|
Vinh A, Drummond GR, Sobey CG. Immunity and hypertension: New targets to lighten the pressure. Br J Pharmacol 2019; 176:1813-1817. [PMID: 31127619 PMCID: PMC6534776 DOI: 10.1111/bph.14659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityBundooraVictoriaAustralia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityBundooraVictoriaAustralia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|
33
|
Chuong P, Wysoczynski M, Hellmann J. Do Changes in Innate Immunity Underlie the Cardiovascular Benefits of Exercise? Front Cardiovasc Med 2019; 6:70. [PMID: 31192231 PMCID: PMC6549037 DOI: 10.3389/fcvm.2019.00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Phillip Chuong
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Marcin Wysoczynski
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jason Hellmann
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
34
|
Hölscher C. Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer's Disease. Front Aging Neurosci 2019; 11:88. [PMID: 31068799 PMCID: PMC6491455 DOI: 10.3389/fnagi.2019.00088] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes is a risk factor for developing Alzheimer’s disease (AD). The underlying mechanism that links up the two conditions seems to be the de-sensitization of insulin signaling. In patients with AD, insulin signaling was found to be de-sensitized in the brain, even if they did not have diabetes. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function and replacement, autophagy, oxidative stress management, synaptic plasticity, and cognitive function. Insulin desensitization, therefore, can enhance the risk of developing neurological disorders in later life. Other risk factors, such as high blood pressure or brain injury, also enhance the likelihood of developing AD. All these risk factors have one thing in common – they induce a chronic inflammation response in the brain. Pro-inflammatory cytokines block growth factor signaling and enhance oxidative stress. The underlying molecular processes for this are described in the review. Treatments to re-sensitize insulin signaling in the brain are also described, such as nasal insulin tests in AD patients, or treatments with re-sensitizing hormones, such as leptin, ghrelin, glucagon-like peptide 1 (GLP-1),and glucose-dependent insulinotropic polypeptide (GIP). The first clinical trials show promising results and are a proof of concept that utilizing such treatments is valid.
Collapse
Affiliation(s)
- Christian Hölscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|