1
|
Majumder S, Pushpakumar SB, Almarshood H, Ouseph R, Gondim DD, Jala VR, Sen U. Toll-like receptor 4 mutation mitigates gut microbiota-mediated hypertensive kidney injury. Pharmacol Res 2024; 206:107303. [PMID: 39002869 PMCID: PMC11287947 DOI: 10.1016/j.phrs.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Hypertension-associated dysbiosis is linked to several clinical complications, including inflammation and possible kidney dysfunction. Inflammation and TLR4 activation during hypertension result from gut dysbiosis-related impairment of intestinal integrity. However, the contribution of TLR4 in kidney dysfunction during hypertension-induced gut dysbiosis is unclear. We designed this study to address this knowledge gap by utilizing TLR4 normal (TLR4N) and TLR4 mutant (TLR4M) mice. These mice were infused with high doses of Angiotensin-II for four weeks to induce hypertension. Results suggest that Ang-II significantly increased renal arterial resistive index (RI), decreased renal vascularity, and renal function (GFR) in TLR4N mice compared to TLR4M. 16 S rRNA sequencing analysis of gut microbiome revealed that Ang-II-induced hypertension resulted in alteration of Firmicutes: Bacteroidetes ratio in the gut of both TLR4N and TLR4M mice; however, it was not comparably rather differentially. Additionally, Ang-II-hypertension decreased the expression of tight junction proteins and increased gut permeability, which were more prominent in TLR4N mice than in TLR4M mice. Concomitant with gut hyperpermeability, an increased bacterial component translocation to the kidney was observed in TLR4N mice treated with Ang-II compared to TLR4N plus saline. Interestingly, microbiota translocation was mitigated in Ang-II-hypertensive TLR4M mice. Furthermore, Ang-II altered the expression of inflammatory (IL-1β, IL-6) and anti-inflammatory IL-10) markers, and extracellular matrix proteins, including MMP-2, -9, -14, and TIMP-2 in the kidney of TLR4N mice, which were blunted in TLR4M mice. Our data demonstrate that ablation of TLR4 attenuates hypertension-induced gut dysbiosis resulting in preventing gut hyperpermeability, bacterial translocation, mitigation of renal inflammation and alleviation of kidney dysfunction.
Collapse
Affiliation(s)
- Suravi Majumder
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States; Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Hebah Almarshood
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Rosemary Ouseph
- Division of Nephrology and Hypertension, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Dibson D Gondim
- Department of Pathology and Laboratory Medicine, and University of Louisville, School of Medicine, Louisville, KY, United States
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, United States.
| |
Collapse
|
2
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
3
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Bruno AS, Castor RGM, Berg B, Dos Reis Costa DEF, Monteiro ALL, Scalzo S, Oliveira KCM, Bello FLM, Aguiar GC, Melo MB, Santos RAS, Bonaventura D, Guatimosim S, Castor MGM, Ferreira AJ, Cau SBA. Cardiac disturbances and changes in tissue cytokine levels in mice fed with a high-refined carbohydrate diet. Cytokine 2023; 166:156192. [PMID: 37054665 DOI: 10.1016/j.cyto.2023.156192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
AIMS The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-β, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.
Collapse
Affiliation(s)
- Alexandre Santos Bruno
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Renata Gomes Miranda Castor
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Bárbara Berg
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | | | - André Luis Lima Monteiro
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Sérgio Scalzo
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | | | | | - Grazielle Cordeiro Aguiar
- Departments of Morphology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Marcos Barrouin Melo
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Robson Augusto Souza Santos
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Daniella Bonaventura
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Silvia Guatimosim
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Marina Gomes Miranda Castor
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Anderson Jose Ferreira
- Departments of Morphology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Stefany Bruno Assis Cau
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
5
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
6
|
In obese hypertensives cholecalciferol inhibits circulating TH17 cells but not macrophage infiltration on adipose tissue. Clin Immunol 2023; 247:109244. [PMID: 36706826 DOI: 10.1016/j.clim.2023.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
In arterial hypertension, increased Th17 cells and reduced Tregs are the hallmarks of immunological dysfunction and the basis for the investigation of immunomodulatory drugs. Although cholecalciferol is not a primary immunomodulator, it has recognized action on immune cells, leading us to hypothesise if cholecalciferol can induce a more tolerogenic phenotype in obese hypertensives. In a phase-2, single-centre, randomised, open, 24-week trial, we assigned adults with obesity-associated hypertension and vitamin D deficiency to receive usual therapy plus 50,000 IU/week of cholecalciferol or usual therapy alone. The primary endpoint was the percentual variation in T CD4+, T CD8+, Tregs, and Th17 cells. Secondary endpoints included the percentual variation in Th1, Tc1, Tc17, and monocytes and variation in the number of perivascular and non-perivascular macrophages, T CD4+ and T CD8+ lymphocytes in subcutaneous abdominal adipose tissue. A control group of 12 overweight normotensives was also evaluated for peripheral immune cells. A total of 36 obese hypertensives were randomised, 18 in each group. In comparison with normotensive controls, hypertensives presented higher percentages of T lymphocytes (p = 0.016), Tregs (p = 0.014), and non-classical monocytes (p < 0.001). At week 24, Th17 cells increased in control group (p = 0.017) but remained stable in cholecalciferol group. For Tregs, downregulation towards the values of normotensive controls was observed (p = 0.003), and in multivariate analysis, an increased loading in the setting of the cells of adaptive immunity observed (eigenvalue 1.78, p < 0.001). No changes were documented for monocytes. In adipose tissue, a baseline negative correlation between vitamin D and perivascular macrophages was observed (r = -0.387, p = 0.024) that persisted in the control group (r = -0.528, p = 0.024) but not in the cholecalciferol group, which presented an increase in non-perivascular macrophages (p = 0.029) at week 24. No serious adverse events were reported for all the participants. In this trial, we found that supplementation with cholecalciferol interfered with peripheral and adipose tissue immune cell profile, downregulating peripheral Th17 cells, but increasing the number of infiltrating subcutaneous adipose tissue macrophages. (Funded by Núcleo Estudos Hipertensão da Beira Interior; EudraCT number: 2015-003910-26).
Collapse
|
7
|
Domingues da Silva CHN, Leite Guedes IH, de Lima JCS, Sobrinho JMDR, dos Santos AA. Responses Triggered by the Immune System in Hypertensive Conditions and Repercussions on Target Organ Damage: A Review. Curr Cardiol Rev 2023; 19:e200922208959. [PMID: 36125837 PMCID: PMC10201903 DOI: 10.2174/1573403x18666220920090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hypertension is a chronic, multifactorial clinical condition characterized by sustained high blood pressure levels. It is often associated with functional-structural alterations of target organs, which include heart, brain, kidneys, and vasculature. OBJECTIVE This study highlights the recent correlation between the immune system and hypertension and its repercussions on target-organ damage. METHODS The descriptors used for the search of the study were "hypertension", "immunity", and "target organs". The methodology of the study followed the main recommendations of the PRISMA statement. RESULTS The damage to the vasculature arises mainly from the migration of T cells and monocytes that become pro-inflammatory in the adventitia, releasing TNF-α, IFN-γ, and IL-17, which induce endothelial damage and hinder vascular relaxation. In the renal context, the inflammatory process associated with hypertension culminates in renal invasion by leukocytes, which contribute to the injury of this organ by mechanisms of intense sympathetic stimulation, activation of the reninangiotensin system, sodium retention, and aggravation of oxidative stress. In the cardiac context, hypertension increases the expression of pro-inflammatory elements, such as B, T, and NK cells, in addition to the secretion of IFN-γ, IL-17, IL-23, and TNF-α from angiotensin II, reactive oxygen species, and aldosterone. This pro-inflammatory action is also involved in brain damage through SphK1. In view of the above, the participation of the immune system in hypertension-induced injuries seems to be unequivocal. CONCLUSION Therefore, understanding the multifactorial mechanisms related to hypertension will certainly allow for more efficient interventions in this condition, preventing target organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Angela Amancio dos Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Joao Pessoa 58051-085, Brazil
| |
Collapse
|
8
|
Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN- γ Contributes to the Immune Mechanisms of Hypertension. KIDNEY360 2022; 3:2164-2173. [PMID: 36591357 PMCID: PMC9802558 DOI: 10.34067/kid.0001292022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022]
Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christoph Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
9
|
Lopes PDD, de Assis N, de Araújo NF, Moreno OLM, Jorge KTDOS, E Castor MGM, Teixeira MM, Soriani FM, Capettini LDSA, Bonaventura D, Cau SBDA. COX/iNOS dependence for angiotensin-II-induced endothelial dysfunction. Peptides 2022; 157:170863. [PMID: 36028074 DOI: 10.1016/j.peptides.2022.170863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
Vascular dysfunction induced by angiotensin-II can result from direct effects on vascular and inflammatory cells and indirect hemodynamic effects. Using isolated and functional cultured aortas, we aimed to identify the effects of angiotensin-II on cyclooxygenase (COX) and inducible nitric oxide synthase (iNOS) and evaluate their impact on vascular reactivity. Aortic rings from mice were incubated overnight in culture medium containing angiotensin-II (100 nmol/L) or vehicle to induce vascular disfunction. Vascular reactivity of cultured arteries was evaluated in a bath chamber. Immunofluorescence staining for COX-1 and COX-2 was performed. Nitric oxide (NO) formation was approached by the levels of nitrite, a NO end product, and using a fluorescent probe (DAF). Oxidative and nitrosative stress were determined by DHE fluorescence and nitrotyrosine staining, respectively. Arteries cultured with angiotensin-II showed impairment of endothelium-dependent relaxation, which was reversed by the AT1 receptor antagonist. Inhibition of COX and iNOS restored vascular relaxation, suggesting a common pathway in which angiotensin-II triggers COX and iNOS, leading to vasoconstrictor receptors activation. Moreover, using selective antagonists, TP and EP were identified as the receptors involved in this response. Endothelium-dependent contractions of angiotensin-II-cultured aortas were blunted by ibuprofen, and increased COX-2 immunostaining was found in the arteries, indicating endothelium release of vasoconstrictor prostanoids. Angiotensin-II induced increased reactive oxygen species and NO production. An iNOS inhibitor prevented NO enhancement and nitrotyrosine accumulation in arteries stimulated with angiotensin-II. These results confirm that angiotensin-II causes vascular inflammation that culminates in endothelial dysfunction in an iNOS and COX codependent manner.
Collapse
Affiliation(s)
- Patrícia das Dores Lopes
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Naiara de Assis
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Natália Ferreira de Araújo
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Olga Lúcia Maquilon Moreno
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | | | - Mauro Martins Teixeira
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
10
|
dos Passos Junior RR, Bomfim GF, Giachini FR, Tostes RC, Lima VV. O-Linked β-N-Acetylglucosamine Modification: Linking Hypertension and the Immune System. Front Immunol 2022; 13:852115. [PMID: 35371030 PMCID: PMC8967968 DOI: 10.3389/fimmu.2022.852115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of proteins dynamically regulates protein function, localization, stability, and interactions. This post-translational modification is intimately linked to cardiovascular disease, including hypertension. An increasing number of studies suggest that components of innate and adaptive immunity, active players in the pathophysiology of hypertension, are targets for O-GlcNAcylation. In this review, we highlight the potential roles of O-GlcNAcylation in the immune system and discuss how those immune targets of O-GlcNAcylation may contribute to arterial hypertension.
Collapse
Affiliation(s)
- Rinaldo Rodrigues dos Passos Junior
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | | | - Fernanda R. Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- *Correspondence: Victor Vitorino Lima,
| |
Collapse
|
11
|
Zhang H, Wang Y, Men H, Zhou W, Zhou S, Liu Q, Cai L. CARD9 Regulation and its Role in Cardiovascular Diseases. Int J Biol Sci 2022; 18:970-982. [PMID: 35173530 PMCID: PMC8771857 DOI: 10.7150/ijbs.65979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 01/11/2023] Open
Abstract
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor protein expressed on myeloid cells and located downstream of pattern recognition receptors (PRRs), which transduces signals involved in innate immunity. CARD9 deficiency is associated with increased susceptibility to various fungal diseases. Increasing evidence shows that CARD9 mediates the activation of p38 MAPK, NF-κB, and NLRP3 inflammasome in various CVDs and then promotes the production of proinflammatory cytokines and chemokines, which contribute to cardiac remodeling and cardiac dysfunction in certain cardiovascular diseases (CVDs). Moreover, CARD9-mediated anti-apoptosis and autophagy are implicated in the progression of CVDs. Here, we summarize the structure and function of CARD9 in innate immunity and its various roles in inflammation, apoptosis, and autophagy in the pathogenesis of CVDs. Furthermore, we discuss the potential therapies targeting CARD9 to prevent CVDs and raise some issues for further exploring the role of CARD9 in CVDs.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Yeling Wang
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Hongbo Men
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Wenqian Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA
| | - Shanshan Zhou
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quan Liu
- Department of Cardiovascular Diseases, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.,✉ Corresponding authors: Dr. Quan Liu, Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China; E-mail: ; Dr. Lu Cai, Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, 40202, USA; E-mail:
| |
Collapse
|
12
|
Freitas RAD, Lima VV, Bomfim GF, Giachini FRC. Interleukin-10 in the Vasculature: Pathophysiological Implications. Curr Vasc Pharmacol 2021; 20:230-243. [PMID: 34961448 DOI: 10.2174/1570161120666211227143459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Interleukin-10 (IL-10) is an important immunomodulatory cytokine, initially characterized as an anti-inflammatory agent released by immune cells during infectious and inflammatory processes. IL-10 exhibits biological functions that extend to the regulation of different intracellular signaling pathways directly associated with vascular function. This cytokine plays a vital role in vascular tone regulation through the change of important proteins involved in vasoconstriction and vasodilation. Numerous investigations covered here have shown that therapeutic strategies inducing IL-10 result in anti-inflammatory, anti-hypertrophic, antihyperplastic, anti-apoptotic and antihypertensive effects. This non-systematic review summarizes the modulating effects mediated by IL-10 in vascular tissue, particularly on vascular tone, and the intracellular pathway induced by this cytokine. We also highlight the advances in IL-10 manipulation as a therapeutic target in different cardiovascular pathophysiologies, including the physiological implications in animals and humans. Finally, the review illustrates current and potential future perspectives of the potential use of IL-10 in clinical trials, based on the clinical evidence.
Collapse
Affiliation(s)
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| | | | - Fernanda Regina Casagrande Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia - Brazil.
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| |
Collapse
|
13
|
Farrington CA, Cutter G, Allon M. Arteriovenous Fistula Nonmaturation: What's the Immune System Got to Do with It? KIDNEY360 2021; 2:1743-1751. [PMID: 35373006 PMCID: PMC8785854 DOI: 10.34067/kid.0003112021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023]
Abstract
Background Arteriovenous fistula (AVF) nonmaturation is a persistent problem, particularly among female and Black patients. Increasingly, the immune system has been recognized as an important contributor to vascular disease, but few studies have examined immune factors relative to AVF maturation outcomes. This study evaluated the association of serum panel reactive antibodies (PRA), a measure of immune system reactivity assessed in patients undergoing kidney transplant evaluation, with AVF nonmaturation. Methods We identified 132 patients at our institution who underwent surgical AVF placement between 2010-2019 and had PRA testing within 1 year of AVF creation. Multivariable logistic regression was used to determine the association of patient demographic and clinical factors, class I and class II PRA levels, and preoperative arterial and venous diameters with AVF maturation outcomes. Results AVF nonmaturation was more likely in females than males (44% versus 20%, P=0.003) and in Black than white patients (40% versus 13%, P=0.001). Class II PRA was higher in females than males (12%±23% versus 4%±13%, P=0.02). In the multivariable model, AVF nonmaturation was associated with class II PRA (adjusted odds ratio [aOR], 1.34 per 10% increase; 95% confidence interval [95% CI], 1.04 to 1.82, P=0.02) and Black race (aOR, 3.34; 95% CI, 1.02 to 10.89, P=0.03), but not with patient sex or preoperative arterial or venous diameters. Conclusions The association of elevated class II PRA with AVF nonmaturation suggests the immune system may play a role in AVF maturation outcomes, especially among female patients.
Collapse
Affiliation(s)
| | - Gary Cutter
- School of Public Health, University of Alabama, Birmingham, Alabama
| | - Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
15
|
Silva CBP, Elias-Oliveira J, McCarthy CG, Wenceslau CF, Carlos D, Tostes RC. Ethanol: striking the cardiovascular system by harming the gut microbiota. Am J Physiol Heart Circ Physiol 2021; 321:H275-H291. [PMID: 34142885 DOI: 10.1152/ajpheart.00225.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol consumption represents a significant public health problem, and excessive ethanol intake is a risk factor for cardiovascular disease (CVD), one of the leading causes of death and disability worldwide. The mechanisms underlying the effects of ethanol on the cardiovascular system are complex and not fully comprehended. The gut microbiota and their metabolites are indispensable symbionts essential for health and homeostasis and therefore, have emerged as potential contributors to ethanol-induced cardiovascular system dysfunction. By mechanisms that are not completely understood, the gut microbiota modulates the immune system and activates several signaling pathways that stimulate inflammatory responses, which in turn, contribute to the development and progression of CVD. This review summarizes preclinical and clinical evidence on the effects of ethanol in the gut microbiota and discusses the mechanisms by which ethanol-induced gut dysbiosis leads to the activation of the immune system and cardiovascular dysfunction. The cross talk between ethanol consumption and the gut microbiota and its implications are detailed. In summary, an imbalance in the symbiotic relationship between the host and the commensal microbiota in a holobiont, as seen with ethanol consumption, may contribute to CVD. Therefore, manipulating the gut microbiota, by using antibiotics, probiotics, prebiotics, and fecal microbiota transplantation might prove a valuable opportunity to prevent/mitigate the deleterious effects of ethanol and improve cardiovascular health and risk prevention.
Collapse
Affiliation(s)
- Carla B P Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F Wenceslau
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Bruno AS, Lopes PDD, de Oliveira KCM, de Oliveira AK, de Assis Cau SB. Vascular Inflammation in Hypertension: Targeting Lipid Mediators Unbalance and Nitrosative Stress. Curr Hypertens Rev 2021; 17:35-46. [PMID: 31858899 DOI: 10.2174/1573402116666191220122332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
Arterial hypertension is a worldwide public health threat. High Blood Pressure (BP) is commonly associated with endothelial dysfunction, nitric oxide synthases (NOS) unbalance and high peripheral vascular resistance. In addition to those, inflammation has also been designated as one of the major components of BP increase and organ damage in hypertension. This minireview discusses vascular inflammatory triggers of high BP and aims to fill the existing gaps of antiinflammatory therapy of hypertension. Among the reasons discussed, enhanced prostaglandins rather than resolvins lipid mediators, immune cell infiltration and oxidative/nitrosative stress are pivotal players of BP increase within the inflammatory hypothesis. To address these inflammatory targets, this review also proposes new concepts in hypertension treatment with non-steroidal antiinflammatory drugs (NSAIDs), nitric oxide-releasing NSAIDs (NO-NSAIDs) and specialized proresolving mediators (SPM). In this context, the failure of NSAIDs in hypertension treatment seems to be associated with the reduction of endogenous NO bioavailability, which is not necessarily an effect of all drug members of this pharmacological class. For this reason, NO-releasing NSAIDs seem to be safer and more specific therapy to treat vascular inflammation in hypertension than regular NSAIDs.
Collapse
Affiliation(s)
- Alexandre S Bruno
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Patricia das Dores Lopes
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Karla C M de Oliveira
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Anizia K de Oliveira
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Stefany B de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| |
Collapse
|
17
|
Ushkalova EA, Zyryanov SK, Zatolochina KE. [Muramyldipeptide - based compounds in current medicine: focus on glucosaminylmuramyl dipeptide]. TERAPEVT ARKH 2019; 91:122-127. [PMID: 32598599 DOI: 10.26442/00403660.2019.12.000471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The role of immune mechanisms in the pathogenesis of almost all human diseases shown in recent decades, increase in antibiotic resistance and secondary immunodeficiency, aging of the population and widespread use of immunosuppressive drugs and procedures suggest a wider use of immunomodulators in current clinical practice, but the use of most of them limits the lack of knowledge. The most promising compounds for the development as immunomodulating agents and adjuvants for a wide range of vaccines are low molecular weight fragments of peptidoglycan - muramylpeptides. The article describes the mechanisms of action of muramylpeptides, their biological effects and properties of medicines developed on their basis. Special emphasis is placed to glucosaminylmuramyl dipeptide registered in the Russian Federation under the trade name Likopid, which is currently the best - studied drug in its group. The results of Likopid studies when used as a prophylactic and therapeutic agent for infections of various localization in adults and children, for oncological diseases and complications of chemotherapy and radiation therapy, psoriasis, atopic and other diseases are presented. It is emphasized that in diseases associated with human papillomavirus and plaque psoriasis, according to current criteria of evidence - based medicine, Likopid should be classified as drug with level A efficacy (high efficiency in 80-100% of patients). High safety of Likopid in adults and children, including newborns, is noted.
Collapse
Affiliation(s)
- E A Ushkalova
- Peoples' Friendship University of Russia (RUDN University)
| | - S K Zyryanov
- Peoples' Friendship University of Russia (RUDN University).,City Clinical Hospital No. 24
| | | |
Collapse
|
18
|
Elsaafien K, Korim WS, Setiadi A, May CN, Yao ST. Chemoattraction and Recruitment of Activated Immune Cells, Central Autonomic Control, and Blood Pressure Regulation. Front Physiol 2019; 10:984. [PMID: 31427987 PMCID: PMC6688384 DOI: 10.3389/fphys.2019.00984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory mediators play a critical role in the regulation of sympathetic outflow to cardiovascular organs in hypertension. Emerging evidence highlights the involvement of immune cells in the regulation of blood pressure. However, it is still unclear how these immune cells are activated and recruited to key autonomic brain regions to regulate sympathetic outflow to cardiovascular organs. Chemokines such as C-C motif chemokine ligand 2 (CCL2), and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), are upregulated both peripherally and centrally in hypertension. More specifically, they are upregulated in key autonomic brain regions that control sympathetic activity and blood pressure such as the paraventricular nucleus of the hypothalamus and the rostral ventrolateral medulla. Furthermore, this upregulation of inflammatory mediators is associated with the infiltration of immune cells to these brain areas. Thus, expression of pro-inflammatory chemokines and cytokines is a potential mechanism promoting invasion of immune cells into key autonomic brain regions. In pathophysiological conditions, this can result in abnormal activation of brain circuits that control sympathetic nerve activity to cardiovascular organs and ultimately in increases in blood pressure. In this review, we discuss emerging evidence that helps explain how immune cells are chemoattracted to autonomic nuclei and contribute to changes in sympathetic outflow and blood pressure.
Collapse
Affiliation(s)
- Khalid Elsaafien
- Discovery Science, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Willian S. Korim
- Discovery Science, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Anthony Setiadi
- Discovery Science, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Clive N. May
- Discovery Science, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Song T. Yao
- Discovery Science, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Bomfim GF, Cau SBA, Bruno AS, Fedoce AG, Carneiro FS. Hypertension: a new treatment for an old disease? Targeting the immune system. Br J Pharmacol 2019; 176:2028-2048. [PMID: 29969833 PMCID: PMC6534786 DOI: 10.1111/bph.14436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
Arterial hypertension represents a serious public health problem, being a major cause of morbidity and mortality worldwide. The availability of many antihypertensive therapeutic strategies still fails to adequately treat around 20% of hypertensive patients, who are considered resistant to conventional treatment. In the pathogenesis of hypertension, immune system mechanisms are activated and both the innate and adaptive immune responses play a crucial role. However, what, when and how the immune system is triggered during hypertension development is still largely undefined. In this context, this review highlights scientific advances in the manipulation of the immune system in order to attenuate hypertension and end-organ damage. Here, we discuss the potential use of immunosuppressants and immunomodulators as pharmacological tools to control the activation of the immune system, by non-specific and specific mechanisms, to treat hypertension and improve end-organ damage. Nevertheless, more clinical trials should be performed with these drugs to establish their therapeutic efficacy, safety and risk-benefit ratio in hypertensive conditions. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | - Stefany Bruno Assis Cau
- Department of Pharmacology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteMGBrazil
| | - Alexandre Santos Bruno
- Department of Pharmacology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteMGBrazil
| | - Aline Garcia Fedoce
- Department of Pharmacology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| |
Collapse
|
20
|
Vinh A, Drummond GR, Sobey CG. Immunity and hypertension: New targets to lighten the pressure. Br J Pharmacol 2019; 176:1813-1817. [PMID: 31127619 PMCID: PMC6534776 DOI: 10.1111/bph.14659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityBundooraVictoriaAustralia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityBundooraVictoriaAustralia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|