1
|
Moran O, Tammaro P. Identification of determinants of lipid and ion transport in TMEM16/anoctamin proteins through a Bayesian statistical analysis. Biophys Chem 2024; 308:107194. [PMID: 38401241 DOI: 10.1016/j.bpc.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/26/2024]
Abstract
The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Paolo Tammaro
- Department Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
2
|
Al-Hosni R, Kaye R, Choi CS, Tammaro P. The TMEM16A channel as a potential therapeutic target in vascular disease. Curr Opin Nephrol Hypertens 2024; 33:161-169. [PMID: 38193301 PMCID: PMC10842660 DOI: 10.1097/mnh.0000000000000967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW The transmembrane protein 16A (TMEM16A) Ca 2+ -activated Cl - channel constitutes a key depolarising mechanism in vascular smooth muscle and contractile pericytes, while in endothelial cells the channel is implicated in angiogenesis and in the response to vasoactive stimuli. Here, we offer a critical analysis of recent physiological investigations and consider the potential for targeting TMEM16A channels in vascular disease. RECENT FINDINGS Genetic deletion or pharmacological inhibition of TMEM16A channels in vascular smooth muscle decreases artery tone and lowers systemic blood pressure in rodent models. Inhibition of TMEM16A channels in cerebral cortical pericytes protects against ischemia-induced tissue damage and improves microvascular blood flow in rodent stroke models. In endothelial cells, the TMEM16A channel plays varied roles including modulation of cell division and control of vessel tone through spread of hyperpolarisation to the smooth muscle cells. Genetic studies implicate TMEM16A channels in human disease including systemic and pulmonary hypertension, stroke and Moyamoya disease. SUMMARY The TMEM16A channel regulates vascular function by controlling artery tone and capillary diameter as well as vessel formation and histology. Preclinical and clinical investigations are highlighting the potential for therapeutic exploitation of the channel in a range of maladaptive states of the (micro)circulation.
Collapse
Affiliation(s)
- Rumaitha Al-Hosni
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | | | | | | |
Collapse
|
3
|
Tammaro P. The TMEM16A anion channel as a versatile regulator of vascular tone. Sci Signal 2023; 16:eadk5661. [PMID: 37963193 DOI: 10.1126/scisignal.adk5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The TMEM16A channel represents a key depolarizing mechanism in arterial smooth muscle and contractile pericytes, where it is activated by several endogenous contractile agonists. In this issue of Science Signaling, Mata-Daboin et al. demonstrate a previously unidentified role for TMEM16A in endothelial cells for acetylcholine-mediated vasorelaxation. Collectively, TMEM16A serves as a transducer of vasoactive stimuli to enable fine modulation of vessel tone.
Collapse
Affiliation(s)
- Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
4
|
Akin EJ, Aoun J, Jimenez C, Mayne K, Baeck J, Young MD, Sullivan B, Sanders KM, Ward SM, Bulley S, Jaggar JH, Earley S, Greenwood IA, Leblanc N. ANO1, CaV1.2, and IP3R form a localized unit of EC-coupling in mouse pulmonary arterial smooth muscle. J Gen Physiol 2023; 155:e202213217. [PMID: 37702787 PMCID: PMC10499037 DOI: 10.1085/jgp.202213217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Pulmonary arterial (PA) smooth muscle cells (PASMC) generate vascular tone in response to agonists coupled to Gq-protein receptor signaling. Such agonists stimulate oscillating calcium waves, the frequency of which drives the strength of contraction. These Ca2+ events are modulated by a variety of ion channels including voltage-gated calcium channels (CaV1.2), the Tmem16a or Anoctamin-1 (ANO1)-encoded calcium-activated chloride (CaCC) channel, and Ca2+ release from the sarcoplasmic reticulum through inositol-trisphosphate receptors (IP3R). Although these calcium events have been characterized, it is unclear how these calcium oscillations underly a sustained contraction in these muscle cells. We used smooth muscle-specific ablation of ANO1 and pharmacological tools to establish the role of ANO1, CaV1.2, and IP3R in the contractile and intracellular Ca2+ signaling properties of mouse PA smooth muscle expressing the Ca2+ biosensor GCaMP3 or GCaMP6. Pharmacological block or genetic ablation of ANO1 or inhibition of CaV1.2 or IP3R, or Ca2+ store depletion equally inhibited 5-HT-induced tone and intracellular Ca2+ waves. Coimmunoprecipitation experiments showed that an anti-ANO1 antibody was able to pull down both CaV1.2 and IP3R. Confocal and superresolution nanomicroscopy showed that ANO1 coassembles with both CaV1.2 and IP3R at or near the plasma membrane of PASMC from wild-type mice. We conclude that the stable 5-HT-induced PA contraction results from the integration of stochastic and localized Ca2+ events supported by a microenvironment comprising ANO1, CaV1.2, and IP3R. In this model, ANO1 and CaV1.2 would indirectly support cyclical Ca2+ release events from IP3R and propagation of intracellular Ca2+ waves.
Collapse
Affiliation(s)
- Elizabeth J. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Joydeep Aoun
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Katie Mayne
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Julius Baeck
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Michael D. Young
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Brennan Sullivan
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Simon Bulley
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan H. Jaggar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott Earley
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Iain A. Greenwood
- Department of Vascular Pharmacology, Molecular and Clinical Science Research Institute, St. George’s University of London, London, UK
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| |
Collapse
|
5
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
7
|
Drug repurposing and molecular mechanisms of the antihypertensive drug candesartan as a TMEM16A channel inhibitor. Int J Biol Macromol 2023; 235:123839. [PMID: 36842737 DOI: 10.1016/j.ijbiomac.2023.123839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
TMEM16A, a Ca2+-activated chloride channel (CaCC), and its pharmacological inhibitors can inhibit the growth of lung adenocarcinoma cells. However,the poor efficacy, safety, and stability of TMEM16A inhibitors limit the development of these agents. Therefore, finding new therapeutic directions from already marketed drugs is a feasible strategy to obtain safe and effective therapeutic drugs. Here, we screened a library contain more than 2400 FDA, EMA, and NMPA-approved drugs through virtual screening. We identified a drug candidate, candesartan (CDST), which showed strong inhibitory effect on the TMEM16A in a concentration-dependent manner with an IC50 of 24.40 ± 3.21 μM. In addition, CDST inhibited proliferation, migration and induced apoptosis of LA795 cells targeting TMEM16A, and significantly inhibited lung adenocarcinoma tumor growth in vivo. The molecular mechanism of CDST inhibiting TMEM16A channel indicated it bound to R515/R535/E623/E624 in the drug pocket, thereby blocked the pore. In conclusion, we identified a novel TMEM16A channel inhibitor, CDST, which exhibited excellent inhibitory activity against lung adenocarcinoma. Considering that CDST has been used in clinical treatment of hypertension, it may play an important role in the combined treatment of hypertension and lung adenocarcinoma as a multi-target drug in the future.
Collapse
|
8
|
Baldwin SN, Forrester EA, Homer NZM, Andrew R, Barrese V, Stott JB, Isakson BE, Albert AP, Greenwood IA. Marked oestrous cycle-dependent regulation of rat arterial K V 7.4 channels driven by GPER1. Br J Pharmacol 2023; 180:174-193. [PMID: 36085551 PMCID: PMC10091994 DOI: 10.1111/bph.15947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Kcnq-encoded KV 7 channels (termed KV 7.1-5) regulate vascular smooth muscle cell (VSMC) contractility at rest and as targets of receptor-mediated responses. However, the current data are mostly derived from males. Considering the known effects of sex, the oestrous cycle and sex hormones on vascular reactivity, here we have characterised the molecular and functional properties of KV 7 channels from renal and mesenteric arteries from female Wistar rats separated into di-oestrus and met-oestrus (F-D/M) and pro-oestrus and oestrus (F-P/E). EXPERIMENTAL APPROACH RT-qPCR, immunocytochemistry, proximity ligation assay and wire myography were performed in renal and mesenteric arteries. Circulating sex hormone concentrations were determined by liquid chromatography-tandem mass spectrometry. Whole-cell electrophysiology was undertaken on cells expressing KV 7.4 channels in association with G-protein-coupled oestrogen receptor 1 (GPER1). KEY RESULTS The KV 7.2-5 activators S-1 and ML213 and the pan-KV 7 inhibitor linopirdine were more effective in arteries from F-D/M compared with F-P/E animals. In VSMCs isolated from F-P/E rats, exploratory evidence indicates reduced membrane abundance of KV 7.4 but not KV 7.1, KV 7.5 and Kcne4 when compared with cells from F-D/M. Plasma oestradiol was higher in F-P/E compared with F-D/M, and progesterone showed the converse pattern. Oestradiol/GPER1 agonist G-1 diminished KV 7.4 encoded currents and ML213 relaxations and reduced the membrane abundance of KV 7.4 and interaction between KV 7.4 and heat shock protein 90 (HSP90), in arteries from F-D/M but not F-P/E. CONCLUSIONS AND IMPLICATIONS GPER1 signalling decreased KV 7.4 membrane abundance in conjunction with diminished interaction with HSP90, giving rise to a 'pro-contractile state'.
Collapse
Affiliation(s)
- Samuel N. Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Elizabeth A. Forrester
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Natalie Z. M. Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Ruth Andrew
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
- BHF Centre for Cardiovascular Science, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Jennifer B. Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Brant E. Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research CentreUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Anthony P. Albert
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Iain A. Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| |
Collapse
|
9
|
Guo J, Song Z, Yu J, Li C, Jin C, Duan W, Liu X, Liu Y, Huang S, Tuo Y, Pei F, Jian Z, Zhou P, Zheng S, Zou Z, Zhang F, Gong Q, Liang S. Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Dis 2022; 13:1072. [PMID: 36572666 PMCID: PMC9792590 DOI: 10.1038/s41419-022-05518-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Ischemia/reperfusion (I/R)-induced liver injury with severe cell death is a major complication of liver transplantation. Transmembrane member 16A (TMEM16A), a component of hepatocyte Ca2+-activated chloride channel, has been implicated in a variety of liver diseases. However, its role in hepatic I/R injury remains unknown. Here, mice with hepatocyte-specific TMEM16A knockout or overexpression were generated to examine the effect of TMEM16A on hepatic I/R injury. TMEM16A expression increased in liver samples from patients and mice with I/R injury, which was correlated with liver damage progression. Hepatocyte-specific TMEM16A knockout alleviated I/R-induced liver damage in mice, ameliorating inflammation and ferroptotic cell death. However, mice with hepatic TMEM16A overexpression showed the opposite phenotype. In addition, TMEM16A ablation decreased inflammatory responses and ferroptosis in hepatocytes upon hypoxia/reoxygenation insult in vitro, whereas TMEM16A overexpression promoted the opposite effects. The ameliorating effects of TMEM16A knockout on hepatocyte inflammation and cell death were abolished by chemically induced ferroptosis, whereas chemical inhibition of ferroptosis reversed the potentiated role of TMEM16A in hepatocyte injury. Mechanistically, TMEM16A interacted with glutathione peroxidase 4 (GPX4) to induce its ubiquitination and degradation, thereby enhancing ferroptosis. Disruption of TMEM16A-GPX4 interaction abrogated the effects of TMEM16A on GPX4 ubiquitination, ferroptosis, and hepatic I/R injury. Our results demonstrate that TMEM16A exacerbates hepatic I/R injury by promoting GPX4-dependent ferroptosis. TMEM16A-GPX4 interaction and GPX4 ubiquitination are therefore indispensable for TMEM16A-regulated hepatic I/R injury, suggesting that blockades of TMEM16A-GPX4 interaction or TMEM16A inhibition in hepatocytes may represent promising therapeutic strategies for acute liver injury.
Collapse
Affiliation(s)
- Jiawei Guo
- grid.410654.20000 0000 8880 6009Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Zihao Song
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jie Yu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyi Li
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Chenchen Jin
- grid.508040.90000 0004 9415 435XCenter for Neuro-Metabolism and Regeneration Research, The Bioland Laboratory, Guangzhou, China
| | - Wei Duan
- grid.410654.20000 0000 8880 6009Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Xiu Liu
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Liu
- grid.413428.80000 0004 1757 8466Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shuai Huang
- grid.412534.5Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yonghua Tuo
- grid.412534.5Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Pei
- grid.12981.330000 0001 2360 039XDepartment of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, China
| | - Zhengyang Jian
- Center For Drug Inspection of Guizhou Medical Products Administration, Guiyang, China
| | - Pengyu Zhou
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaowei Zou
- grid.284723.80000 0000 8877 7471Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Zhang
- grid.34477.330000000122986657Department of Radiology, University of Washington School of Medicine, Seattle, WA USA
| | - Quan Gong
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Sijia Liang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Jimenez C, Hawn MB, Akin E, Leblanc N. Translational potential of targeting Anoctamin-1-Encoded Calcium-Activated chloride channels in hypertension. Biochem Pharmacol 2022; 206:115320. [PMID: 36279919 DOI: 10.1016/j.bcp.2022.115320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Calcium-activated chloride channels (CaCC) provide a depolarizing stimulus to a variety of tissues through chloride efflux in response to a rise in internal Ca2+ and voltage. One of these channels, Anoctamin-1 (ANO1 or TMEM16A) is now recognized to play a central role in promoting smooth muscle tone in various types of blood vessels. Its role in hypertension, and thus the therapeutic promise of targeting ANO1, is less straightforward. This review gives an overview of our current knowledge about the potential role ANO1 may play in hypertension within the systemic, portal, and pulmonary vascular systems and the importance of this information when pursuing potential treatment strategies. While the role of ANO1 is well-established in several forms of pulmonary hypertension, its contributions to both the generation of vascular tone and its role in hypertension within the systemic and portal systems are much less clear. This, combined with ANO1's various roles throughout a multitude of tissues throughout the body, command caution when targeting ANO1 as a therapeutic target and may require tissue-selective strategies.
Collapse
Affiliation(s)
- Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Matthew B Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Elizabeth Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, Nevada 89557, USA.
| |
Collapse
|
11
|
Goto K, Kitazono T. Chloride Ions, Vascular Function and Hypertension. Biomedicines 2022; 10:biomedicines10092316. [PMID: 36140417 PMCID: PMC9496098 DOI: 10.3390/biomedicines10092316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Blood pressure is determined by cardiac output and systemic vascular resistance, and mediators that induce vasoconstriction will increase systemic vascular resistance and thus elevate blood pressure. While peripheral vascular resistance reflects a complex interaction of multiple factors, vascular ion channels and transporters play important roles in the regulation of vascular tone by modulating the membrane potential of vascular cells. In vascular smooth muscle cells, chloride ions (Cl−) are a type of anions accumulated by anion exchangers and the anion–proton cotransporter system, and efflux of Cl− through Cl− channels depolarizes the membrane and thereby triggers vasoconstriction. Among these Cl− regulatory pathways, emerging evidence suggests that upregulation of the Ca2+-activated Cl− channel TMEM16A in the vasculature contributes to the increased vascular contractility and elevated blood pressure in hypertension. A robust accumulation of intracellular Cl− in vascular smooth muscle cells through the increased activity of Na+–K+–2Cl− cotransporter 1 (NKCC1) during hypertension has also been reported. Thus, the enhanced activity of both TMEM16A and NKCC1 could act additively and sequentially to increase vascular contractility and hence blood pressure in hypertension. In this review, we discuss recent findings regarding the role of Cl− in the regulation of vascular tone and arterial blood pressure and its association with hypertension, with a particular focus on TMEM16A and NKCC1.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence:
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
13
|
Tembo M, Bainbridge RE, Lara-Santos C, Komondor KM, Daskivich GJ, Durrant JD, Rosenbaum JC, Carlson AE. Phosphate position is key in mediating transmembrane ion channel TMEM16A-phosphatidylinositol 4,5-bisphosphate interaction. J Biol Chem 2022; 298:102264. [PMID: 35843309 PMCID: PMC9396059 DOI: 10.1016/j.jbc.2022.102264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
TransMEMbrane 16A (TMEM16A) is a Ca2+-activated Cl- channel that plays critical roles in regulating diverse physiologic processes, including vascular tone, sensory signal transduction, and mucosal secretion. In addition to Ca2+, TMEM16A activation requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural determinants mediating this interaction are not clear. Here, we interrogated the parts of the PI(4,5)P2 head group that mediate its interaction with TMEM16A by using patch- and two-electrode voltage-clamp recordings on oocytes from the African clawed frog Xenopus laevis, which endogenously express TMEM16A channels. During continuous application of Ca2+ to excised inside-out patches, we found that TMEM16A-conducted currents decayed shortly after patch excision. Following this rundown, we show that the application of a synthetic PI(4,5)P2 analog produced current recovery. Furthermore, inducible dephosphorylation of PI(4,5)P2 reduces TMEM16A-conducted currents. Application of PIP2 analogs with different phosphate orientations yielded distinct amounts of current recovery, and only lipids that include a phosphate at the 4' position effectively recovered TMEM16A currents. Taken together, these findings improve our understanding of how PI(4,5)P2 binds to and potentiates TMEM16A channels.
Collapse
Affiliation(s)
- Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Crystal Lara-Santos
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Grant J Daskivich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Al-Hosni R, Ilkan Z, Agostinelli E, Tammaro P. The pharmacology of the TMEM16A channel: therapeutic opportunities. Trends Pharmacol Sci 2022; 43:712-725. [PMID: 35811176 DOI: 10.1016/j.tips.2022.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
The TMEM16A Ca2+-gated Cl- channel is involved in a variety of vital physiological functions and may be targeted pharmacologically for therapeutic benefit in diseases such as hypertension, stroke, and cystic fibrosis (CF). The determination of the TMEM16A structure and high-throughput screening efforts, alongside ex vivo and in vivo animal studies and clinical investigations, are hastening our understanding of the physiology and pharmacology of this channel. Here, we offer a critical analysis of recent developments in TMEM16A pharmacology and reflect on the therapeutic opportunities provided by this target.
Collapse
Affiliation(s)
- Rumaitha Al-Hosni
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Zeki Ilkan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Emilio Agostinelli
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
15
|
Fujii N, Amano T, Kenny GP, Mündel T, Lei TH, Honda Y, Kondo N, Nishiyasu T. TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation in humans in vivo. Exp Physiol 2022; 107:844-853. [PMID: 35688020 DOI: 10.1113/ep090521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do transmembrane member 16A (TMEM16A) blockers modulate the activation of heat loss responses of sweating and cutaneous vasodilatation? What are the main finding and its importance? Relative to the vehicle control site, TMEM16A blockers T16Ainh-A01 and benzbromarone had no effect on sweat rate or cutaneous vascular conductance during whole-body heating inducing a 1.1 ± 0.1°C increase in core temperature above baseline resting levels. These results suggest that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heat stress. ABSTRACT Animal and in vitro studies suggest that transmembrane member 16A (TMEM16A), a Ca2+ -activated Cl- channel, contributes to regulating eccrine sweating. However, direct evidence supporting this possibility in humans is lacking. We assessed the hypothesis that TMEM16A blockers attenuate sweating during whole-body heating in humans. Additionally, we assessed the associated changes in the heat loss response of cutaneous vasodilatation to determine if a functional role of TMEM16A may exist. Twelve young (24 ± 2 years) adults (six females) underwent whole-body heating using a water-perfused suit to raise core temperature 1.1 ± 0.1°C above baseline. Sweat rate and cutaneous vascular conductance (normalized to maximal conductance via administration of sodium nitroprusside) were evaluated continuously at four forearm skin sites treated continuously by intradermal microdialysis with (1) lactated Ringer's solution (control), (2) 5% dimethyl sulfoxide (DMSO) serving as a vehicle control, or (3) TMEM16A blockers 1 mM T16Ainh-A01 or 2 mM benzbromarone dissolved in 5% DMSO solution. All drugs were administered continuously via intradermal microdialysis. Whole-body heating increased core temperature progressively and this was paralleled by an increase in sweat rate and cutaneous vascular conductance at all skin sites. However, sweat rate (all P > 0.318) and cutaneous vascular conductance (all P ≥ 0.073) did not differ between the vehicle control site relative to the TMEM16A blocker-treated sites. Collectively, our findings indicate that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heating in young adults in vivo.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
Leon-Aparicio D, Sánchez-Solano A, Arreola J, Perez-Cornejo P. Oleic acid blocks the calcium-activated chloride channel TMEM16A/ANO1. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159134. [DOI: 10.1016/j.bbalip.2022.159134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
|
17
|
Li G, Duan L, Yang F, Yang L, Deng Y, Yu Y, Xu Y, Zhang Y. Curcumin suppress inflammatory response in traumatic brain injury via p38/MAPK signaling pathway. Phytother Res 2022; 36:1326-1337. [PMID: 35080289 DOI: 10.1002/ptr.7391] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/24/2021] [Accepted: 01/08/2022] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is a common disease worldwide with a high mortality and disability rate and is closely related to the inflammatory response. However, the molecular mechanisms during the pathophysiological responses are not completely understood. This study was conducted to investigate the protective effect of curcumin on TBI and the molecular mechanisms of the p38/MAPK signal pathway. We found that curcumin remarkably ameliorated secondary brain injury after TBI, including effects on the neurological severity score and inflammation. After injection of curcumin, the neurological function score of mice decreased significantly. Curcumin exhibited antiinflammatory pharmacological effects, as reflected by inhibition of inflammatory factors (e.g., interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α). Additionally, curcumin notably reduced the expression of p-p38 according to western blotting and immunohistochemical analyses. In conclusion, curcumin remarkably alleviated posttraumatic inflammation and thus shows potential for treating inflammation associated with TBI.
Collapse
Affiliation(s)
- Guoqiang Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Duan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fengbiao Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Liang Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yajun Deng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yue Yu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanlong Xu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yinian Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
18
|
Melnik LI, Guha S, Ghimire J, Smither AR, Beddingfield BJ, Hoffmann AR, Sun L, Ungerleider NA, Baddoo MC, Flemington EK, Gallaher WR, Wimley WC, Garry RF. Ebola virus delta peptide is an enterotoxin. Cell Rep 2022; 38:110172. [PMID: 34986351 DOI: 10.1016/j.celrep.2021.110172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
During the 2013-2016 West African (WA) Ebola virus (EBOV) outbreak, severe gastrointestinal symptoms were common in patients and associated with poor outcome. Delta peptide is a conserved product of post-translational processing of the abundant EBOV soluble glycoprotein (sGP). The murine ligated ileal loop model was used to demonstrate that delta peptide is a potent enterotoxin. Dramatic intestinal fluid accumulation follows injection of biologically relevant amounts of delta peptide into ileal loops, along with gross alteration of villous architecture and loss of goblet cells. Transcriptomic analyses show that delta peptide triggers damage response and cell survival pathways and downregulates expression of transporters and exchangers. Induction of diarrhea by delta peptide occurs via cellular damage and regulation of genes that encode proteins involved in fluid secretion. While distinct differences exist between the ileal loop murine model and EBOV infection in humans, these results suggest that delta peptide may contribute to EBOV-induced gastrointestinal pathology.
Collapse
Affiliation(s)
- Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Allison R Smither
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Brandon J Beddingfield
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew R Hoffmann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Leisheng Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | - William R Gallaher
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA; Mockingbird Nature Research Group, Pearl River, LA 70452, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Zalgen Labs, Germantown, MD 20876, USA.
| |
Collapse
|
19
|
Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE, Choi MR. Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion. Pflugers Arch 2021; 474:155-176. [PMID: 34966955 DOI: 10.1007/s00424-021-02649-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.
Collapse
Affiliation(s)
- Nicolás Martín Kouyoumdzian
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Gabriel Kim
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Julieta Rudi
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.,Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
20
|
Wang T, Wang H, Yang F, Gao K, Luo S, Bai L, Ma K, Liu M, Wu S, Wang H, Chen Z, Xiao Q. Honokiol inhibits proliferation of colorectal cancer cells by targeting anoctamin 1/TMEM16A Ca 2+ -activated Cl - channels. Br J Pharmacol 2021; 178:4137-4154. [PMID: 34192810 DOI: 10.1111/bph.15606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ -activated Cl- channels (Ano1 channels) contribute to the pathogenesis of colorectal cancer. Honokiol is known to inhibit cell proliferation and tumour growth in colorectal cancer. However, the molecular target of honokiol remains unclear. This study aimed to investigate whether honokiol inhibited cell proliferation of colorectal cancer by targeting Ano1 channels. EXPERIMENTAL APPROACH Patch-clamp techniques were performed to study the effect of honokiol on Ca2+ -activated Cl- currents in HEK293 cells overexpressing Ano1- or Ano2-containing plasmids or in human colorectal carcinoma SW620 cells. Site-directed mutagenesis was used to identify the critical residues for honokiol-induced Ano1 inhibition. Proliferation of SW620 cells or human intestinal epithelial NCM460 cells by CCK-8 assays. KEY RESULTS Honokiol blocked Ano1 currents in Ano1-overexpressing HEK293 cells and SW620 cells. Honokiol more potently inhibited Ano1 currents than Ano2 currents. Three amino acids (R429, K430 and N435) were critical for honokiol-induced Ano1 inhibition. The R429A/K430L/N435G mutation reduced the sensitivity of Ano1 to honokiol. Honokiol inhibited SW620 cell proliferation, and this effect was reduced by Ano1-shRNAs. Furthermore, Ano1 overexpression promoted proliferation in NCM460 cells with low Ano1 endogenous expression and resulted in an increased sensitivity to honokiol. Overexpression of the R429A/K430L/N435G mutation reduced WT Ano1-induced increase in the sensitivity of NCM460 cells to honokiol. CONCLUSION AND IMPLICATIONS We identified a new anticancer mechanism of honokiol, through the inhibition of cell proliferation, by targeting Ano1 Ca2+ -activated Cl- channels.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zaixing Chen
- Pharmaceutical Teaching and Experimental Center, School of Pharmacy, China Medical University, Shenyang, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
22
|
Guo P, Liu Y, Xu X, Ma G, Hou X, Fan Y, Zhang M. Coronary hypercontractility to acidosis owes to the greater activity of TMEM16A/ANO1 in the arterial smooth muscle cells. Biomed Pharmacother 2021; 139:111615. [PMID: 34243598 DOI: 10.1016/j.biopha.2021.111615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Severe acidosis deteriorates cardiac injury. Rat coronary arteries (RCAs) are unusually hypercontractive to extracellular (o) acidosis (EA). TMEM16A-encoded anoctamin 1 (ANO1), a Ca2+-activated chloride channel (CaCC), plays an important role in regulating coronary arterial tension. PURPOSE We tested the possibility that the activation of CaCCs in the arterial smooth muscle cell (ASMC) contributes to EA-induced RCA constriction. METHODS ANO1 expression was detected with immunofluorescence staining and Western blot. TMEM16A mRNA was assessed with quantitative Real-Time PCR. Cl- currents and membrane potentials were quantified with a patch clamp. The vascular tension was recorded with a myograph. Intracellular (i) level of Cl- and Ca2+ was measured with fluorescent molecular probes. RESULTS ANO1 was expressed in all tested arterial myocytes, but was much more abundant in RCA ASMCs as compared with ASMCs isolated from rat cerebral basilar, intrarenal and mesenteric arteries. EA reduced [Cl-]i levels, augmented CaCC currents exclusively in RCA ASMCs and depolarized RCA ASMCs to a greater extent. Cl- deprivation, which depleted [Cl-]i by incubating the arteries or their ASMCs in Cl--free bath solution, decreased EA-induced [Cl-]i reduction, diminished EA-induced CaCC augmentation and time-dependently depressed EA-induced RCA constriction. Inhibitor studies showed that these EA-induced effects including RCA constriction, CaCC current augmentation, [Cl-]i reduction and/or [Ca2+]i elevation were depressed by various Cl- channel blockers, [Ca2+]i release inhibitors and L-type voltage-gated Ca2+ channel inhibitor nifedipine. ANO1 antibody attenuated all observed changes induced by EA in RCA ASMCs. CONCLUSION The greater activity of RCA ASMC CaCCs complicated with an enhanced Ca2+ mobilization from both [Ca2+]i release and [Ca2+]o influx plays a pivotal role in the distinctive hypercontractility of RCAs to acidosis. Translation of these findings to human beings may lead to a new conception in our understanding and treating cardiac complications in severe acidosis.
Collapse
Affiliation(s)
- Pengmei Guo
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Xiaojia Xu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Guijin Ma
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China.
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
23
|
Cil O, Chen X, Askew Page HR, Baldwin SN, Jordan MC, Myat Thwe P, Anderson MO, Haggie PM, Greenwood IA, Roos KP, Verkman AS. A small molecule inhibitor of the chloride channel TMEM16A blocks vascular smooth muscle contraction and lowers blood pressure in spontaneously hypertensive rats. Kidney Int 2021; 100:311-320. [PMID: 33836171 DOI: 10.1016/j.kint.2021.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/03/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023]
Abstract
Hypertension is a major cause of cardiovascular morbidity and mortality, despite the availability of antihypertensive drugs with different targets and mechanisms of action. Here, we provide evidence that pharmacological inhibition of TMEM16A (ANO1), a calcium-activated chloride channel expressed in vascular smooth muscle cells, blocks calcium-activated chloride currents and contraction in vascular smooth muscle in vitro and decreases blood pressure in spontaneously hypertensive rats. The acylaminocycloalkylthiophene TMinh-23 fully inhibited calcium-activated TMEM16A chloride current with nanomolar potency in Fischer rat thyroid cells expressing TMEM16A, and in primary cultures of rat vascular smooth muscle cells. TMinh-23 reduced vasoconstriction caused by the thromboxane mimetic U46619 in mesenteric resistance arteries of wild-type and spontaneously hypertensive rats, with a greater inhibition in spontaneously hypertensive rats. Blood pressure measurements by tail-cuff and telemetry showed up to a 45-mmHg reduction in systolic blood pressure lasting for four-six hours in spontaneously hypertensive rats after a single dose of TMinh-23. A minimal effect on blood pressure was seen in wild-type rats or mice treated with TMinh-23. Five-day twice daily treatment of spontaneously hypertensive rats with TMinh-23 produced sustained reductions of 20-25 mmHg in daily mean systolic and diastolic blood pressure. TMinh-23 action was reversible, with blood pressure returning to baseline in spontaneously hypertensive rats by three days after treatment discontinuation. Thus, our studies provide validation for TMEM16A as a target for antihypertensive therapy and demonstrate the efficacy of TMinh-23 as an antihypertensive with a novel mechanism of action.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA.
| | - Xiaolan Chen
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Henry R Askew Page
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St. George's University of London, London, UK
| | - Samuel N Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St. George's University of London, London, UK
| | - Maria C Jordan
- Department of Physiology, University of California, Los Angeles, Los Angeles, California, USA
| | - Pyone Myat Thwe
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - Peter M Haggie
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St. George's University of London, London, UK
| | - Kenneth P Roos
- Department of Physiology, University of California, Los Angeles, Los Angeles, California, USA
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Leo MD, Peixoto-Nieves D, Yin W, Raghavan S, Muralidharan P, Mata-Daboin A, Jaggar JH. TMEM16A channel upregulation in arterial smooth muscle cells produces vasoconstriction during diabetes. Am J Physiol Heart Circ Physiol 2021; 320:H1089-H1101. [PMID: 33449847 PMCID: PMC7988758 DOI: 10.1152/ajpheart.00690.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The pathological involvement of anion channels in vascular dysfunction that occurs during type 2 diabetes (T2D) is unclear. Here, we tested the hypothesis that TMEM16A, a calcium-activated chloride (Cl-) channel, contributes to modifications in arterial contractility during T2D. Our data indicate that T2D increased TMEM16A mRNA in arterial smooth muscle cells and total and surface TMEM16A protein in resistance-size cerebral and hindlimb arteries of mice. To examine vascular cell types in which TMEM16A protein increased and the functional consequences of TMEM16A upregulation during T2D, we generated tamoxifen-inducible, smooth muscle cell-specific TMEM16A knockout (TMEM16A smKO) mice. T2D increased both TMEM16A protein and Cl- current density in arterial smooth muscle cells of control (TMEM16Afl/fl) mice. In contrast, T2D did not alter arterial TMEM16A protein or Cl- current density in smooth muscle cells of TMEM16A smKO mice. Intravascular pressure stimulated greater vasoconstriction (myogenic tone) in the arteries of T2D TMEM16Afl/fl mice than in the arteries of nondiabetic TMEM16Afl/fl mice. This elevation in myogenic tone in response to T2D was abolished in the arteries of T2D TMEM16A smKO mice. T2D also reduced Akt2 protein and activity in the arteries of T2D mice. siRNA-mediated knockdown of Akt2, but not Akt1, increased arterial TMEM16A protein in nondiabetic mice. In summary, data indicate that T2D is associated with an increase in TMEM16A expression and currents in arterial smooth muscle cells that produces vasoconstriction. Data also suggest that a reduction in Akt2 function drives these pathological alterations during T2D.NEW & NOTEWORTHY We investigated the involvement of TMEM16A channels in vascular dysfunction during type 2 diabetes (T2D). TMEM16A message, protein, and currents were higher in smooth muscle cells of resistance-size arteries during T2D. Pressure stimulated greater vasoconstriction in the arteries of T2D mice that was abolished in the arteries of TMEM16A smKO mice. Akt2 protein and activity were both lower in T2D arteries, and Akt2 knockdown elevated TMEM16A protein. We propose that a decrease in Akt2 function stimulates TMEM16A expression in arterial smooth muscle cells, leading to vasoconstriction during T2D.
Collapse
MESH Headings
- Animals
- Anoctamin-1/deficiency
- Anoctamin-1/genetics
- Anoctamin-1/metabolism
- Arteries/metabolism
- Arteries/physiopathology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- HEK293 Cells
- Hindlimb/blood supply
- Humans
- Insulin Resistance
- Male
- Membrane Potentials
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Streptozocin
- Up-Regulation
- Vasoconstriction
- Mice
Collapse
Affiliation(s)
- M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Wen Yin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Somasundaram Raghavan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
25
|
Baldwin SN, Sandow SL, Mondéjar-Parreño G, Stott JB, Greenwood IA. K V7 Channel Expression and Function Within Rat Mesenteric Endothelial Cells. Front Physiol 2020; 11:598779. [PMID: 33364977 PMCID: PMC7750541 DOI: 10.3389/fphys.2020.598779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose: Arterial diameter is dictated by the contractile state of the vascular smooth muscle cells (VSMCs), which is modulated by direct and indirect inputs from endothelial cells (ECs). Modulators of KCNQ-encoded kV7 channels have considerable impact on arterial diameter and these channels are known to be expressed in VSMCs but not yet defined in ECs. However, expression of kV7 channels in ECs would add an extra level of vascular control. This study aims to characterize the expression and function of KV7 channels within rat mesenteric artery ECs. Experimental Approach: In rat mesenteric artery, KCNQ transcript and KV7 channel protein expression were determined via RT-qPCR, immunocytochemistry, immunohistochemistry and immunoelectron microscopy. Wire myography was used to determine vascular reactivity. Key Results: KCNQ transcript was identified in isolated ECs and VSMCs. KV7.1, KV7.4 and KV7.5 protein expression was determined in both isolated EC and VSMC and in whole vessels. Removal of ECs attenuated vasorelaxation to two structurally different KV7.2-5 activators S-1 and ML213. KIR2 blockers ML133, and BaCl2 also attenuated S-1 or ML213-mediated vasorelaxation in an endothelium-dependent process. KV7 inhibition attenuated receptor-dependent nitric oxide (NO)-mediated vasorelaxation to carbachol, but had no impact on relaxation to the NO donor, SNP. Conclusion and Implications: In rat mesenteric artery ECs, KV7.4 and KV7.5 channels are expressed, functionally interact with endothelial KIR2.x channels and contribute to endogenous eNOS-mediated relaxation. This study identifies KV7 channels as novel functional channels within rat mesenteric ECs and suggests that these channels are involved in NO release from the endothelium of these vessels.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Shaun L Sandow
- Biomedical Science, School of Health and Sports Science, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Gema Mondéjar-Parreño
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jennifer B Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| |
Collapse
|
26
|
Matchkov VV, Black Joergensen H, Kamaev D, Hoegh Jensen A, Beck HC, Skryabin BV, Aalkjaer C. A paradoxical increase of force development in saphenous and tail arteries from heterozygous ANO1 knockout mice. Physiol Rep 2020; 8:e14645. [PMID: 33245843 PMCID: PMC7695021 DOI: 10.14814/phy2.14645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
A Ca2+‐activated Cl− channel protein, ANO1, is expressed in vascular smooth muscle cells where Cl− current is thought to potentiate contraction by contributing to membrane depolarization. However, there is an inconsistency between previous knockout and knockdown studies on ANO1’s role in small arteries. In this study, we assessed cardiovascular function of heterozygous mice with global deletion of exon 7 in the ANO1 gene. We found decreased expression of ANO1 in aorta, saphenous and tail arteries from heterozygous ANO1 knockout mice in comparison with wild type. Accordingly, ANO1 knockdown reduced the Ca2+‐activated Cl− current in smooth muscle cells. Consistent with conventional hypothesis, the contractility of aorta from ANO1 heterozygous mice was reduced. Surprisingly, we found an enhanced contractility of tail and saphenous arteries from ANO1 heterozygous mice when stimulated with noradrenaline, vasopressin, and K+‐induced depolarization. This difference was endothelium‐independent. The increased contractility of ANO1 downregulated small arteries was due to increased Ca2+ influx. The expression of L‐type Ca2+ channels was not affected but expression of the plasma membrane Ca2+ ATPase 1 and the Piezo1 channel was increased. Expressional analysis of tail arteries further suggested changes of ANO1 knockdown smooth muscle cells toward a pro‐contractile phenotype. We did not find any difference between genotypes in blood pressure, heart rate, pressor response, and vasorelaxation in vivo. Our findings in tail and saphenous arteries contrast with the conventional hypothesis and suggest additional roles for ANO1 as a multifunctional protein in the vascular wall that regulates Ca2+ homeostasis and smooth muscle cell phenotype.
Collapse
Affiliation(s)
- Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| | | | - Dmitrii Kamaev
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| | - Andreas Hoegh Jensen
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| | - Hans Christian Beck
- Department for Clinical Biochemistry and Pharmacology, University of Southern Denmark, Odense, Denmark
| | - Boris V Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - Christian Aalkjaer
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Trophic sympathetic influence weakens pro-contractile role of Cl - channels in rat arteries during postnatal maturation. Sci Rep 2020; 10:20002. [PMID: 33203943 PMCID: PMC7673994 DOI: 10.1038/s41598-020-77092-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters and their functional contribution in vasculature change during early postnatal development. Here we tested the hypothesis that the contribution of Cl− channels to arterial contraction declines during early postnatal development and this decline is associated with the trophic sympathetic influence. Endothelium‐denuded saphenous arteries from 1- to 2-week-old and 2- to 3-month-old male rats were used. Arterial contraction was assessed in the isometric myograph, in some experiments combined with measurements of membrane potential. mRNA and protein levels were determined by qPCR and Western blot. Sympathectomy was performed by treatment with guanethidine from the first postnatal day until 8–9-week age. Cl− substitution in the solution as well as Cl−-channel blockers (MONNA, DIDS) had larger suppressive effect on the methoxamine-induced arterial contraction and methoxamine-induced depolarization of smooth muscle cells in 1- to 2-week-old compared to 2- to 3-month-old rats. Vasculature of younger group demonstrated elevated expression levels of TMEM16A and bestrophin 3. Chronic sympathectomy increased Cl− contribution to arterial contraction in 2-month-old rats that was associated with an increased TMEM16A expression level. Our study demonstrates that contribution of Cl− channels to agonist-induced arterial contraction and depolarization decreases during postnatal development. This postnatal decline is associated with sympathetic nerves development.
Collapse
|
28
|
Xie J, Liu W, Lv W, Han X, Kong Q, Wu Y, Liu X, Han Y, Shi C, Jia X. Transmembrane protein 16A/anoctamin 1 inhibitor T16A
inh
‐A01 reversed monocrotaline‐induced rat pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020946670. [PMID: 35154665 PMCID: PMC8826276 DOI: 10.1177/2045894020946670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Transmembrane protein 16A was involved in the development of the
monocrotaline-induced pulmonary arterial hypertension model through ERK1/2
activation, and it was considered as potential target for pulmonary arterial
hypertension treatment. A pulmonary arterial hypertension rat model was
established by intraperitoneal administration of monocrotaline. Noninvasive
pulsed-wave Doppler and histological analysis was performed, and it revealed
proliferation and remodeling of pulmonary arterioles and right ventricle
hypertrophy. In addition, transmembrane protein 16A, proliferating cell nuclear
antigen—a proliferate marker, P-ERK1/2 increased following monocrotaline
treatment. Expression of transmembrane protein 16A in the pulmonary arteries was
co-localized with a specific marker of vascular smooth muscle α-actin. Then, a
specific inhibitor of transmembrane protein 16A-T16Ainh-A01 was
administered to pulmonary arterial hypertension rats. It was found to alleviate
the remodeling of pulmonary arterioles and right ventricle hypertrophy
significantly, and decrease the upregulation of proliferating cell nuclear
antigen in monocrotaline-induced pulmonary arteries. In addition,
T16Ainh-A01 could inhibit the activation of ERK1/2 in pulmonary
arterial hypertension model. Transmembrane protein 16A mediated the
proliferation and remodeling of pulmonary arterioles in the
monocrotaline-induced pulmonary arterial hypertension model. ERK1/2 pathway is
one of downstream factors. Long-term use of T16Ainh-A01 in vivo could
alleviate remodeling and pressure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jianye Xie
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Wenyuan Liu
- Department of General MedicineFirst Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Wenjing Lv
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaohua Han
- Department of Physiology and PathophysiologyCollege of MedicineQingdao UniversityQingdaoChina
| | - Qingnuan Kong
- Department of PathologyQingdao Municipal HospitalQingdaoChina
| | - Yuhui Wu
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
- Department of CardiologyAffiliated Cardiovascular Hospital of Qingdao UniversityQingdaoChina
| | - Xin Liu
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ying Han
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chunying Shi
- Department of Human AnatomyHistology and EmbryologyCollege of MedicineQingdao UniversityQingdaoChina
| | - Xiujuan Jia
- Department of GeriatricsAffiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
29
|
Ma G, Zhang J, Yang X, Guo P, Hou X, Fan Y, Liu Y, Zhang M. TMEM16A-encoded anoctamin 1 inhibition contributes to chrysin-induced coronary relaxation. Biomed Pharmacother 2020; 131:110766. [PMID: 33152928 DOI: 10.1016/j.biopha.2020.110766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chrysin, a natural flavonoid available in honey, propolis and medicinal plants, has been shown to be vasorelaxant in some vascular beds. Proper intake of an alimental vasodilator as a food additive may be a promising strategy for prevention and treatment of coronary spasmodic disorders. PURPOSE TMEM16A-encoded anoctamin 1 (ANO1), a Ca2+ activated Cl- channel (CaCC), plays an important role in the modulation of vascular tone. We tested the possibility that inhibition of CaCCs contributes to chrysin-induced coronary arterial relaxation. METHODS The vascular tone of the rat coronary artery (RCA) was recorded with a wire myograph. CaCC currents were assessed using whole-cell patch clamp in arterial smooth muscle cell (ASMC) freshly isolated from RCAs. An inhibitor study was performed to explore the mechanisms underlying the vasomotor and electrophysiological effects of chrysin. RESULTS Pre-incubation with chrysin depressed the contractions elicited by thromboxane A2 analog U46619, vasopressin (VP), depolarization and extracellular Ca2+ elevation/depolarization without significant preference among these vasoconstrictors. Besides, chrysin inhibited both intracellular Ca2+ release-dependent and extracellular Ca2+ influx-dependent components of contractions induced by U46619 or VP. In RCAs pre-contracted with U46619, VP or KCl, chrysin elicited concentration-dependent relaxations, which were weakened by Cl- -deprivation. The electrophysiological study showed that chrysin reduced ANO1-antibody-sensitive CaCC currents and depressed CaCC increments induced by U46619. Inhibitor study showed that both the vasorelaxation and the CaCC current reduction induced by chrysin were attenuated by blocking CaCCs and inhibiting cAMP/PKA and NO/PKG pathways. CONCLUSION The present findings indicate that inhibition of RCA ASMC CaCC currents, which may be consequential following intracellular Ca2+ availability reduction and activation of cAMP/PKA and NO/cGMP signaling pathways, contributes to chrysin-induced RCA relaxation.
Collapse
Affiliation(s)
- Guijin Ma
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China; Cardiovascular Divison, Department of Internal Medicine, the First Hospital of Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Jiangtao Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Xiaomin Yang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Pengmei Guo
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China.
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
30
|
Barrese V, Stott JB, Baldwin SN, Mondejar-Parreño G, Greenwood IA. SMIT (Sodium-Myo-Inositol Transporter) 1 Regulates Arterial Contractility Through the Modulation of Vascular Kv7 Channels. Arterioscler Thromb Vasc Biol 2020; 40:2468-2480. [PMID: 32787517 PMCID: PMC7505149 DOI: 10.1161/atvbaha.120.315096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: The SMIT1 (sodium:myo-inositol transporter 1) regulates myo-inositol movement into cells and responses to hypertonic stimuli. Alteration of myo-inositol levels has been associated with several diseases, including hypertension, but there is no evidence of a functional role of SMIT1 in the vasculature. Recent evidence showed that in the nervous system SMIT1 interacted and modulated the function of members of the Kv7 family of voltage-gated potassium channels, which are also expressed in the vasculature where they regulate arterial contractility. Therefore, in this study, we evaluated whether SMIT1 was functionally relevant in arterial smooth muscle. Approach and Results: Immunofluorescence and polymerase chain reaction experiments revealed that SMIT1 was expressed in rat renal and mesenteric vascular smooth muscle cells. Isometric tension recordings showed that incubation of renal arteries with raffinose and myo-inositol (which increases SMIT1 expression) reduced the contractile responses to methoxamine, an effect that was abolished by preincubation with the pan-Kv7 blocker linopirdine and by molecular knockdown of Kv7.4 and Kv7.5. Knockdown of SMIT1 increased the contraction of renal arteries induced by methoxamine, impaired the response to the Kv7.2–Kv7.5 activator ML213 but did not interfere with the relaxant responses induced by openers of other potassium channels. Proximity ligation assay showed that SMIT1 interacted with heteromeric channels formed by Kv7.4 and Kv7.5 proteins in both renal and mesenteric vascular smooth muscle cells. Patch-clamp experiments showed that incubation with raffinose plus myo-inositol increased Kv7 currents in vascular smooth muscle cells. Conclusions: SMIT1 protein is expressed in vascular smooth muscle cells where it modulates arterial contractility through an association with Kv7.4/Kv7.5 heteromers.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.).,Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, Italy (V.B.)
| | - Jennifer B Stott
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Samuel N Baldwin
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Spain (G.M.-P.)
| | - Iain A Greenwood
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| |
Collapse
|
31
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
32
|
Askew Page HR, Dalsgaard T, Baldwin SN, Jepps TA, Povstyan O, Olesen SP, Greenwood IA. TMEM16A is implicated in the regulation of coronary flow and is altered in hypertension. Br J Pharmacol 2019; 176:1635-1648. [PMID: 30710335 DOI: 10.1111/bph.14598] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Coronary artery disease leads to ischaemic heart disease and ultimately myocardial infarction. Thus, it is important to determine the factors that regulate coronary blood flow. Ca2+ -activated chloride channels contribute to the regulation of arterial tone; however, their role in coronary arteries is unknown. The aim of this study was to investigate the expression and function of the main molecular correlate of Ca2+ -activated chloride channels, TMEM16A, in rat coronary arteries. EXPERIMENTAL APPROACH We performed mRNA and protein analysis, electrophysiological studies of coronary artery myocytes, and functional studies of coronary artery contractility and coronary perfusion, using novel inhibitors of TMEM16A. Furthermore, we assessed whether any changes in expression and function occurred in coronary arteries from spontaneously hypertensive rats (SHRs). KEY RESULTS TMEM16A was expressed in rat coronary arteries. The TMEM16A-specific inhibitor, MONNA, hyperpolarised the membrane potential in U46619. MONNA, T16Ainh -A01, and Ani9 attenuated 5-HT/U46619-induced contractions. MONNA and T16Ainh -A01 also increased coronary flow in Langendorff perfused rat heart preparations. TMEM16A mRNA was increased in coronary artery smooth muscle cells from SHRs, and U46619 and 5-HT were more potent in arteries from SHRs than in those from normal Wistar rats. MONNA diminished this increased sensitivity to U46619 and 5-HT. CONCLUSIONS AND IMPLICATIONS In conclusion, TMEM16A is a key regulator of coronary blood flow and is implicated in the altered contractility of coronary arteries from SHRs.
Collapse
Affiliation(s)
- Henry R Askew Page
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Dalsgaard
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel N Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Thomas A Jepps
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oleksandr Povstyan
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Søren P Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|