1
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Wang Q, Wen W, Zhou L, Liu F, Ren X, Yu L, Chen H, Jiang Z. LL-37 improves sepsis-induced acute lung injury by suppressing pyroptosis in alveolar epithelial cells. Int Immunopharmacol 2024; 129:111580. [PMID: 38310763 DOI: 10.1016/j.intimp.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND LL-37 (also known as murine CRAMP) is a human antimicrobial peptide that plays a crucial role in innate immune defence against sepsis through various mechanisms. However, its involvement in sepsis-induced lung injury remains unclear. OBJECTIVES This work investigates the impact of LL-37 on pyroptosis generated by LPS in alveolar epithelial cells. The research utilizes both in vivo and in vitro sepsis-associated acute lung injury (ALI) models to understand the underlying molecular pathways. METHODS In vivo, an acute lung injury model induced by sepsis was established by intratracheal administration of LPS in C57BL/6J mice, which were subsequently treated with low-dose CRAMP (recombinant murine cathelicidin, 2.5 mg.kg-1) and high-dose CRAMP (5.0 mg.kg-1). In vitro, pyroptosis was induced in a human alveolar epithelial cell line (A549) by stimulation with LPS and ATP. Treatment was carried out with recombinant human LL-37, or LL-37 was knocked out in A549 cells using small interfering RNA (siRNA). Subsequently, haematoxylin and eosin staining was performed to observe the histopathological changes in lung tissues in the control group and sepsis-induced lung injury group. TUNEL and PI staining were used to observe DNA fragmentation and pyroptosis in mouse lung tissues and cells in the different groups. An lactate dehydrogenase (LDH) assay was performed to measure the cell death rate. The expression levels of NLRP3, caspase1, caspase 1 p20, GSDMD, NT-GSDMD, and CRAMP were detected in mice and cells using Western blotting, qPCR, and immunohistochemistry. ELISA was used to assess the levels of interleukin (IL)-1β and IL-18 in mouse serum, bronchoalveolar lavage fluid (BALF) and lung tissue and cell culture supernatants. RESULTS The expression of NLRP3, caspase1 p20, NT-GSDMD, IL 18 and IL1β in the lung tissue of mice with septic lung injury was increased, which indicated activation of the canonical pyroptosis pathway and coincided with an increase in CRAMP expression. Treatment with recombinant CRAMP improved pyroptosis in mice with lung injury. In vitro, treatment with LPS and ATP upregulated these classic pyroptosis molecules, LL-37 knockdown exacerbated pyroptosis, and recombinant human LL-37 treatment alleviated pyroptosis in alveolar epithelial cells. CONCLUSION These findings indicate that LL-37 protects against septic lung injury by modulating the expression of classic pyroptotic pathway components, including NLRP3, caspase1, and GSDMD and downstream inflammatory factors in alveolar epithelial cells.
Collapse
Affiliation(s)
- Quanzhen Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Wei Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Lei Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China; Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Xiaoxu Ren
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Lifeng Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Huanqin Chen
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong, China
| | - Zhiming Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| |
Collapse
|
3
|
Zuo Z, Shi J, Wang Y, Yin Z, Wang Z, Yang Z, Jia B, Sun Y. The transcriptomic landscape of canonical activation of NLRP3 inflammasome from bone marrow-derived macrophages. Biochem Biophys Res Commun 2024; 694:149409. [PMID: 38141558 DOI: 10.1016/j.bbrc.2023.149409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The NLRP3 inflammasome has gained significant attention due to its participation in diverse cellular processes. Nevertheless, the detailed framework of the canonical NLRP3 inflammasome assembly still remains unrevealed. This study aims to elucidate the transcriptomic landscape of the various stages involved in the canonical activation of the NLRP3 inflammasome in BMDMs by integrating RNA-seq, bioinformatics, and molecular dynamics analyses. The model for the canonical activation of the NLRP3 inflammasome was confirmed through morphological observations, functional assessments (ELISA and LDH), and protein detection (western blot). Subsequently, cells were subjected to RNA sequencing following three groups: control, priming (LPS 500 ng/ml, 4 h), and activation (LPS 500 ng/ml, 4 h; ATP 5 mM, 1 h). A total of 9116 differentially expressed genes (DEGs) were identified, which exerted regulatory effects on various pathways, including cell metabolism, ion fluxes, post-translational modifications, and organelles. Subsequently, six hub genes (Sirt3, Stat3, Syk, Trpm2, Tspo, and Txnip) were identified via integrating literature review and database screening. Finally, the three-dimensional structures of these six hub proteins were obtained using the MD-optimized RoseTTAFold and Gromacs simulations (at least 200 ns). In summary, our research offers novel insights into the transcriptomic-level understanding of the assembly of the canonical NLRP3 inflammasome.
Collapse
Affiliation(s)
- Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Jiajia Shi
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhongqian Yin
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China.
| |
Collapse
|
4
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Serrano-Sandoval SN, Jiménez-Rodríguez A, Hernández-Pérez J, Chavez-Santoscoy RA, Guardado-Félix D, Antunes-Ricardo M. Selenized Chickpea Sprouts Hydrolysates as a Potential Anti-Aging Ingredient. Molecules 2023; 28:molecules28083402. [PMID: 37110634 PMCID: PMC10145560 DOI: 10.3390/molecules28083402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.
Collapse
Affiliation(s)
- Sayra N Serrano-Sandoval
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Antonio Jiménez-Rodríguez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Jesús Hernández-Pérez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | | | - Daniela Guardado-Félix
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, Culiacan 80000, SIN, Mexico
| | - Marilena Antunes-Ricardo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| |
Collapse
|
6
|
Chronic kidney disease and NLRP3 inflammasome: Pathogenesis, development and targeted therapeutic strategies. Biochem Biophys Rep 2022; 33:101417. [PMID: 36620089 PMCID: PMC9813680 DOI: 10.1016/j.bbrep.2022.101417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health concern and public health priority. The condition often involves inflammation due to the accumulation of toxins and the reduced clearance of inflammatory cytokines, leading to gradual loss of kidney function. Because of the tremendous burden of CKD, finding effective treatment strategies against inflammation is crucial. Substantial evidence suggests an association between kidney disease and the inflammasome. As a well-known multiprotein signaling complex, the NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in inducing renal inflammation and fibrosis. Small molecule inhibitors targeting the NLRP3 inflammasome are potential agents for the treatment of CKD.The NLRP3 inflammasome activation amplifies the inflammation response, promoting pyroptotic cell death. Thus, it may contribute to the onset and progression of CKD, but the mechanism behind inflammasome activation in CKD remains obscure.In this review, we summarized recent findings on the role of the NLRP3 inflammasome in CKD and new strategies targeting the NLRP3 inflammasome.
Collapse
Key Words
- ,IL-18, Interleukin-18
- ASC, apoptosis-associated speck-like protein
- Ang II, Angiotensin II
- CKD, Chronic kidney disease
- Chronic kidney disease
- DAMPs, damage-associated molecular patterns
- ESRD, End-stage renal disease
- GFR, glomerular filtration rate
- HK-2, renal tubular epithelial cells
- IL-1β, Interleukin-1β
- Inflammasome
- Kidney function
- LRR, leucine-rich repeat
- NEK7, NIMA-related kinase 7
- NF-kB, nuclear factor kappa-B
- NLRP3, NLR family pyrin domain containing 3
- NOD-like receptor
- PAMPs, Pathogen-associated molecular patterns
- ROS, reactive oxygen species
- TXNIP, thioredoxin-interacting protein
Collapse
|
7
|
He S, Zhao W, Chen X, Li J, Zhang L, Jin H. Ameliorative Effects of Peptide Phe-Leu-Ala-Pro on Acute Liver and Kidney Injury Caused by CCl 4 via Attenuation of Oxidative Stress and Inflammation. ACS OMEGA 2022; 7:44796-44803. [PMID: 36530242 PMCID: PMC9753214 DOI: 10.1021/acsomega.2c04851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Acute liver injury (ALI) and acute kidney injury (AKI) are significantly affected by the antioxidant status. In the present study, the protective effect and mechanism of the collagen peptide Phe-Leu-Ala-Pro (FLAP) in mice with ALI and AKI induced by carbon tetrachloride (CCl4) were examined. The results showed that FLAP effectively improved the liver mass index, the renal mass index, and the histopathological morphology. FLAP treatment significantly decreased the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea nitrogen (BUN), and creatinine (CRE) but increased the activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). The protein expression levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), p-protein kinase B (p-AKT), and p-phosphatidylinositol-3-kinase (p-PI3K) in the liver and kidneys were significantly up-regulated after FLAP treatment. FLAP down-regulated the levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), and nuclear factor-κ B (NF-κB) in liver and kidney tissues. Thus, FLAP may play a protective role in ALI and AKI by attenuating oxidative stress and inflammation mediated by the Nrf2/anti-response element (ARE) and PI3K/AKT/NF-κB pathways.
Collapse
Affiliation(s)
- Shuqi He
- Zhejiang
Provincial Engineering Technology Research Center of Marine Biomedical
Products, School of Food and Pharmacy, Zhejiang
Ocean University, Zhoushan, Zhejiang 316022, China
| | - Wei Zhao
- Zhejiang
Provincial Engineering Technology Research Center of Marine Biomedical
Products, School of Food and Pharmacy, Zhejiang
Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xiang Chen
- Zhoushan
Institute for Food and Drug Control, Zhoushan, Zhejiang 316012, China
| | - Jie Li
- Zhejiang
Provincial Engineering Technology Research Center of Marine Biomedical
Products, School of Food and Pharmacy, Zhejiang
Ocean University, Zhoushan, Zhejiang 316022, China
| | - Leifang Zhang
- Zhejiang
Provincial Engineering Technology Research Center of Marine Biomedical
Products, School of Food and Pharmacy, Zhejiang
Ocean University, Zhoushan, Zhejiang 316022, China
| | - Huoxi Jin
- Zhejiang
Provincial Engineering Technology Research Center of Marine Biomedical
Products, School of Food and Pharmacy, Zhejiang
Ocean University, Zhoushan, Zhejiang 316022, China
| |
Collapse
|
8
|
Wang Y, Liu YJ, Zhang MM, Zhou H, Gao YH, Cheng WJ, Ye ZW, Yuan ZY, Xu GH, Li CF, Yi LT. CY-09 Alleviates the Depression-like Behaviors via Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation in Lipopolysaccharide-Induced Mice. ACS Chem Neurosci 2022; 13:3291-3302. [PMID: 36399525 DOI: 10.1021/acschemneuro.2c00348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Depression is a serious mental illness, mainly characterized as large mood swings and sleep, diet, and cognitive function disorders. NLPR3, one of the inflammasomes that can be activated by a variety of stimuli to promote the maturation and secretion of pro-inflammatory cytokines, has been considered to be involved in the pathophysiology of depression. In this study, the putative role of CY-09, a selective and direct inhibitor of NLRP3, was evaluated in the lipopolysaccharide (LPS)-induced mice. The results of the study indicated that CY-09 significantly decreased the levels of NLRP3 in the hippocampus of LPS-induced mice. In addition, CY-09 increased the sucrose preference and shortened the immobility time in LPS-induced mice, suggesting the antidepressant-like effects of inhibiting NLRP3 inflammasome. Biochemical analysis showed that LPS significantly activated the NLRP3/ASC/cytokine signaling pathway and caused microglial activation, while CY-09 prevented the changes. Moreover, CY-09 increased the brain-derived neurotrophic factor (BDNF) only in microglia but not in the whole hippocampus. Meanwhile, CY-09 did not promote neurogenesis in the hippocampus of LPS mice. In conclusion, the results of the study showed that the antidepressant-like effects of NLRP3 inhibitor CY-09 were mediated by alleviating neuroinflammation in microglia and independent of the neurotrophic function in the hippocampus.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yi-Jie Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Han Zhou
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yi-Han Gao
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Wen-Jing Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zi-Wei Ye
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zhong-Yu Yuan
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen 361008, Fujian Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.,Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
9
|
Choi MC, Jo J, Lee M, Park J, Yao TP, Park Y. Cathelicidin-related antimicrobial peptide mediates skeletal muscle degeneration caused by injury and Duchenne muscular dystrophy in mice. J Cachexia Sarcopenia Muscle 2022; 13:3091-3105. [PMID: 36059045 PMCID: PMC9745559 DOI: 10.1002/jcsm.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cathelicidin, an antimicrobial peptide, plays a key role in regulating bacterial killing and innate immunity; however, its role in skeletal muscle function is unknown. We investigated the potential role of cathelicidin in skeletal muscle pathology resulting from acute injury and Duchenne muscular dystrophy (DMD) in mice. METHODS Expression changes and muscular localization of mouse cathelicidin-related antimicrobial peptide (Cramp) were examined in the skeletal muscle of normal mice treated with chemicals (cardiotoxin and BaCl2 ) or in dystrophic muscle of DMD mouse models (mdx, mdx/Utrn+/- and mdx/Utrn-/- ). Cramp penetration into myofibres and effects on muscle damage were studied by treating synthetic peptides to mouse skeletal muscles or C2C12 myotubes. Cramp knockout (KO) mice and mdx/Utrn/Cramp KO lines were used to determine whether Cramp mediates muscle degeneration. Muscle pathophysiology was assessed by histological methods, serum analysis, grip strength and lifespan. Molecular factors targeted by Cramp were identified by the pull-down assay and proteomic analysis. RESULTS In response to acute muscle injury, Cramp was activated in muscle-infiltrating neutrophils and internalized into myofibres. Cramp treatments of mouse skeletal muscles or C2C12 myotubes resulted in muscle degeneration and myotube damage, respectively. Genetic ablation of Cramp reduced neutrophil infiltration and ameliorated muscle pathology, such as fibre size (P < 0.001; n = 6) and fibrofatty infiltration (P < 0.05). Genetic reduction of Cramp in mdx/Utrn+/- mice not only attenuated muscle damage (35%, P < 0.05; n = 9-10), myonecrosis (53%, P < 0.05), inflammation (37-65%, P < 0.01) and fibrosis (14%, P < 0.05) but also restored muscle fibre size (14%, P < 0.05) and muscle force (18%, P < 0.05). Reducing Cramp levels led to a 63% (male, P < 0.05; n = 10-14) and a 124% (female, P < 0.001; n = 20) increase in the lifespan of mdx/Utrn-/- mice. Proteomic and mechanistic studies revealed that Cramp cross-talks with Ca2+ signalling in skeletal muscle through sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase1 (SERCA1). Cramp binds and inactivates SERCA1, leading to the activation of Ca2+ -dependent calpain proteases that exacerbate DMD progression. CONCLUSIONS These findings identify Cramp as an immune cell-derived regulator of skeletal muscle degeneration and provide a potential therapeutic target for DMD.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jiwon Jo
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Myeongjin Lee
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| |
Collapse
|
10
|
Li J, Jiang Y, Dai Q, Yu Y, Lv X, Zhang Y, Liao X, Ao L, Hu G, Meng J, Peng Z, Tao L, Xie Y. Protective effects of mefunidone on ischemia-reperfusion injury/Folic acid-induced acute kidney injury. Front Pharmacol 2022; 13:1043945. [PMID: 36506525 PMCID: PMC9727196 DOI: 10.3389/fphar.2022.1043945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most common causes of acute kidney injury (AKI). It poses a significant threat to public health, and effective therapeutic drugs are lacking. Mefunidone (MFD) is a new pyridinone drug that exerts a significant protective effect on diabetic nephropathy and the unilateral ureteral obstruction (UUO) model in our previous study. However, the effects of mefunidone on ischemia-reperfusion injury-induced acute kidney injury remain unknown. In this study, we investigated the protective effect of mefunidone against ischemia-reperfusion injury-induced acute kidney injury and explored the underlying mechanism. These results revealed that mefunidone exerted a protective effect against ischemia-reperfusion injury-induced acute kidney injury. In an ischemia-reperfusion injury-induced acute kidney injury model, treatment with mefunidone significantly protected the kidney by relieving kidney tubular injury, suppressing oxidative stress, and inhibiting kidney tubular epithelial cell apoptosis. Furthermore, we found that mefunidone reduced mitochondrial damage, regulated mitochondrial-related Bax/bcl2/cleaved-caspase3 apoptotic protein expression, and protected mitochondrial electron transport chain complexes III and V levels both in vivo and in vitro, along with a protective effect on mitochondrial membrane potential in vitro. Given that folic acid (FA)-induced acute kidney injury is a classic model, we used this model to further validate the efficacy of mefunidone in acute kidney injury and obtained the same conclusion. Based on the above results, we conclude that mefunidone has potential protective and therapeutic effects in both ischemia-reperfusion injury- and folic acid-induced acute kidney injury.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Jiang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Liyun Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Hunan Key Lab of Organ Fibrosis, Changsha, China,Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Lab of Organ Fibrosis, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yanyun Xie,
| |
Collapse
|
11
|
Recent Advances in Multifunctional Antimicrobial Peptides as Immunomodulatory and Anticancer Therapy: Chromogranin A-Derived Peptides and Dermaseptins as Endogenous versus Exogenous Actors. Pharmaceutics 2022; 14:pharmaceutics14102014. [PMID: 36297449 PMCID: PMC9608009 DOI: 10.3390/pharmaceutics14102014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all living organisms exhibiting antimicrobial activities and representing the first line of innate defense against pathogens. In this context, AMPs are suggested as an alternative to classical antibiotics. However, several researchers reported their involvement in different processes defining them as Multifunctional AMPs (MF-AMPs). Interestingly, these agents act as the endogenous responses of the human organism against several dangerous stimuli. Still, they are identified in other organisms and evaluated for their anticancer therapy. Chromogranin A (CgA) is a glyco-phosphoprotein discovered for the first time in the adrenal medulla but also produced in several cells. CgA can generate different derived AMPs influencing numerous physiological processes. Dermaseptins (DRSs) are a family of α-helical-shaped polycationic peptides isolated from the skin secretions of several leaf frogs from the Phyllomedusidae family. Several DRSs were identified as AMPs and, until now, more than 65 DRSs have been classified. Recently, these exogenous molecules were characterized for their anticancer activity. In this review, we summarize the role of these two classes of MF-AMPs as an example of endogenous molecules for CgA-derived peptides, able to modulate inflammation but also as exogenous molecules for DRSs, exerting anticancer activities.
Collapse
|
12
|
Wang F, Gu L, Wang Y, Sun D, Zhao Y, Meng Q, Yin L, Xu L, Lu X, Peng J, Lin Y, Sun P. MicroRNA-122a aggravates intestinal ischemia/reperfusion injury by promoting pyroptosis via targeting EGFR-NLRP3 signaling pathway. Life Sci 2022; 307:120863. [DOI: 10.1016/j.lfs.2022.120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
13
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
14
|
Zuo D, Do N, Hwang I, Ann J, Yu JW, Lee J. Design and synthesis of an N-benzyl 5-(4-sulfamoylbenzylidene-2-thioxothiazolidin-4-one scaffold as a novel NLRP3 inflammasome inhibitor. Bioorg Med Chem Lett 2022; 65:128693. [PMID: 35314328 DOI: 10.1016/j.bmcl.2022.128693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
A series of N-benzyl 5-(4-sulfamoylbenzylidene-2-thioxothiazolidin-4-one analogs, designed as hybrids of CY09 and JC121, were investigated as inhibitors of NLRP3 inflammasome activation. Among them, compounds 34 and 36 were identified as promising NLRP3 inhibitors by measuring the amount of active caspase-1 p20 and IL-1β produced by NLRP3 inflammasome activation. Further studies indicated that both compounds inhibited NLRP3 inflammasome assembly by reducing the formation of NLRP3 and ASC oligomer specks and selectively inhibited only NLRP3 inflammasome activation and not other inflammasomes such as NLRC4 and AIM2.
Collapse
Affiliation(s)
- Dongxu Zuo
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nayeon Do
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Je-Wook Yu
- Department of Microbiology and Immunology, BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Zhao W, Li J, Li Y, Chen Y, Jin H. Preventive Effect of Collagen Peptides from Acaudina molpadioides on Acute Kidney Injury through Attenuation of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8186838. [PMID: 35592533 PMCID: PMC9113864 DOI: 10.1155/2022/8186838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
The protective effect of collagen peptide from Acaudina molpadioides (Amp) on acute kidney injury (AKI) in mice and its mechanism were explored. The results showed that Amp-fed could effectively improve the renal mass index and histopathological morphology. The levels of serum creatinine and urea nitrogen decreased significantly, while the antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD) increased significantly in Amp-fed groups. Western blot results disclosed that Amp significantly upregulates the levels of heme oxygenase-1 (HO-1), Nrf2, p-PI3K, and p-AKT in the kidney. In addition, Amp could significantly downregulate the levels of nuclear factor NF-kappa-B (NF-κB), tumor necrosis factor α (TNF-α), inflammatory cytokines interleukin 6 (IL-6) and interleukin 1β (IL-1β). These findings provide evidence that Amp plays a protective role in AKI via attenuation of oxidative stress and inflammation mediated by PI3K/AKT/Nrf2 and PI3K/AKT/NF-κB pathways. This study laid a foundation for the application of Amp in the prevention of AKI.
Collapse
Affiliation(s)
- Wei Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jie Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
16
|
Kraus AC, De Miguel C. Hyperoxia and Acute Kidney Injury: A Tale of Oxygen and the Kidney. Semin Nephrol 2022; 42:151282. [PMID: 36404211 PMCID: PMC9825666 DOI: 10.1016/j.semnephrol.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although oxygen supplementation is beneficial to support life in the clinic, excessive oxygen therapy also has been linked to damage to organs such as the lung or the eye. However, there is a lack of understanding of whether high oxygen therapy directly affects the kidney, leading to acute kidney injury, and what molecular mechanisms may be involved in this process. In this review, we revise our current understanding of the mechanisms by which hyperoxia leads to organ damage and highlight possible areas of investigation for the scientific community interested in novel mechanisms of kidney disease. Overall, we found a significant need for both animal and clinical studies evaluating the role of hyperoxia in inducing kidney damage. Thus, we urge the research community to further investigate oxygen therapy and its impact on kidney health with the goal of optimizing oxygen therapy guidelines and improving patient care.
Collapse
Affiliation(s)
- Abigayle C Kraus
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
17
|
Liu H, Jia K, Ren Z, Sun J, Pan LL. PRMT5 critically mediates TMAO-induced inflammatory response in vascular smooth muscle cells. Cell Death Dis 2022; 13:299. [PMID: 35379776 PMCID: PMC8980010 DOI: 10.1038/s41419-022-04719-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
Abstract
A high plasma level of the choline-derived metabolite trimethylamine N-oxide (TMAO) is closely related to the development of cardiovascular disease. However, the underlying mechanism remains unclear. In the present study, we demonstrated that a positive correlation of protein arginine methyltransferase 5 (PRMT5) expression and TMAO-induced vascular inflammation, with upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in primary rat and human vascular smooth muscle cells (VSMC) in vitro. Knockdown of PRMT5 suppressed VCAM-1 expression and the adhesion of primary bone marrow-derived macrophages to TMAO-stimulated VSMC. VSMC-specific PRMT5 knockout inhibited vascular inflammation with decreased expression of VCAM-1 in mice. We further identified that PRMT5 promoted VCAM-1 expression via symmetrical demethylation of Nuclear factor-κB p65 on arginine 30 (R30). Finally, we found that TMAO markedly induced the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) and production of reactive oxygen species, which contributed to PRMT5 expression and subsequent VCAM-1 expression. Collectively, our data provide novel evidence to establish a Nox4-PRMT5-VCAM-1 in mediating TMAO-induced VSMC inflammation. PRMT5 may be a potential target for the treatment of TMAO-induced vascular diseases.
Collapse
Affiliation(s)
- He Liu
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Kunpeng Jia
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Zhengnan Ren
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jia Sun
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.
| | - Li-Long Pan
- School of Medicine and School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.
| |
Collapse
|
18
|
Jin J, Zhou TJ, Ren GL, Cai L, Meng XM. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin 2022; 43:2789-2806. [PMID: 35365780 PMCID: PMC8972670 DOI: 10.1038/s41401-022-00886-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.
Collapse
|
19
|
Chang Y, Han P, Wang Y, Jia C, Zhang B, Zhao Y, Li S, Li S, Wang X, Yang X, Wei W. Tryptophan 2,3-dioxygenase 2 plays a key role in regulating the activation of fibroblast-like synoviocytes in autoimmune arthritis. Br J Pharmacol 2021; 179:3024-3042. [PMID: 34969166 DOI: 10.1111/bph.15787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Abnormal kynurenine (Kyn) metabolism has been closely linked to the pathogenesis of rheumatoid arthritis (RA). The aims of this study were to investigate the role of tryptophan 2,3-dioxygenase 2 (TDO2), a rate-limiting enzyme that converts tryptophan (Trp) to Kyn, in regulating fibroblast-like synoviocyte (FLS)-mediated synovial inflammation in autoimmune arthritis. EXPERIMENTAL APPROACH The expression of TDO2 was determined by immunohistochemistry, confocal laser scanning fluorescence microscopy, imaging flow cytometry, and Western blot. TDO2 activity was tested by high performance liquid chromatography and colorimetric assay. TDO2 small interfering RNA (siRNA) and TDO2 inhibitor 680C91 were used to inhibit TDO2 in AA-FLS function in vitro. A rat model of adjuvant-induced arthritis (AA) was used to evaluate the in vivo effect of allopurinol (ALLO), a TDO2 inhibitor. KEY RESULTS TDO2 expression was strongly increased in synovial tissue and FLS of RA and AA. Immune cells were found to express high amount of TDO2 proteins at the peak stage of AA. Pharmacological inhibition or knockdown of TDO2 in AA-FLS resulted in a reduced proliferation, secretion, migration and invasion. Kyn restored the inhibitory effect of TDO2 inhibition on activation of AA-FLS. ALLO treatment ameliorated the arthritis severity and decreased the activity of TDO2. CONCLUSION AND IMPLICATIONS Our results suggest that elevated TDO2 expression may contribute to synovial inflammation and joint destruction during arthritis. Therefore, targeting TDO2 activity and the Kyn pathway of Trp degradation may represent a potential therapeutic strategy in RA.
Collapse
Affiliation(s)
- Yan Chang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Ping Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Yueye Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Chengyan Jia
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Bingjie Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Yingjie Zhao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Susu Li
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Siyu Li
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Xinwei Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Xuezhi Yang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education, Hefei, Anhui Province, China
| |
Collapse
|
20
|
Li N, Wang Y, Wang X, Sun N, Gong YH. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury. Pharmacol Res 2021; 175:106033. [PMID: 34915124 DOI: 10.1016/j.phrs.2021.106033] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a worldwide problem, and there is no effective drug to eliminate AKI. The death of renal cells is an important pathological basis of intrinsic AKI. At present, targeted therapy for TEC death is a research hotspot in AKI therapy. There are many ways of cell death involved in the occurrence and development of AKI, such as apoptosis, necrosis, ferroptosis, and pyroptosis. This article mainly focuses on the role of pyroptosis in AKI. The assembly and activation of NLRP3 inflammasome is a key event in the occurrence of pyroptosis, which is affected by many factors, such as the activation of the NF-κB signaling pathway, mitochondrial instability and excessive endoplasmic reticulum (ER) stress. The activation of NLRP3 inflammasome can trigger its downstream inflammatory cytokines, which will lead to pyroptosis and eventually induce AKI. In this paper, we reviewed the possible mechanism of pyroptosis in AKI and the potential effective inhibitors of various key targets in this process. It may provide potential therapeutic targets for novel intrinsic AKI therapies based on pyroptosis, so as to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yan-Hua Gong
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China.
| |
Collapse
|
21
|
Pan LL, Zhang M, Li Z, Li B, Pan X, Chen X, Yang B, Zhang H, Chen W, Zhang L, Sun J. CRAMP-encoding Lactobacillus plantarum FCQHC24 attenuates experimental colitis in mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Intra-Articular Administration of Cramp into Mouse Knee Joint Exacerbates Experimental Osteoarthritis Progression. Int J Mol Sci 2021; 22:ijms22073429. [PMID: 33810460 PMCID: PMC8037447 DOI: 10.3390/ijms22073429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and is associated with wear and tear, aging, and inflammation. Previous studies revealed that several antimicrobial peptides are up-regulated in the knee synovium of patients with OA or rheumatoid arthritis. Here, we investigated the functional effects of cathelicidin-related antimicrobial peptide (Cramp) on OA pathogenesis. We found that Cramp is highly induced by IL-1β via the NF-κB signaling pathway in mouse primary chondrocytes. Elevated Cramp was also detected in the cartilage and synovium of mice suffering from OA cartilage destruction. The treatment of chondrocytes with Cramp stimulated the expression of catabolic factors, and the knockdown of Cramp by small interfering RNA reduced chondrocyte catabolism mediated by IL-1β. Moreover, intra-articular injection of Cramp into mouse knee joints at a low dose accelerated traumatic OA progression. At high doses, Cramp affected meniscal ossification and tears, leading to cartilage degeneration. These findings demonstrate that Cramp is associated with OA pathophysiology.
Collapse
|
23
|
Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed Pharmacother 2021; 138:111442. [PMID: 33667791 DOI: 10.1016/j.biopha.2021.111442] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) are increasing worldwide. Current approved medication for IBD treatment in the clinic mainly includes corticosteroids and neutralization antibodies to pro-inflammatory cytokines. However, drug resistance and severe side effect hinder long-term efficacy of these agents. The NOD-like receptor family pyrin domain containing protein 3 (NLRP3) is exclusively expressed in several inflammatory and autoimmune diseases. Excessive expression, aberrant activation, polymorphism, and gain-of-function mutation of the NLRP3 inflammasome contribute to IBD pathogenesis. In this article, we summarize the regulatory factors to NLRP3, and review recently developed NLRP3 inhibitors and their preclinical and clinical applications in treating inflammatory and autoimmune diseases. We present our views on the therapeutic potential of NLRP3 inhibitors as emerging therapeutic avenue for IBD.
Collapse
|
24
|
Ren G, Zhou Q, Lu M, Wang H. Rosuvastatin corrects oxidative stress and inflammation induced by LPS to attenuate cardiac injury by inhibiting the NLRP3/TLR4 pathway. Can J Physiol Pharmacol 2021; 99:964-973. [PMID: 33641435 DOI: 10.1139/cjpp-2020-0321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rosuvastatin has been found to possess antioxidant and anti-inflammatory properties. The aim of the current study was to evaluate whether rosuvastatin was effective in attenuating cardiac injury in lipopolysaccharide (LPS) - challenged mice and H9C2 cells and identify the underlying mechanisms, focusing on the nod-like receptor protein 3 (NLRP3)/toll-like receptor 4 (TLR4) pathway. Cardiac injury, cardiac function, apoptosis, oxidative stress, inflammatory response, and the NLRP3/TLR4 pathway were evaluated in both in vivo and in vitro studies. LPS-induced cardiomyocyte injury was markedly attenuated by rosuvastatin treatment, evidenced by increased cell proliferation of H9C2 cells, rescued cardiac function, and improved morphological changes in mice and reduced lactate dehydrogenase (LDH), creatine kinase MB fraction (CK-MB), and troponin I (cTnI) in serum. Apoptosis was clearly ameliorated in myocardial tissue and H9C2 cells co-treated with rosuvastatin. In addition, after LPS challenge, excessive oxidative stress was present, indicated by increases in malondialdehyde (MDA) content, NADPH activity, and reactive oxygen species (ROS) production and decreased superoxide dismutase (SOD) activity. Rosuvastatin improved all the indicators of oxidative stress, with an effect similar to that of N-acetylcysteine (NAC) (an ROS scavenger). Notably, LPS-exposed H9C2 cells and mice showed significant NLRP3 and TLR4/nuclear factor-κB (NF-κB) pathway activation and inflammatory responses. Administration of rosuvastatin reduced the increases in NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, TLR4, and p65 expression and decreased the tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-18, and IL-6 contents, with an effect similar to that of MCC950 (an NLRP3 inhibitor). In conclusion, inhibition of the inflammatory response and oxidative stress contributes to cardioprotective effect of rosuvastatin against cardiac injury induced by LPS, and the effect of rosuvastatin was achieved through inactivation of the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Guocheng Ren
- Department of Circulatory Medicine, Chaoyang Central Hospital, Chaoyang 122000, China
| | - Qiujie Zhou
- Department of Circulatory Medicine, Chaoyang Central Hospital, Chaoyang 122000, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
25
|
Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation 2020; 17:330. [PMID: 33153475 PMCID: PMC7643474 DOI: 10.1186/s12974-020-01988-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Inflammatory response has been recognized as a pivotal pathophysiological process during cerebral ischemic stroke. NLRP3 inflammasome, involved in the regulation of inflammatory cascade, can simultaneously lead to GSDMD-executed pyroptosis in cerebral ischemia. Low-density lipoprotein receptor (LDLR), responsible for cholesterol uptake, was noted to exert potential anti-inflammatory bioactivities. Nevertheless, the role of LDLR in neuroinflammation mobilized by cerebral ischemia/reperfusion (I/R) has not been investigated. METHODS Ischemic stroke mice model was accomplished by middle cerebral artery occlusion. Oxygen-glucose deprivation was employed after primary cortical neuron was extracted and cultured. A pharmacological inhibitor of NLRP3 (CY-09) was administered to suppress NLPR3 activation. Histological and biochemical analysis were performed to assess the neuronal death both in vitro and in vivo. In addition, neurological deficits and behavioral deterioration were evaluated in mice. RESULTS The expression of LDLR was downregulated following cerebral I/R injury. Genetic knockout of Ldlr enhanced caspase-1-dependent cleavage of GSDMD and resulted in severe neuronal pyroptosis. LDLR deficiency contributed to excessive NLRP3-mediated maturation and release of IL-1β and IL-18 under in vitro and in vivo ischemic conditions. These influences ultimately led to aggravated neurological deficits and long-term cognitive dysfunction. Blockade of NLRP3 substantially retarded neuronal pyroptosis in Ldlr-/- mice and cultured Ldlr-/- neuron after experimental stroke. CONCLUSIONS These results demonstrated that LDLR modulates NLRP3-mediated neuronal pyroptosis and neuroinflammation following ischemic stroke. Our findings characterize a novel role for LDLR as a potential therapeutic target in neuroinflammatory responses to acute cerebral ischemic injury.
Collapse
|
26
|
Pan LL, Ren Z, Liu Y, Zhao Y, Li H, Pan X, Fang X, Liang W, Wang Y, Yang J, Sun J. A novel danshensu derivative ameliorates experimental colitis by modulating NADPH oxidase 4-dependent NLRP3 inflammasome activation. J Cell Mol Med 2020; 24:12955-12969. [PMID: 32945118 PMCID: PMC7701520 DOI: 10.1111/jcmm.15890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
We have previously reported a novel compound [4‐(2‐acetoxy‐3‐((R)‐3‐(benzylthio)‐1‐methoxy‐1‐oxopropan‐2‐ylamino)‐3‐oxopropyl)‐1,2‐phenylene diacetate (DSC)], derived from danshensu, exhibits cytoprotective activities in vitro. Here, we investigated the effects and underlying mechanisms of DSC on dextran sodium sulphate (DSS)‐induced experimental colitis. We found that DSC treatment afforded significant protection against the development of colitis, evidencing by suppressed inflammatory responses and enhanced barrier integrity. Intriguingly, DSC specifically down‐regulated DSS‐induced colonic NADPH oxidase 4 (Nox4) expression, accompanied by a balanced redox status, suppressed nuclear factor‐κB (NF‐κB) and NLRP3 inflammasome activation and up‐regulated nuclear factor (erythroid‐derived 2)‐like 2 and haeme oxygenase‐1 expression. In vitro study also demonstrated DSC also markedly decreased Nox4 expression and activity associated with inhibiting reactive oxygen species generation, NF‐κB activation and NLRP3 inflammasome activation in bone marrow‐derived macrophages. Either lentiviral Nox4 shRNA‐mediated Nox4 knockdown or Nox4‐specific small‐interfering RNA mimicked effects of DSC by suppressing NLPR3 inflammasome activation to alleviate experimental colitis or inflammatory macrophage response. Collectively, our results provide the first evidence that DSC ameliorates experimental colitis partly through modulating Nox4‐mediated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanyan Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yalei Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongli Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Fang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Yang
- Department of General Surgery and Public Health Research Center, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Sabapathy V, Venkatadri R, Dogan M, Sharma R. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Front Med (Lausanne) 2020; 7:441. [PMID: 32974364 PMCID: PMC7472534 DOI: 10.3389/fmed.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.
Collapse
Affiliation(s)
| | | | | | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
28
|
Zhou Q, Pan LL, Xue R, Ni G, Duan Y, Bai Y, Shi C, Ren Z, Wu C, Li G, Agerberth B, Sluijter JPG, Sun J, Xiao J. The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Am J Cancer Res 2020; 10:6167-6181. [PMID: 32483446 PMCID: PMC7255020 DOI: 10.7150/thno.46225] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Biomarkers for the diagnosis of heart failure (HF) are clinically essential. Circulating antimicrobial peptides LL-37 has emerged as a novel biomarker in cardiovascular disease, however, its relevance as a biomarker for acute HF are undetermined. Methods: Acute HF patients were enrolled in this study and the serum levels of LL-37/CRAMP (cathelicidin-related antimicrobial peptide) were measured by ELISA. The receiver-operator characteristic (ROC) curve was used to determine if serum LL-37 could be a biomarker for acute HF. Mouse CRAMP (mCRAMP, mouse homolog for human LL-37) was also determined in both heart and serum samples of, transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced HF mice models, and phenylephrine (PE) and angiotensin II (AngII)-induced neonatal mouse cardiomyocytes (NMCMs) hypertrophic models, both intracellular and secreted, by ELISA. The protective effects of mCRAMP were determined in TAC, ISO, and AngII-induced HF in mice while whether HF was exacerbated in AngII-infused animals were checked in mCRAMP knockout mice. The underlying mechanism for protective effects of CARMP in pathological hypertrophy was determined by using a NF-κB agonist together with rCRAMP (rat homolog for human LL-37) in AngII or PE treated neonatal rat cardiomyocytes (NRCMs). Results: Serum levels of LL-37 were significantly decreased in acute HF patients (area under the curve (AUC) of 0.616), and negatively correlated with NT-proBNP. We further confirmed that mCRAMP was decreased in both heart and serum samples of TAC- and ISO-induced HF mice models. Moreover, in PE and AngII-induced NMCMs hypertrophic models, both intracellular and secreted mCRAMP levels were reduced. Functionally, mCRAMP could attenuate TAC, ISO, and AngII-induced HF in mice while CRAMP deficiency exacerbated HF. Mechanistically, the anti-hypertrophy effects of CRAMP were mediated by NF-κB signaling. Conclusions: Collectively, serum LL-37 is associated with acute HF and increasing CRAMP is protective against deleterious NF-κB signaling in the rodent.
Collapse
|
29
|
Pan LL, Liang W, Ren Z, Li C, Chen Y, Niu W, Fang X, Liu Y, Zhang M, Diana J, Agerberth B, Sun J. Cathelicidin-related antimicrobial peptide protects against ischaemia reperfusion-induced acute kidney injury in mice. Br J Pharmacol 2020; 177:2726-2742. [PMID: 31976546 DOI: 10.1111/bph.14998] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite recent advances in understanding its pathophysiology, treatment of acute kidney injury (AKI) remains a major unmet medical need, and novel therapeutic strategies are needed. Cathelicidin-related antimicrobial peptide (CRAMP) with immunomodulatory properties has an emerging role in various disease contexts. Here, we aimed to investigate the role of CRAMP and its underlying mechanisms in AKI. EXPERIMENTAL APPROACH The human homologue LL-37 and CRAMP were measured in blood samples of AKI patients and in experimental AKI mice respectively. Experimental AKI was induced in wild-type and CRAMP-deficient (Cnlp-/- ) mice by ischaemia/reperfusion (I/R). Therapeutic evaluation of CRAMP was performed with exogenous CRAMP (5 mg·kg-1 , i.p.) treatment. KEY RESULTS Cathelicidin expression was inversely related to clinical signs in patients and down-regulated in renal I/R-induced injury in mice. Cnlp-/- mice exhibited exacerbated I/R-induced renal dysfunction, aggravated inflammatory responses and apoptosis. Moreover, over-activation of the NLRP3 inflammasome in Cnlp-/- mice was associated with I/R-induced renal injury. Exogenous CRAMP treatment markedly attenuated I/R-induced renal dysfunction, inflammatory response and apoptosis, correlated with modulation of immune cell infiltration and phenotype. Consistent with Cnlp-/- mouse data, CRAMP administration suppressed renal I/R-induced NLRP3 inflammasome activation, and its renal protective effects were mimicked by a specific NLRP3 inhibitor CY-09. The reno-protective and NLRP3 inhibitory effects of CRAMP required the EGF receptor. CONCLUSION AND IMPLICATIONS Our results suggest that CRAMP acts as a novel immunomodulatory mediator of AKI and modulation of CRAMP may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chunqing Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Chen
- Department of Nephrology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenying Niu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Fang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanyan Liu
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Zhang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, F68, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jia Sun
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|