1
|
Zhang X, Buckley C, Lee MD, Salaun C, MacDonald M, Wilson C, McCarron JG. Increased TRPV4 Channel Expression Enhances and Impairs Blood Vessel Function in Hypertension. Hypertension 2025; 82:57-68. [PMID: 39440451 DOI: 10.1161/hypertensionaha.124.23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Endothelial cell TRPV4 (transient receptor potential vanilloid 4) channels provide a control point that is pivotal in regulating blood vessel diameter by mediating the Ca2+-dependent release of endothelial-derived vasoactive factors. In hypertension, TRPV4-mediated control of vascular function is disrupted, but the underlying mechanisms and precise physiological consequences remain controversial. METHODS Here, using a comprehensive array of methodologies, endothelial TRPV4 channel function was examined in intact mesenteric resistance arteries from normotensive Wistar-Kyoto and spontaneously hypertensive rats. RESULTS Our results show there is a notable shift in vascular reactivity in hypertension characterized by enhanced endothelium-dependent vasodilation at low levels of TRPV4 channel activation. However, at higher levels of TRPV4 activity, this vasodilatory response is reversed, contributing to the aberrant vascular tone observed in hypertension. The change in response, from dilation to constriction, was accompanied by a shift in intracellular Ca2+ signaling modalities arising from TRPV4 activity. Oscillatory TRPV4-evoked IP3 (inositol triphosphate)-mediated Ca2+ release, which underlies dilation, decreased, while the contraction inducing sustained Ca2+ rise, arising from TRPV4-mediated Ca2+ influx, increased. Our findings also reveal that while the sensitivity of endothelial cell TRPV4 to activation was unchanged, expression of the channel is upregulated and IP3 receptors are downregulated in hypertension. CONCLUSIONS These data highlight the intricate interplay between endothelial TRPV4 channel expression, intracellular Ca2+ signaling dynamics, and vascular reactivity. Moreover, the data support a new unifying hypothesis for the vascular impairment that accompanies hypertension. Specifically, endothelial cell TRPV4 channels play a dual role in modulating blood vessel function in hypertension.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaret MacDonald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
2
|
Rehman A, Marigliano M, Torsiello M, La Noce M, Papaccio G, Tirino V, Del Vecchio V, Papaccio F. Adipose Stem Cells and Their Interplay with Cancer Cells and Mitochondrial Reservoir: A New Promising Target. Cancers (Basel) 2024; 16:2769. [PMID: 39123496 PMCID: PMC11311803 DOI: 10.3390/cancers16152769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ASCs) significantly influence tumor progression within the tumor microenvironment (TME). This review examines the pro-tumorigenic roles of ASCs, focusing on paracrine signaling, direct cell-cell interactions, and immunomodulation. ASC-mediated mitochondrial transfer through tunneling nanotubes (TNTs) and gap junctions (GJs) plays a significant role in enhancing cancer cell survival and metabolism. Cancer cells with dysfunctional mitochondria acquire mitochondria from ASCs to meet their metabolic needs and thrive in the TME. Targeting mitochondrial transfer, modulating ASC function, and influencing metabolic pathways are potential therapeutic strategies. However, challenges like TME complexity, specificity, safety concerns, and resistance mechanisms must be addressed. Disrupting the ASC-cancer cell-mitochondria axis offers a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Martina Marigliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende 43, 84081 Baronissi, SA, Italy;
| | - Martina Torsiello
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Marcella La Noce
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende 43, 84081 Baronissi, SA, Italy;
| |
Collapse
|
3
|
Buckley C, Lee MD, Zhang X, Wilson C, McCarron JG. Signalling switches maintain intercellular communication in the vascular endothelium. Br J Pharmacol 2024; 181:2810-2832. [PMID: 38651236 DOI: 10.1111/bph.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND AND PURPOSE The single layer of cells lining all blood vessels, the endothelium, is a sophisticated signal co-ordination centre that controls a wide range of vascular functions including the regulation of blood pressure and blood flow. To co-ordinate activities, communication among cells is required for tissue level responses to emerge. While a significant form of communication occurs by the propagation of signals between cells, the mechanism of propagation in the intact endothelium is unresolved. EXPERIMENTAL APPROACH Precision signal generation and targeted cellular manipulation was used in conjunction with high spatiotemporal mesoscale Ca2+ imaging in the endothelium of intact blood vessels. KEY RESULTS Multiple mechanisms maintain communication so that Ca2+ wave propagation occurs irrespective of the status of connectivity among cells. Between adjoining cells, regenerative IP3-induced IP3 production transmits Ca2+ signals and explains the propagated vasodilation that underlies the increased blood flow accompanying tissue activity. The inositide is itself sufficient to evoke regenerative phospholipase C-dependent Ca2+ waves across coupled cells. None of gap junctions, Ca2+ diffusion or the release of extracellular messengers is required to support this type of intercellular Ca2+ signalling. In contrast, when discontinuities exist between cells, ATP released as a diffusible extracellular messenger transmits Ca2+ signals across the discontinuity and drives propagated vasodilation. CONCLUSION AND IMPLICATIONS These results show that signalling switches underlie endothelial cell-to-cell signal transmission and reveal how communication is maintained in the face of endothelial damage. The findings provide a new framework for understanding wave propagation and cell signalling in the endothelium.
Collapse
Affiliation(s)
- Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Yasarbas SS, Inal E, Yildirim MA, Dubrac S, Lamartine J, Mese G. Connexins in epidermal health and diseases: insights into their mutations, implications, and therapeutic solutions. Front Physiol 2024; 15:1346971. [PMID: 38827992 PMCID: PMC11140265 DOI: 10.3389/fphys.2024.1346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.
Collapse
Affiliation(s)
- S. Suheda Yasarbas
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Ece Inal
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - M. Azra Yildirim
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérôme Lamartine
- Skin Functional Integrity Group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Gulistan Mese
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| |
Collapse
|
5
|
Rengarajan A, Goldblatt HE, Beebe DJ, Virumbrales-Muñoz M, Boeldt DS. Immune cells and inflammatory mediators cause endothelial dysfunction in a vascular microphysiological system. LAB ON A CHIP 2024; 24:1808-1820. [PMID: 38363157 PMCID: PMC11022267 DOI: 10.1039/d3lc00824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Functional assessment of endothelium serves as an important indicator of vascular health and is compromised in vascular disorders including hypertension, atherosclerosis, and preeclampsia. Endothelial dysfunction in these cases is linked to dysregulation of the immune system involving both changes to immune cells and increased secretion of inflammatory cytokines. Herein, we utilize a well-established microfluidic device to generate a 3-dimensional vascular microphysiological system (MPS) consisting of a tubular blood vessel lined with human umbilical vein endothelial cells (HUVECs) to evaluate endothelial function measured via endothelial permeability and Ca2+ signaling. We evaluated the effect of a mixture of factors associated with inflammation and cardiovascular disease (TNFα, VEGF-A, IL-6 at 10 ng ml-1 each) on vascular MPS and inferred that inflammatory mediators contribute to endothelial dysfunction by disrupting the endothelial barrier over a 48 hour treatment and by diminishing coordinated Ca2+ activity over a 1 hour treatment. We also evaluated the effect of peripheral blood mononuclear cells (PBMCs) on endothelial permeability and Ca2+ signaling in the HUVEC MPS. HUVECs were co-cultured with PBMCs either directly wherein PBMCs passed through the lumen or indirectly with PBMCs embedded in the supporting collagen hydrogel. We revealed that phytohemagglutinin (PHA)-M activated PBMCs cause endothelial dysfunction in MPS both through increased permeability and decreased coordinated Ca2+ activity compared to non-activated PBMCs. Our MPS has potential applications in modeling cardiovascular disorders and screening for potential treatments using measures of endothelial function.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| | - Hannah E Goldblatt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - María Virumbrales-Muñoz
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Derek S Boeldt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| |
Collapse
|
6
|
Adermark L, Stomberg R, Söderpalm B, Ericson M. Astrocytic Regulation of Endocannabinoid-Dependent Synaptic Plasticity in the Dorsolateral Striatum. Int J Mol Sci 2024; 25:581. [PMID: 38203752 PMCID: PMC10779090 DOI: 10.3390/ijms25010581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rosita Stomberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| | - Bo Söderpalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
- Beroendekliniken, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| |
Collapse
|
7
|
Wang Z, Lei Z, Wang Q, Jiang Q, Zhang Z, Liu X, Xing B, Li S, Guo X, Liu Y, Li X, Qi Y, Shu K, Zhang H, Huang Y, Lei T. Connexin 36 Mediated Intercellular Endoplasmic Reticulum Stress Transmission Induces SSTA Resistance in Growth Hormone Pituitary Adenoma. Int J Biol Sci 2024; 20:801-817. [PMID: 38169563 PMCID: PMC10758099 DOI: 10.7150/ijbs.86736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
Somatostatin analogues (SSTA) are first-line pharmacological treatment choice for acromegaly, which received satisfying tumor shrinkage and normalization of growth hormone. However, there are still patients unresponsive to SSTA, and the underline mechanism remains unknown. Besides, there is no evidence regarding the role of endoplasmic reticulum stress (ERS) and its transmission in SSTA resistance, which also require investigation. Primary growth hormone adenoma cells and cell lines were treated with SSTA; autophagy double-labeled LC3 (mRFP-GFP) adenovirus transfection, flow cytometry sorting, western blotting, calcium imaging as well as immunofluorescence staining were used to determine ERS and autophagy signal transmission; xenograft and syngeneic tumor in vivo model were exploited to confirm the ERS signal transmission mediated effect. Our results revealed that SSTA induces ERS in pituitary growth hormone (GH) adenoma cells. The ERS signals can be intercellularly transmitted, leading to less responsible to SSTA treatment. Moreover, SSTA stimulates inositol triphosphate (IP3) elevation, mediating ERS intercellular transfer. In addition, connexin 36 tunnels ERS transmission, and its blocker, Quinine, exhibits a synergistic effect with SSTA treating GH adenoma. Our study provided insight into ERS intercellular transmission mediated SSTA resistance, which could be translated into clinical usage to improve SSTA efficiency in GH adenoma treatment.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuowei Lei
- Department of Orthopedics, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quanji Wang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Zhang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojin Liu
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biao Xing
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sihan Li
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Guo
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingbo Li
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Shu
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Lei
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
8
|
Moysan L, Fazekas F, Fekete A, Köles L, Zelles T, Berekméri E. Ca 2+ Dynamics of Gap Junction Coupled and Uncoupled Deiters' Cells in the Organ of Corti in Hearing BALB/c Mice. Int J Mol Sci 2023; 24:11095. [PMID: 37446272 DOI: 10.3390/ijms241311095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
ATP, as a paracrine signalling molecule, induces intracellular Ca2+ elevation via the activation of purinergic receptors on the surface of glia-like cochlear supporting cells. These cells, including the Deiters' cells (DCs), are also coupled by gap junctions that allow the propagation of intercellular Ca2+ waves via diffusion of Ca2+ mobilising second messenger IP3 between neighbouring cells. We have compared the ATP-evoked Ca2+ transients and the effect of two different gap junction (GJ) blockers (octanol and carbenoxolone, CBX) on the Ca2+ transients in DCs located in the apical and middle turns of the hemicochlea preparation of BALB/c mice (P14-19). Octanol had no effect on Ca2+ signalling, while CBX inhibited the ATP response, more prominently in the middle turn. Based on astrocyte models and using our experimental results, we successfully simulated the Ca2+ dynamics in DCs in different cochlear regions. The mathematical model reliably described the Ca2+ transients in the DCs and suggested that the tonotopical differences could originate from differences in purinoceptor and Ca2+ pump expressions and in IP3-Ca2+ release mechanisms. The cochlear turn-dependent effect of CBX might be the result of the differing connexin isoform composition of GJs along the tonotopic axis. The contribution of IP3-mediated Ca2+ signalling inhibition by CBX cannot be excluded.
Collapse
Affiliation(s)
- Louise Moysan
- Department of Zoology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Fruzsina Fazekas
- Department of Zoology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Adam Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Eszter Berekméri
- Department of Zoology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
9
|
Sánchez-Tecuatl M, Moccia F, Martínez-Carballido JF, Berra-Romani R. An automated method to discover true events and classification of intracellular Ca 2+ profiles for endothelium in situ injury assay. Front Physiol 2023; 14:1161023. [PMID: 37250125 PMCID: PMC10213911 DOI: 10.3389/fphys.2023.1161023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Endothelial cells (ECs), being located at the interface between flowing blood and vessel wall, maintain cardiovascular homeostasis by virtue of their ability to integrate chemical and physical cues through a spatio-temporally coordinated increase in their intracellular Ca2+ concentration ([Ca2+]i). Endothelial heterogeneity suggests the existence of spatially distributed functional clusters of ECs that display different patterns of intracellular Ca2+ response to extracellular inputs. Characterizing the overall Ca2+ activity of the endothelial monolayer in situ requires the meticulous analysis of hundreds of ECs. This complex analysis consists in detecting and quantifying the true Ca2+ events associated to extracellular stimulation and classifying their intracellular Ca2+ profiles (ICPs). The injury assay technique allows exploring the Ca2+-dependent molecular mechanisms involved in angiogenesis and endothelial regeneration. However, there are true Ca2+ events of nearly undetectable magnitude that are almost comparable with inherent instrumental noise. Moreover, undesirable artifacts added to the signal by mechanical injury stimulation complicate the analysis of intracellular Ca2+ activity. In general, the study of ICPs lacks uniform criteria and reliable approaches for assessing these highly heterogeneous spatial and temporal events. Methods: Herein, we present an approach to classify ICPs that consists in three stages: 1) identification of Ca2+ candidate events through thresholding of a feature termed left-prominence; 2) identification of non-true events, known as artifacts; and 3) ICP classification based upon event temporal location. Results: The performance assessment of true-events identification showed competitive sensitivity = [0.9995, 0.9831], specificity = [0.9946, 0.7818] and accuracy = [0.9978, 0.9579] improvements of 2x and 14x, respectively, compared with other methods. The ICP classifier enhanced by artifact detection showed 0.9252 average accuracy with the ground-truth sets provided for validation. Discussion: Results indicate that our approach ensures sturdiness to experimental protocol maneuvers, besides it is effective, simple, and configurable for different studies that use unidimensional time dependent signals as data. Furthermore, our approach would also be effective to analyze the ICPs generated by other cell types, other dyes, chemical stimulation or even signals recorded at higher frequency.
Collapse
Affiliation(s)
- Marcial Sánchez-Tecuatl
- Electronics Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
10
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
11
|
Wilson C, Lee MD, Buckley C, Zhang X, McCarron JG. Mitochondrial ATP Production is Required for Endothelial Cell Control of Vascular Tone. FUNCTION 2022; 4:zqac063. [PMID: 36778749 PMCID: PMC9909368 DOI: 10.1093/function/zqac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Arteries and veins are lined by nonproliferating endothelial cells that play a critical role in regulating blood flow. Endothelial cells also regulate tissue perfusion, metabolite exchange, and thrombosis. It is thought that endothelial cells rely on ATP generated via glycolysis, rather than mitochondrial oxidative phosphorylation, to fuel each of these energy-demanding processes. However, endothelial metabolism has mainly been studied in the context of proliferative cells, and little is known about energy production in endothelial cells within the fully formed vascular wall. Using intact arteries isolated from rats and mice, we show that inhibiting mitochondrial respiration disrupts endothelial control of vascular tone. Basal, mechanically activated, and agonist-evoked calcium activity in intact artery endothelial cells are each prevented by inhibiting mitochondrial ATP synthesis. Agonist-evoked calcium activity was also inhibited by blocking the transport of pyruvate, the master fuel for mitochondrial energy production, through the mitochondrial pyruvate carrier. The role for mitochondria in endothelial cell energy production is independent of species, sex, or vascular bed. These data show that a mitochondrial ATP supply is necessary for calcium-dependent, nitric oxide-mediated endothelial control of vascular tone, and identifies the critical role of endothelial mitochondrial energy production in fueling perfused blood vessel function.
Collapse
Affiliation(s)
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | | |
Collapse
|
12
|
The Bioactive Phenolic Agents Diaryl Ether CVB2-61 and Diarylheptanoid CVB4-57 as Connexin Hemichannel Blockers. Pharmaceuticals (Basel) 2022; 15:ph15101173. [PMID: 36297285 PMCID: PMC9611528 DOI: 10.3390/ph15101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation mediators enhance the activity of connexin (Cx) hemichannels, especially in the epithelial and endothelial tissues. As potential release routes for injury signals, such as (oligo)nucleotides, Cx hemichannels may contribute to long-lasting inflammation. Specific inhibition of Cx hemichannels may therefore be a mode of prevention and treatment of long-lasting, chronic sterile inflammation. The activity of Cx hemichannels was analysed in N2A and HeLa cells transfected with human Cx26 and Cx46 as well as in Calu-3 cells, using dye uptake as functional assay. Moreover, the possible impacts of the bioactive phenolic agents CVB2-61 and CVB4-57 on the barrier function of epithelial cells was analysed using Calu-3 cells. Both agents inhibited the dye uptake in N2A cells expressing Cx26 (>5 µM) and Cx46 (>20 µM). In Calu-3 cells, CVB2-61 and CVB4-57 reversibly inhibited the dye uptake at concentrations as low as 5 µM, without affecting the gap junction communication and barrier function, even at concentrations of 20 µM. While CVB2-61 or CVB4-57 maintained a reduced dye uptake in Calu-3 cells, an enhancement of the dye uptake in response to the stimulation of adenosine signalling was still observed after removal of the agents. The report shows that CVB2-61 and CVB4-57 reversibly block Cx hemichannels. Deciphering the mechanisms of the interactions of these agents with Cx hemichannels could allow further development of phenolic compounds to target Cx hemichannels for better and safer treatment of pathologies that involve Cx hemichannels.
Collapse
|
13
|
Lee MD, Buckley C, Zhang X, Louhivuori L, Uhlén P, Wilson C, McCarron JG. Small-world connectivity dictates collective endothelial cell signaling. Proc Natl Acad Sci U S A 2022; 119:e2118927119. [PMID: 35482920 PMCID: PMC9170162 DOI: 10.1073/pnas.2118927119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Every blood vessel is lined by a single layer of highly specialized, yet adaptable and multifunctional endothelial cells. These cells, the endothelium, control vascular contractility, hemostasis, and inflammation and regulate the exchange of oxygen, nutrients, and waste products between circulating blood and tissue. To control each function, the endothelium processes endlessly arriving requests from multiple sources using separate clusters of cells specialized to detect specific stimuli. A well-developed but poorly understood communication system operates between cells to integrate multiple lines of information and coordinate endothelial responses. Here, the nature of the communication network has been addressed using single-cell Ca2+ imaging across thousands of endothelial cells in intact blood vessels. Cell activities were cross-correlated and compared to a stochastic model to determine network connections. Highly correlated Ca2+ activities occurred in scattered cell clusters, and network communication links between them exhibited unexpectedly short path lengths. The number of connections between cells (degree distribution) followed a power-law relationship revealing a scale-free network topology. The path length and degree distribution revealed an endothelial network with a “small-world” configuration. The small-world configuration confers particularly dynamic endothelial properties including high signal-propagation speed, stability, and a high degree of synchronizability. Local activation of small clusters of cells revealed that the short path lengths and rapid signal transmission were achieved by shortcuts via connecting extensions to nonlocal cells. These findings reveal that the endothelial network design is effective for local and global efficiency in the interaction of the cells and rapid and robust communication between endothelial cells in order to efficiently control cardiovascular activity.
Collapse
Affiliation(s)
- Matthew D. Lee
- Vascular Imaging Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Charlotte Buckley
- Vascular Imaging Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Xun Zhang
- Vascular Imaging Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Calum Wilson
- Vascular Imaging Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - John G. McCarron
- Vascular Imaging Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
14
|
Zhang X, Lee MD, Buckley C, Wilson C, McCarron JG. Mitochondria regulate TRPV4-mediated release of ATP. Br J Pharmacol 2022; 179:1017-1032. [PMID: 34605007 DOI: 10.1111/bph.15687] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ influx via TRPV4 channels triggers Ca2+ release from the IP3 -sensitive internal store to generate repetitive oscillations. Although mitochondria are acknowledged regulators of IP3 -mediated Ca2+ release, how TRPV4-mediated Ca2+ signals are regulated by mitochondria is unknown. We show that depolarised mitochondria switch TRPV4 signalling from relying on Ca2+ -induced Ca2+ release at IP3 receptors to being independent of Ca2+ influx and instead mediated by ATP release via pannexins. EXPERIMENTAL APPROACH TRPV4-evoked Ca2+ signals were individually examined in hundreds of cells in the endothelium of rat mesenteric resistance arteries using the indicator Cal520. KEY RESULTS TRPV4 activation with GSK1016790A (GSK) generated repetitive Ca2+ oscillations that required Ca2+ influx. However, when the mitochondrial membrane potential was depolarised, by the uncoupler CCCP or complex I inhibitor rotenone, TRPV4 activation generated large propagating, multicellular, Ca2+ waves in the absence of external Ca2+ . The ATP synthase inhibitor oligomycin did not potentiate TRPV4-mediated Ca2+ signals. GSK-evoked Ca2+ waves, when mitochondria were depolarised, were blocked by the TRPV4 channel blocker HC067047, the SERCA inhibitor cyclopiazonic acid, the PLC blocker U73122 and the inositol trisphosphate receptor blocker caffeine. The Ca2+ waves were also inhibited by the extracellular ATP blockers suramin and apyrase and the pannexin blocker probenecid. CONCLUSION AND IMPLICATIONS These results highlight a previously unknown role of mitochondria in shaping TRPV4-mediated Ca2+ signalling by facilitating ATP release. When mitochondria are depolarised, TRPV4-mediated release of ATP via pannexin channels activates plasma membrane purinergic receptors to trigger IP3 -evoked Ca2+ release.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
15
|
Nardin C, Peres C, Putti S, Orsini T, Colussi C, Mazzarda F, Raspa M, Scavizzi F, Salvatore AM, Chiani F, Tettey-Matey A, Kuang Y, Yang G, Retamal MA, Mammano F. Connexin Hemichannel Activation by S-Nitrosoglutathione Synergizes Strongly with Photodynamic Therapy Potentiating Anti-Tumor Bystander Killing. Cancers (Basel) 2021; 13:cancers13205062. [PMID: 34680212 PMCID: PMC8533914 DOI: 10.3390/cancers13205062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bystander effects depend on direct cell-cell communication and/or paracrine signaling mediated by the release of soluble factors into the extracellular environment and may greatly influence therapy outcome. Although the limited data available suggest a role for intercellular gap junction channels, far less is known about the role of connexin hemichannels. Here, we investigated bystander effects induced by photodynamic therapy in syngeneic murine melanoma models in vivo. We determined that (i) photoactivation of a photosensitizer triggered calcium-dependent cell death pathways in both irradiated and bystander tumor cells; (ii) hemichannel activity and adenosine triphosphate release were key factors for the induction of bystander cell death; and (iii) bystander cell killing and antitumor response elicited by photodynamic therapy were greatly enhanced by combination treatment with S-nitrosoglutathione, which promoted hemichannel opening in these experimental conditions. Therefore, these findings in a preclinical model have important translational potential. Abstract In this study, we used B16-F10 cells grown in the dorsal skinfold chamber (DSC) preparation that allowed us to gain optical access to the processes triggered by photodynamic therapy (PDT). Partial irradiation of a photosensitized melanoma triggered cell death in non-irradiated tumor cells. Multiphoton intravital microscopy with genetically encoded fluorescence indicators revealed that bystander cell death was mediated by paracrine signaling due to adenosine triphosphate (ATP) release from connexin (Cx) hemichannels (HCs). Intercellular calcium (Ca2+) waves propagated from irradiated to bystander cells promoting intracellular Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria and rapid activation of apoptotic pathways. Combination treatment with S-nitrosoglutathione (GSNO), an endogenous nitric oxide (NO) donor that biases HCs towards the open state, greatly potentiated anti-tumor bystander killing via enhanced Ca2+ signaling, leading to a significant reduction of post-irradiation tumor mass. Our results demonstrate that HCs can be exploited to dramatically increase cytotoxic bystander effects and reveal a previously unappreciated role for HCs in tumor eradication promoted by PDT.
Collapse
Affiliation(s)
- Chiara Nardin
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Chiara Peres
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Claudia Colussi
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI)-CNR, 00168 Rome, Italy;
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Flavia Mazzarda
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Anna Maria Salvatore
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Francesco Chiani
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Abraham Tettey-Matey
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (Y.K.); (G.Y.)
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (Y.K.); (G.Y.)
| | - Mauricio A. Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago 7780272, Chile;
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
16
|
Carbenoxolon Is Capable to Regulate the Mitochondrial Permeability Transition Pore Opening in Chronic Alcohol Intoxication. Int J Mol Sci 2021; 22:ijms221910249. [PMID: 34638588 PMCID: PMC8549702 DOI: 10.3390/ijms221910249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. Methods: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. Results: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.
Collapse
|