1
|
Zhang W, Yi C, Song Z, Yu B, Jiang X, Guo L, Huang S, Xia T, Huang F, Yan Y, Li H, Dai Y. Reshaping the gut microbiota: Tangliping decoction and its core blood-absorbed component quercetin improve diabetic cognitive impairment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156560. [PMID: 40058319 DOI: 10.1016/j.phymed.2025.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cognitive decline, which can result in diabetic cognitive impairment (DCI). Recent studies have indicated that gut microbiota plays a significant role in the development of DCI. Tangliping Decoction (TLP), a traditional Chinese medicine compound, contains various active ingredients that have been shown to regulate the microecology of gut microbiota and potentially improve DCI. However, it remains unclear whether TLP can improve DCI by modulating gut microbiota, as well as which specific component is primarily responsible for these effects. PURPOSE Assess the impact of TLP on alleviating DCI and investigate the contribution of quercetin (QR), the core blood-absorbed component of TLP, in this process. and investigate the underlying mechanisms through which TLP and QR enhance DCI by modulating gut microbiota composition. STUDY DESIGN AND METHODS Initially, experiments such as morris water maze (MWM), morphological analysis, and 16S ribosomal RNA (16S rRNA) gene amplicon sequencing from DCI mice, were performed to validate the pharmacological efficacy of TLP in mitigating DCI. The results indicated that TLP possesses the capacity to modulate the composition and quantity of gut microbiota and safeguard the integrity of the gut barrier and brain barrier. Secondly, high performance liquid chromatography coupled with high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with network pharmacology methods were used to screen for blood-absorbed components, suggesting that QR may be a potential core blood-absorbed component of TLP in the treatment of DCI. Subsequently, the pharmacological efficacy of QR in ameliorating DCI was confirmed, and the characteristics of gut microbiota as well as the permeability of the gut and brain barrier, were assessed. Finally, fecal microbiota transplantation (FMT) experiments were conducted, wherein fecal matter from TLP and QR-treated mice (donor mice) was transplanted into pseudo-sterile DCI mice with antibiotic-induced depletion of gut microbiota. This approach aimed to elucidate the specific mechanisms by which TLP and QR improve DCI through the modulation of the structure, composition, and abundance of gut microbiota. RESULTS TLP and QR have the potential to enhance learning and memory capabilities in DCI mice, as well as reduce homeostasis model assessment insulin resistance (HOMA-IR) and restore homeostasis model assessment-β function (HOMA- β), leading to increased fasting insulin (FIN) levels and decreased fasting blood glucose (FBG) levels. Simultaneously, the administration of FMT from donor mice to pseudo-sterile DCI mice has been shown to alter the composition and abundance of gut microbiota, leading to amelioration of pathological damage in the colon and hippocampal tissues. Ultimately, FMT utilizing fecal suspensions from donor mice treated with TLP and QR improved cognitive function in pseudo-sterile DCI mice, restore gut microbiota dysbiosis, and maintained the integrity of the gut and brain barriers. CONCLUSION The results of this study indicate that TLP and its core component, QR, which is absorbed into the bloodstream, improve DCI through a gut microbiota-dependent mechanism, providing further evidence for gut microbiota as a therapeutic target for DCI treatment.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Song
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, Chifeng, Inner Mongolia, China
| | - Bin Yu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Shao X, Ren X, Xing T, Zheng X, Feng C, Cheng T, Yin J. Time Series Imaging the Mitochondrial Microenvironment and Its Interactions with Lysosomes during Ferroptosis. Anal Chem 2025; 97:6155-6162. [PMID: 40081989 DOI: 10.1021/acs.analchem.4c06840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
In the realm of cutting-edge scientific inquiry, the development and application of integrated optical molecular probes for the simultaneous detection and tracing of mitochondrial microenvironments during ferroptosis, as well as the visualization of their interactions with lysosomes, stands as a pivotal advancement. In this work, we developed a probe, IMT, that integrates viscosity sensing with mitochondrial targeting, and used it in conjunction with commercial lysosome green tracers (LGT) to investigate mitochondrial-lysosome interactions (MLIs). This approach avoids the uneven labeling caused by subcellular microenvironment differences when using single-molecule dual-targeting probes. Using the developed IMT, we observed an increase in mitochondrial viscosity during erastin-induced ferroptosis and a decrease during ferrostatin-1-inhibited ferroptosis. Moreover, the time series imaging of the mitochondrial profile lighted by the IMT showed that the mitochondrial area, perimeter, aspect ratio, and mitochondrial form factor changed significantly as ferroptosis progressed. In addition, combined with LGT, we visualized the dynamic process of first contact and then separation between lysosomes and mitochondria during ferroptosis, confirming the complexity and variability of MLIs. This work not only enhances our understanding of the complex biochemical processes underlying ferroptosis but also opens new avenues for therapeutic intervention in diseases characterized by this form of cell death.
Collapse
Affiliation(s)
- Xinyu Shao
- Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xusheng Ren
- Department of Orthodontics, Jinan Stomatological Hospital. Jinan, Shandong 250100, China
| | - Tianshuo Xing
- Department of Orthodontics, Jinan Stomatological Hospital. Jinan, Shandong 250100, China
| | - Xueying Zheng
- Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Cuimin Feng
- Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tian Cheng
- Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
3
|
Ma S, Zhang X, Zhu X, Yan K, Wang Q, Lei L, Li J, Guo J, Tang W, Liu J, Cao J, Wang D, Luo T. Dual-modality immune nano-activator harnessing Mn 2⁺ and quercetin to potentiate the cGAS-STING pathway for advanced cancer metalloimmunotherapy. J Nanobiotechnology 2025; 23:248. [PMID: 40128784 PMCID: PMC11934746 DOI: 10.1186/s12951-025-03336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/16/2025] [Indexed: 03/26/2025] Open
Abstract
Manganese ions (Mn2+) have emerged as promising activators of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. However, their clinical application was hindered by low bioavailability and limited immune activation pathways, which impaired their ability to trigger robust immune responses and achieve significant antitumor effects. To address these challenges, we developed a dual-modality immune nano-activator by coordinating manganese ions with quercetin. This strategy was designed to enhance the cGAS-STING pathway activation and elicit the immunogenic cell death, thereby strengthening the antitumor immune response. The engineered nano-activator demonstrated superior tumor-targeting ability and efficient cellular internalization. Upon exposure to near-infrared irradiation, the system harnessed photothermal effects to induce apoptosis in tumor cells while simultaneously accelerating the release of manganese ions and quercetin. The released manganese ions facilitated the generation of reactive oxygen species, which in conjunction with quercetin-induced apoptosis, amplified photothermal-induced DNA damage. This DNA damage further promoted the release of cytosolic DNA, which in turn activated the cGAS-STING pathway, thereby intensifying immune activation. Notably, the nano-activator also triggered immunogenic cell death, which synergized with the cGAS-STING activation to promote dendritic cell maturation and activate antigen-specific T-cell, significantly enhancing the immune response against the tumor. Both in vitro and in vivo studies confirmed that this nano-activator effectively inhibited tumor growth, with particularly pronounced effects when combined with anti-CTLA-4 antibodies.
Collapse
Affiliation(s)
- Shanshan Ma
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
| | - Xuequan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
| | - Kangning Yan
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Lei Lei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Jiasheng Li
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
| | - Jing Guo
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School. Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, People's Republic of China.
| | - Tao Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
4
|
Xu SY, Yin SS, Wang L, Zhong H, Wang H, Yu HY. Insights into emerging mechanisms of ferroptosis: new regulators for cancer therapeutics. Cell Biol Toxicol 2025; 41:63. [PMID: 40131564 PMCID: PMC11937073 DOI: 10.1007/s10565-025-10010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxides, which has been implicated in the pathogenesis of various diseases, and therapeutic agents targeting ferroptosis are emerging as promising tools for cancer treatment. Current research reveals that ferroptosis-targeted therapies can effectively inhibit tumor progression or delay cancer development. Notably, natural product-derived compounds-such as artemisinin, baicalin, puerarin, quercetin, kaempferol, and apigenin-have demonstrated the ability to modulate ferroptosis, offering potential anti-cancer benefits. Mechanistically, ferroptosis exhibits negative glutathione peroxidase 4 (GPX4) regulation and demonstrates a positive correlation with plasma membrane polyunsaturated fatty acid (PUFA) abundance. Moreover, the labile iron pool (LIP) serves as the redox engine of ferroptosis. This review systematically analyzes the hallmarks, signaling pathways, and molecular mechanisms of ferroptosis, with a focus on how natural product-derived small molecules regulate this process. It further evaluates their potential as ferroptosis inducers or inhibitors in anti-tumor therapy, providing a foundation for future clinical translation.
Collapse
Affiliation(s)
- Si-Yi Xu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuang-Shuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hao Zhong
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hai-Yang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Fan Y, Wang Q, Zhang Y, Wang Y, Li W, Jiang S, Duan JN. Mechanism of Guishao Yigong decoction in treating colorectal cancer based on network pharmacology and experimental validation. J Pharm Pharmacol 2025; 77:430-445. [PMID: 39352002 DOI: 10.1093/jpp/rgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/05/2024] [Indexed: 03/06/2025]
Abstract
OBJECTIVES To explore the effective components of Guishao Yigong decoction (GYD) in the treatment of colorectal cancer and reveal its potential mechanism of action. METHODS Through network pharmacology, the main target and signaling pathway of GYD therapy for colorectal cancer (CRC) were found. Subsequently, the effect of GYD was verified by in vitro cell viability measurements, colony formation, and scratch healing tests. The effects of GYD on metabolic pathways in vivo were found through plasma metabolomics. Finally, flow cytometry and qPCR experiments were used to verify the cycle-blocking effect of GYD on CRC cells. KEY FINDINGS Based on the network pharmacological analysis and molecular docking technology, it was found that GYD could restrain the growth of CRC cells by affecting lipid metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathways. A series of cell experiments showed that GYD could inhibit the proliferation, migration and clonogenic ability of CRC cells. Furthermore, the plasma metabolomics results showed that GYD could affect the production of unsaturated fatty acids in mice. Flow cytometry and qPCR experiments further proved that GYD blocked the CRC cells in the G1 phase and modulated the expression of cell cycle-related targets, such as AKT, TP53, CDKN1A, and CDK2. CONCLUSIONS All the results indicated that GYD could regulate the related metabolism of unsaturated fatty acids. Thus, the cell cycle was blocked and the expressions of the key proteins such as AKT and TP53 were regulated, which achieved the purpose of intervention in colorectal cancer.
Collapse
Affiliation(s)
- Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Ji-Nao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
6
|
Yu S, Qin Z, Chen Y, Wang F, Li Z, Huang R, Gao Z, Qu Y, Xue P, Luo Y, Wang X, Zhao X. Antimony-induced hippocampal neuronal impairment through ferroptosis activation from NCOA4-mediated ferritinophagy. Chem Biol Interact 2025; 409:111415. [PMID: 39954839 DOI: 10.1016/j.cbi.2025.111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Recently, our group identified antimony (Sb) as a novel nerve pollutant, can lead to neuronal injure. However, Sb-associated neurotoxicological mechanisms yet remain unclear. Herein, we found Sb induced hippocampal neuronal ferroptosis in vivo and in vitro. Moreover, ferroptosis inhibition using ferrostatin-1 effectively attenuated Sb-induced neuronal damage in PC12 cells and mice hippocampal regions. Furthermore, iron chelator deferoxamine (DFO) also effectively attenuated ferroptosis and cytotoxicity in PC12 cells. In vitro, Sb treatment reduced expression of the heavy (H)- and light (L)-chain subunits of ferritin (FTH1 and FTL). Moreover, Sb accelerated FTH1 and FTL protein degradation, while ferritin overexpression by plasmid or hippocampal AAV injections dramatically weaken Sb-induced ferroptosis. Sb exposure accelerated autophagic flux, and autophagy inhibition with beclin1 knockdown effectively reduced Sb-mediated ferroptosis. 3-methyladenine treatment in Sb-exposed mice prevented the decrease of FTH1 and FTL protein, resulting in recovery of Sb-induced hippocampal ferroptosis as well as neuronal loss, suggesting that Sb triggered hippocampal neuronal ferritinophagy. Finally, we found Sb upregulated NCOA4 protein expression, while NCOA4 knockdown significantly attenuated Sb-triggered ferroptosis. Collectively, our results proved that Sb triggers hippocampal neuronal ferroptosis through NCOA4-dependent ferritinophagy.
Collapse
Affiliation(s)
- Shali Yu
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Ziyu Qin
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Yuqing Chen
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Fengxu Wang
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhijie Li
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Ruiyao Huang
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhengnan Gao
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Yi Qu
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Peng Xue
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Yonghua Luo
- Nantong Fourth People's Hospital, Nantong, China.
| | - Xiaoke Wang
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
7
|
Du Y, Duan S, Yang Y, Tibenda JJ, Huang S, Nan Y, Zhang Z, Yuan L. Antitumor components and mechanisms of Zanthoxylum bungeanum Maxim with medicine and food homology. Front Pharmacol 2025; 16:1525313. [PMID: 40093316 PMCID: PMC11906381 DOI: 10.3389/fphar.2025.1525313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Zanthoxylum bungeanum Maxim (Z. bungeanum) is a medicinal and edible plant commonly used to improve the flavor of Chinese cuisine due to its unique numbing taste. It is recognized for its medicinal properties, including bodywarming, relieving cold, promoting blood circulation, and alleviating pain. Additionally, Z. bungeanum has been extensively studied for its antitumor properties. In this study, various scientific databases and network pharmacology were used to search for information about Z. bungeanum and its components for the treatment of tumors. Numerous active components of Z. bungeanum have been identified, demonstrating antitumor properties. We discovered that Z. bungeanum can modulate multiple signaling pathways across various targets using network pharmacological predictions, highlighting its strong antitumor potential. The components of Z. bungeanum and the traditional Chinese medicine compound containing Z. bungeanum can promote apoptosis, arrest the cell cycle, inhibit cell invasion and metastasis, promote autophagy, and increase the sensitivity of chemotherapeutic drugs through P53, PI3K/AKT, Wnt/β-catenin and other signaling pathways, which are effective against various cancers, including hepatocellular cancer, gastric cancer, and breast cancer. Z. bungeanum and its extracts have demonstrated promising effects against various tumors, indicating their potential use in future cancer therapies and offering new strategies for tumor treatment. However, clinical studies evaluating the antitumor efficacy and toxicity of Z. bungeanum in humans are scarce. Therefore, well-designed clinical trials should be prioritized in the future to establish a solid foundation for its use in cancer treatment.
Collapse
Affiliation(s)
- Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shuai Duan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | | | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Bai K, Long Y, Yuan F, Huang X, Liu P, Hou Y, Zou X, Jiang T, Sun J. Hedyotis diffusa injection modulates the ferroptosis in bladder cancer via CAV1/JUN/VEGFA. Int Immunopharmacol 2025; 147:113925. [PMID: 39765005 DOI: 10.1016/j.intimp.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Hedyotis diffusa Willd. (HDW), a traditional Chinese medicinal plant, exhibits a variety of pharmacological effects and has anticancer potential for a wide range of cancer types; Ferroptosis is a non-apoptosis-regulated cell death induced by iron accumulation and subsequent lipid peroxidation; and there is currently an increasing interest in the therapeutic role of ferroptosis in cancer. However, the effects of HDW on bladder cancer and its underlying molecular mechanisms remain largely unknown. In this study, a combination of in vivo and in vitro experiments, network pharmacology and data mining methods were used to investigate the effects of HDW on BLCA. The results showed that HDW exerted its anticancer activity by inducing ferroptosis in bladder cancer cells. Subsequently, we demonstrated for the first time that HDW induced ferroptosis in vitro and in vivo. To further explore the possible targets of HDW-induced ferroptosis in bladder cancer, we performed network pharmacological analyses, transcriptomic analyses, and single-cell analyses; through integrative analyses, we identified three key pivotal genes associated with iron death, CAV1, VEGFA, and JUN.Mechanistically, we showed that CAV1, VEGFA and JUN are key determinants of HDW-induced ferroptosis in BLCA. Knockdown of target genes altered the anticancer effects of HDW in 5637 and T24 cells. In conclusion, our data show for the first time that HDW exerts its anticancer effects on BLCA through CAV1, VEGFA and JUN gene-induced ferroptosis. This is expected to provide a promising compound for bladder cancer therapy.
Collapse
Affiliation(s)
- Kaiping Bai
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Yanxi Long
- Department of Anesthesiology, International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Fei Yuan
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Xiaoling Huang
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Pengtao Liu
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Tao Jiang
- Department of Andrology and Sexual Medicine, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116000, China.
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| |
Collapse
|
9
|
Batsukh T, Tsend-Ayush A. Herbal drug‑based nanotherapy for hepatocellular carcinoma: Quercetin‑contained nanocarrier as a multipurpose therapeutic agent against hepatocellular carcinoma (Review). Biomed Rep 2025; 22:29. [PMID: 39720296 PMCID: PMC11668132 DOI: 10.3892/br.2024.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, with hepatocellular carcinoma (HCC) accounting for ~75% of all primary liver cancers and exhibiting a high incidence rate. Unfortunately, the response rate to chemotherapeutic agents for liver cancer is relatively low, primarily due to the development of drug resistance and the lack of targeted therapeutic agents. The present study focused on the anticancer mechanisms of quercetin and the development of innovative nanocarriers designed to enhance its efficacy against HCC while mitigating drug resistance. Quercetin demonstrates a diverse array of biological activities, making it a promising candidate for therapeutic applications. Its mechanisms include inhibition of tumor cell cycle, induction of apoptosis, modulation of reactive oxygen species and inhibition of chemotherapeutic resistance. Given these properties, extensive research has been conducted in pharmaceutical engineering to develop well-designed nanocarriers that incorporate quercetin. These nanocarriers aim to improve the bioavailability and targeting of quercetin, thereby enhancing its therapeutic efficacy against HCC and overcoming the challenges associated with anticancer drug resistance. Through this approach, quercetin could potentially play a pivotal role in the future of HCC treatment, providing a synergistic effect when combined with traditional chemotherapy leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tserendolgor Batsukh
- Department of Pharmacy Administration and Technology, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar 18130, Mongolia
| | - Altansukh Tsend-Ayush
- Department of Molecular Biology and Genetics, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| |
Collapse
|
10
|
Shi M, Sun L, Wei J, Shen Y, Wang J, Zhang P, Yang X, Ding Y, Yin W, Lu X, Yang X, Wang G, Li R. Quercetin alleviates endothelial dysfunction in preeclampsia by inhibiting ferroptosis and inflammation through EGFR binding. Commun Biol 2025; 8:90. [PMID: 39833490 PMCID: PMC11747637 DOI: 10.1038/s42003-025-07547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific complication and there remains no effective treatment. Given the limitations on medication use during pregnancy, exploring natural, safe, and effective drugs for PE is worthwhile. We investigate the causal relationship between ferroptosis, inflammation, and PE, and determine the protective effects of quercetin (QCT), a representative compound that is classified as a flavanol, against endothelial dysfunction. Then, the target of QCT is predicted and verified. The prophylactic addition of a low dose of QCT rescues endothelial dysfunction, aiding in endothelial repair. Furthermore, QCT alleviates PE-like maternal manifestations and endothelial dysfunction in the placenta of the selective reduced uteroplacental perfusion (sRUPP) rat model through binding to the epidermal growth factor receptor (EGFR). The potential applications of QCT are expanded, offering the possibility of further development as a safe and effective preventive molecule for PE.
Collapse
Affiliation(s)
- Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wanchang Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xinyao Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, China.
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Xu Y, Yan X, Zhuang J, Hao H. The Anticancer Perspective of Tangeretin: A Small Review. Molecules 2025; 30:300. [PMID: 39860170 PMCID: PMC11767889 DOI: 10.3390/molecules30020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer is an important disease that threatens human life and health. Many natural compounds from plants have been found to have a better inhibitory effect on cancer, and flavonoids are one of them. Tangeretin, a flavonoid, is widely present in a variety of citrus plants and has been shown to have a variety of biological activities that can inhibit tumor cells. Tangeretin can inhibit the growth, proliferation, and metastasis of cancer cells by acting on JAK/STAT (Janus Kinase/signal transducer and activator of transcription) and caspase-3 signal transduction and by regulating the cell cycle of tumor cells. Tangeretin can also work with other chemotherapy drugs, such as cisplatin, to reduce the drug resistance of cancer cells and improve the therapeutic effect of chemotherapy drugs. This review summarizes the effects of tangeretin on various cancers.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (Y.X.); (J.Z.)
| | - Xi Yan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junpeng Zhuang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (Y.X.); (J.Z.)
| | - Haijun Hao
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; (Y.X.); (J.Z.)
| |
Collapse
|
12
|
Xie Z, Hou Q, He Y, Xie Y, Mo Q, Wang Z, Zhao Z, Chen X, Peng T, Li L, Xie W. Ferritin Hinders Ferroptosis in Non-Tumorous Diseases: Regulatory Mechanisms and Potential Consequences. Curr Protein Pept Sci 2025; 26:89-104. [PMID: 39225224 DOI: 10.2174/0113892037315874240826112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Ferritin, as an iron storage protein, has the potential to inhibit ferroptosis by reducing excess intracellular free iron concentrations and lipid reactive oxygen species (ROS). An insufficient amount of ferritin is one of the conditions that can lead to ferroptosis through the Fenton reaction mediated by ferrous iron. Consequently, upregulation of ferritin at the transcriptional or posttranscriptional level may inhibit ferroptosis. In this review, we have discussed the essential role of ferritin in ferroptosis and the regulatory mechanism of ferroptosis in ferritin-deficient individuals. The description of the regulatory factors governing ferritin and its properties in regulating ferroptosis as underlying mechanisms for the pathologies of diseases will allow potential therapeutic approaches to be developed.
Collapse
Affiliation(s)
- Zhongcheng Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Qin Hou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yinling He
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yushu Xie
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ziyi Wang
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ziye Zhao
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
13
|
Wang Z, Liu Y, Asemi Z. Quercetin and microRNA Interplay in Apoptosis Regulation: A New Therapeutic Strategy for Cancer? Curr Med Chem 2025; 32:939-957. [PMID: 38018191 DOI: 10.2174/0109298673259466231031050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer is known as a global problem for the health and economy. Following cancer onset, apoptosis is the primary mechanism countering the tumor cells' growth. Most anticancer agents initiate apoptosis to remove tumor cells. Phytochemicals have appeared as a beneficial treatment option according to their less adverse effects. In recent decades, quercetin has been highlighted due to its high pharmacological benefits, and various literature has suggested it as a potential anti-proliferative agent against different kinds of cancers. The microRNAs (miRNAs) play key roles in cancer treatment, progression, and apoptosis. This review reviewed the effect of quercetin on miRNAs contributing to the induction or inhibition of apoptosis in cancers.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yanqing Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zatollah Asemi
- Department of Nutrition, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
14
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
15
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
16
|
Javanmard Z, Pourhajibagher M, Bahador A. Advancing Anti-Biofilm Strategies: Innovations to Combat Biofilm-Related Challenges and Enhance Efficacy. J Basic Microbiol 2024; 64:e2400271. [PMID: 39392011 DOI: 10.1002/jobm.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Biofilms are complex communities of microorganisms that can cause significant challenges in various settings, including industrial processes, environmental systems, and human health. The protective nature of biofilms makes them resistant to traditional anti-biofilm strategies, such as chemical agents, mechanical interventions, and surface modifications. To address the limitations of conventional anti-biofilm methods, researchers have explored emerging strategies that encompass the use of natural compounds, nanotechnology-based methods, quorum-sensing inhibition, enzymatic degradation, and antimicrobial photodynamic/sonodynamic therapy. There is an increasing focus on combining multiple anti-biofilm strategies to combat resistance and enhance effectiveness. Researchers are continuously investigating the mechanisms of biofilm formation and developing innovative approaches to overcome the limitations of conventional anti-biofilm methods. These efforts aim to improve the management of biofilms and prevent infections while preserving the environment. This study provides a comprehensive overview of the latest advancements in anti-biofilm strategies. Given the dynamic nature of this field, exploring new approaches is essential to stimulate further research and development initiatives. The effective management of biofilms is crucial for maintaining the health of industrial processes, environmental systems, and human populations.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Yu X, Wang X, Liu X, Li F, Bao Y, Chai Y. The Mechanism of Relieving Diarrheal Irritable Bowel Syndrome Using Polyphenols from Ribes nigrum L. Based on a Network Pharmacology Analysis and 16S rRNA Sequencing. Foods 2024; 13:3868. [PMID: 39682940 DOI: 10.3390/foods13233868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Diarrheal irritable bowel syndrome (IBS-D) is a chronic bowel condition that leads to intestinal dysfunction and is typically accompanied by diarrhea, stomach pain, and abdominal distension. Ribes nigrum L. polyphenols (RNPs), which are natural plant polyphenols, are the subject of this study, which aims to assess their potential in improving IBS-D and to explore the underlying mechanisms through a network pharmacology analysis and 16S rRNA sequencing. Next, mice models of diarrhea-predominant irritable bowel were established, and the mice with IBS-D were treated with RNPs. The effect of RNPs was then evaluated in terms of body weight, abdominal withdrawal reflex (AWR), Bristol score, fecal water percentage, diluted fecal volume, total intestinal transit time, immune index, histopathological observation, and changes in inflammatory factors. Finally, 16S rRNA sequencing and reverse q-RTPCR were utilized to evaluate the components that mediate the impact of RNPs on IBS-D. It was found that when RNP treatment was administered to mice with IBS-D, they decreased the water content in their stools, raised their immunological scores, and decreased the amount of inflammatory substances in their bodies. Moreover, through 16S rRNA sequencing, it was shown that the RNP treatment increased the relative abundances of Bacteroides, Alloprevotella, and Alistipes, which led to the remodeling of gut microbiota. In summary, RNPs significantly improved the conditions of mice with IBS-D by inhibiting the FoxO pathway and enhancing gut microbiota. This study concludes that RNPs could significantly improve the symptoms of mice with IBS-D through these means.
Collapse
Affiliation(s)
- Xi Yu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaotian Wang
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xintong Liu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Fangfei Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yangyang Chai
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
18
|
Zheng Y, Sun J, Luo Z, Li Y, Huang Y. Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications. Cell Death Dis 2024; 15:859. [PMID: 39587094 PMCID: PMC11589755 DOI: 10.1038/s41419-024-07244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Regulated cell death (RCD) refers to the form of cell death that can be regulated by various biomacromolecules. Each cell death modalities have their distinct morphological changes and molecular mechanisms. However, intense evidences suggest that lipid peroxidation can be the common feature that initiates and propagates the cell death. Excessive lipid peroxidation alters the property of membrane and further damage the proteins and nucleic acids, which is implicated in various human pathologies. Here, we firstly review the classical chain process of lipid peroxidation, and further clarify the current understanding of the myriad roles and molecular mechanisms of lipid peroxidation in various RCD types. We also discuss how lipid peroxidation involves in diseases and how such intimate association between lipid peroxidation-driven cell death and diseases can be leveraged to develop rational therapeutic strategies.
Collapse
Affiliation(s)
- Yongxin Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Junlu Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhiting Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Yimin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Yongbo Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
| |
Collapse
|
19
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Li Q, Tong Y, Chen J, Xie T. Targeting programmed cell death via active ingredients from natural plants: a promising approach to cancer therapy. Front Pharmacol 2024; 15:1491802. [PMID: 39584140 PMCID: PMC11582395 DOI: 10.3389/fphar.2024.1491802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is a serious public health problem in humans, and prevention and control strategies are still necessary. Therefore, the development of new therapeutic drugs is urgently needed. Targeting programmed cell death, particularly via the induction of cancer cell apoptosis, is one of the cancer treatment approaches employed. Recently, an increasing number of studies have shown that compounds from natural plants can target programmed cell death and kill cancer cells, laying the groundwork for use in future anticancer treatments. In this review, we focus on the latest research progress on the role and mechanism of natural plant active ingredients in different forms of programmed cell death, such as apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis, to provide a strong theoretical basis for the clinical development of antitumor drugs.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Tong
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Illescas O, Belfiore A, Varinelli L, Battistessa D, Zanutto S, Brignola C, Segrado F, Cafferati I, Ricci MT, Sabella G, Milione M, Ladisa V, Signoroni S, Vitellaro M, Pasanisi P, Gariboldi M. Effect of anti-inflammatory molecules from food on organoids derived from adenomatous polyps of FAP subjects. TUMORI JOURNAL 2024:3008916241291301. [PMID: 39462833 DOI: 10.1177/03008916241291301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Individuals with Familial Adenomatous Polyposis (FAP) or APC-associated polyposis, an autosomal dominant inherited condition, develop multiple adenomatous polyps and have an increased colorectal cancer (CRC) risk. A change in diet can help reduce cancer risk, and several dietary components have an antitumor effect. We aimed to evaluate the potential of the anti-inflammatory and anticancer substances quercetin (QER), epigallocatechin gallate (EGG) and fisetin (FIS) in decreasing the risk of CRC by reducing the growth of polyps in an organoid model. METHODS Patient-derived organoid (PDO) lines were generated from polyps obtained from patients with FAP undergoing prophylactic colectomy. PDOs were treated with QER, EGG, or FIS to determine their effect on cell growth. Changes in caspase 3/7 activity and expression of inflammation and apoptosis mediators were assessed by luminescent and colorimetric assays. RESULTS Three PDO lines with different inactivating pathogenic variants in the APC gene were developed using a combinatorial approach. FIS was the most active of the three substances tested, presenting the lowest IC50 in all PDO lines (range: 42.6-9.2 uM). The IC50 was defined as the concentration required to halve the number of cells after 72 hours. All molecules tested induced apoptosis through activation of caspases 3/7. CONCLUSIONS QER, EGG, and FIS can be easily taken from foods or dietary supplements, show toxicity on PDOs derived from adenomatous polyps, while they are known to be harmless on normal cells. Diets enriched with these substances could be potential supplemental treatments to reduce the risk of CRC in individuals with FAP.
Collapse
Affiliation(s)
- Oscar Illescas
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonino Belfiore
- Department of Diagnostic Innovation, Pathology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Varinelli
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Battistessa
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Susanna Zanutto
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Clorinda Brignola
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Segrado
- Unit of Nutrition Research and Metabolomics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Irene Cafferati
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Teresa Ricci
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- Department of Diagnostic Innovation, Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Department of Diagnostic Innovation, Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vito Ladisa
- Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Stefano Signoroni
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Colorectal Surgery Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Unit of Nutrition Research and Metabolomics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
22
|
Amador-Gómez AI, Aguiñiga-Sánchez I, Mendoza-Núñez VM, Cadena-Iñiguez J, Romero-López E, Santiago-Osorio E. Li-Fraumeni Syndrome: Narrative Review Through a Case Report with Ten Years of Primary Tumor Remission Associated with Sechium H387 07 Supplementation. Int J Mol Sci 2024; 25:11477. [PMID: 39519030 PMCID: PMC11546847 DOI: 10.3390/ijms252111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
There are hereditary mutations that predispose individuals to cancer development, such as pathogenic variants in the germ line of the tumor protein 53 (TP53) suppressor gene. This leads to a rare condition known as Li-Fraumeni syndrome (LFS), characterized by a high risk of developing multiple cancers throughout life by the precancerous niche that promotes the tumor microenvironment. LFS presents a significant challenge due to its limited therapeutic and chemoprophylactic options. Recently, protocols involving metformin as a prophylactic medication have been developed to target precancerous niches. However, this approach is still in the clinical phase, and no established therapeutic regimen is available. Therefore, new alternatives are needed to impact this disease effectively. Novel studies suggest that Sechium extract, rich in polyphenols, exhibits chemoprophylactic, antineoplastic, anti-inflammatory, and antioxidant activities, all involved in the tumor microenvironment of LFS. However, the specific role of Sechium extract in preventing recurrent neoplastic development in LFS remains unclear. We conducted this research through a case report of an LFS-diagnosed patient who has experienced multiple malignancies and cutaneous neoformations. This patient received a chemoprophylactic supplementation based on Sechium H387 07 extract over 11 years without reporting new primary malignancy events or recurrences, as evidenced by laboratory and positron emission tomography/computed tomography (PET/CT) studies. An extensive literature review on the disease, precancerous niche, tumor microenvironment, and potential mechanisms of Sechium H387 07 extract components was conducted to explain cancer absence in LFS. This review promotes the research and use of polyphenols as powerful chemoprophylactic agents to prevent and treat proliferative diseases like LFS.
Collapse
Affiliation(s)
- Angel Iván Amador-Gómez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
- Department of Biomedical Sciences, School of Medicine, Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
- Department of Biomedical Sciences, School of Medicine, Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico;
| | - Jorge Cadena-Iñiguez
- Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí 78622, Mexico;
| | - Ernesto Romero-López
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
| |
Collapse
|
23
|
Chen Y, Tang Y, Li Y, Rui Y, Zhang P. Enhancing the Efficacy of Active Pharmaceutical Ingredients in Medicinal Plants through Nanoformulations: A Promising Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1598. [PMID: 39404324 PMCID: PMC11478102 DOI: 10.3390/nano14191598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This article explores the emerging field of nanomedicine as a drug delivery system, aimed at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The traditional methods of applying medicinal plants present several limitations, such as low bioavailability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting. Nanoformulations represent an innovative approach in drug preparation that employs nanotechnology to produce nanoscale particles or carriers, which are designed to overcome these limitations. Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability of drugs, particularly for the poorly soluble components of medicinal plants. These formulations effectively enhance solubility, thereby facilitating better absorption and utilization by the human body, which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery, ensuring precise administration to the lesion site and minimizing side effects on healthy tissues. Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic action, and enhance the stability of treatment effects. However, nanoformulations present certain limitations and potential risks; their stability and safety require further investigation, particularly regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate substantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants, offering novel approaches and methodologies for their development and application.
Collapse
Affiliation(s)
- Yuhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
- Tangshan Jinhai New Material Co., Ltd., Tangshan 063000, China
- Faculty of Resources and Environment, China Agricultural University, Shanghe County Baiqiao Town Science and Technology Courtyard, Jinan 250100, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Zhou X, Lin L. Mechanisms and therapeutic target of anti-tumour treatment-related Ferroptosis: How to improve cancer therapy? Biomed Pharmacother 2024; 179:117323. [PMID: 39208665 DOI: 10.1016/j.biopha.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, increased attention has been focused on the regulatory mechanism and potential clinical application of ferroptosis in cancer cells, especially therapy-related ferroptosis. However, the mechanism of treatment-related ferroptosis and the application prospects and strategies for future treatment still require further clarification. This review highlights the molecular relationships between different clinical antitumour drugs, including commonly used chemotherapy drugs, radiation therapy and vitamins, and ferroptosis. This review also proposes strategies for future treatments that involve ferroptosis, with an aim to develop a new strategy for the transformative potential of the emerging field of ferroptosis to improve cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
26
|
Eity TA, Bhuia MS, Chowdhury R, Ahmmed S, Salehin Sheikh, Akter R, Islam MT. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J Trop Med 2024; 2024:5594462. [PMID: 39380577 PMCID: PMC11461079 DOI: 10.1155/2024/5594462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.
Collapse
Affiliation(s)
- Tanzila Akter Eity
- Department of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Shakil Ahmmed
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Rima Akter
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Biotechnology and Genetic Engineering DisciplineKhulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Pharmacy DisciplineKhulna University, Khulna 9208, Bangladesh
| |
Collapse
|
27
|
Ramos PS, Ferreira C, Passos CLA, Silva JL, Fialho E. Effect of quercetin and chrysin and its association on viability and cell cycle progression in MDA-MB-231 and MCF-7 human breast cancer cells. Biomed Pharmacother 2024; 179:117276. [PMID: 39146763 DOI: 10.1016/j.biopha.2024.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Pharmacological properties of flavonoids have been reported, with an anticancer role amongst them, however, its mechanisms are not fully elucidated. In this study, the activity of quercetin and chrysin towards MCF-7 and MDA-MB-231 breast cancer cells was investigated. Cellular viability was determined after treatment with the compounds in different concentrations for 24 h. Secondly, cells were treated with fixed concentration of chrysin and different concentrations of quercetin with preincubation for 1 h. Both compounds inhibited cellular proliferation in dose-dependent manner. The association showed improvement in their cytotoxicity, more expressively with preincubation of quercetin. Quercetin and chrysin association induced cell cycle arrest in sub-G0/G1 phase in MDA-MB-231 cells, modified the expression of caspases-3 and -8,-8, inducing late apoptosis cell death. Taken together, our results demonstrate that both flavonoids inhibited cells growth in a dose-dependent manner and the association of quercetin improved chrysin's toxic effect over the cell lines.
Collapse
Affiliation(s)
- Patrícia Severo Ramos
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Christian Ferreira
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Carlos Luan Alves Passos
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Jerson Lima Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Eliane Fialho
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
28
|
Ma B, Hu X, Ai X, Zhang Y. Research progress of ferroptosis and inflammatory bowel disease. Biometals 2024; 37:1039-1062. [PMID: 38713412 DOI: 10.1007/s10534-024-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.
Collapse
Affiliation(s)
- Baolian Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaoxue Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaowen Ai
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yonglan Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.
| |
Collapse
|
29
|
Wang M, Qu L, Du X, Song P, Ng JPL, Wong VKW, Law BYK, Fu X. Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites 2024; 14:490. [PMID: 39330497 PMCID: PMC11433951 DOI: 10.3390/metabo14090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic reprogramming is a critical pathogenesis of colorectal cancer (CRC), referring to metabolic disorders that cancer cells make in response to the stimulating pressure. Metabolic reprogramming induces changes in genetic material and promotes CRC progression and has been proven to be an efficient target of CRC. As natural products have garnered interest due to notable pharmacological effects and potential in counteracting chemoresistance, an increasing body of research is delving into the impact of these natural products on the metabolic reprogramming associated with CRC. In this review, we collected published data from the Web of Science and PubMed, covering the period from January 1980 to October 2023. This article focuses on five central facets of metabolic alterations in cancer cells, glucose metabolism, mitochondrial oxidative phosphorylation (OXPHOS), amino acid metabolism, fatty acid synthesis, and nucleotide metabolism, to provide an overview of recent advancements in natural product interventions targeting metabolic reprogramming in CRC. Our analysis underscores the potential of natural products in disrupting the metabolic pathways of CRC, suggesting promising therapeutic targets for CRC and expanding treatment options for metabolic-associated ailments.
Collapse
Affiliation(s)
- Mengyu Wang
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqun Qu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Xinying Du
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Peng Song
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jerome P. L. Ng
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Vincent Kam Wai Wong
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Betty Yuen Kwan Law
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| |
Collapse
|
30
|
Na X, Li L, Liu D, He J, Zhang L, Zhou Y. Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep 2024; 52:123. [PMID: 39054952 PMCID: PMC11292301 DOI: 10.3892/or.2024.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.
Collapse
Affiliation(s)
- Xin Na
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lin Li
- Yunnan Cancer Hospital (Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan 650118, P.R. China
| | - Dongmei Liu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaqi He
- The First Clinical Medical College of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yiping Zhou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
31
|
Rao Q, Guo M, Sun J, Yang B, Cao X, Xia J. Sulfiredoxin-1 promotes the growth of hepatocellular carcinoma by inhibiting TFEB-mediated autophagy and lysosome biogenesis. Exp Cell Res 2024; 441:114169. [PMID: 39029574 DOI: 10.1016/j.yexcr.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Advanced hepatocellular carcinoma (HCC) patients have poor prognosis. As an endogenous antioxidant enzyme involved in a variety of bioprocesses, sulfiredoxin-1 (SRXN1) plays an irreplaceable role in promoting the development of tumors. However, the role and working mechanism of SRXN1 in HCC remain unclear. In this study, we confirmed that SRXN1 promoted the cell proliferation of HCC at genetic and pharmacological level, respectively. Transcriptome sequencing analysis revealed SRXN1 knockdown had a significant effect on the expression of lysosome biogenesis related genes. Further experiments validated that lysosome biogenesis and autophagic flux were enhanced after SRXN1 inhibition and reduced as SRXN1 overexpression. Mechanism study revealed that ROS accumulation induced TFEB nuclear translocation, followed by increased autophagy. Following this rationale, the combination of SRXN1 inhibitor and sorafenib demonstrated noticeable synergistic antitumor effect through the boost of ROS both in vivo and in vitro. Taken together, SRXN1 could be a potential therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Qianwen Rao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China; Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Wang H, Li C, Zhu L, Liu Z, Li N, Zheng Z, Liang S, Yan J. Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis. In Vitro Cell Dev Biol Anim 2024; 60:805-814. [PMID: 38427138 DOI: 10.1007/s11626-024-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Adiponectin has previously been investigated for exerting its protective effect against myocardial injury through anti-apoptotic and anti-oxidative actions. Therefore, the present study aimed to investigate the nature and mechanism of adiponectin inhibition of H2O2-induced apoptosis in chicken skeletal myoblasts. Skeletal muscle satellite cells were differentiated and assigned into three groups. Group C was on the blank control group, group H was stimulated with the H2O2 (500 μmol/L, 4 h) alone group, group A + H was pre-treated with adiponectin (10 μg/mL, 24 h) and stimulated with the H2O2 (500 μmol/L, 4 h) group. Cytotoxicity inhibited by adiponectin was evaluated by the CCK-8 assay. The degree of apoptosis and oxidative damage was investigated by the TdT-mediated dUTP nick end labeling (TUNEL) and reactive oxygen species (ROS) staining assays. Oxidative stress was assessed by evaluating lipid peroxidation, superoxide dismutase, and reduced glutathione. Acridine orange (AO) staining detected lysosomal membrane permeability. The changes in mitochondrial membrane potential (MMP) were analyzed using 5,5,6,6'-tetrachloro-1,1,3,3-tetraethylimidacarbocyanine iodide (JC-1) dye under a fluorescence microscope. The lysosomal function, mitochondrial function, and apoptosis-related mRNA and protein expression levels were quantified by real-time quantitative PCR and western blot, respectively. The results suggested that adiponectin treatment attenuated H2O2-induced cytotoxicity and oxidative stress in skeletal myoblasts. Compared with H2O2 treatment, TUNEL and ROS staining demonstrated lower apoptosis upon adiponectin treatment. AO staining confirmed the amelioration of lysosomal membrane damage, and JC-1 staining revealed an increase in mitochondrial membrane potential after adiponectin treatment. At the molecular level, adiponectin treatment inhibited the expression of the lysosomal apoptotic factors cathepsin B, chymotrypsin B, and the mitochondrial apoptotic pathway cytochrome-c (cyt-c) and caspase-8; decreased the apoptotic marker gene Bax; and increased the expression of the anti-apoptotic marker gene Bcl-2. Adiponectin treatment attenuated H2O2-induced apoptosis in skeletal myoblasts, possibly by inhibiting oxidative stress and apoptosis through the lysosomal-mitochondrial axis.
Collapse
Affiliation(s)
- Han Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chi Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Longbo Zhu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
33
|
Zhu Q, Han Y, He Y, Meng P, Fu Y, Yang H, He G, Long M, Shi Y. Quercetin inhibits neuronal Ferroptosis and promotes immune response by targeting lipid metabolism-related gene PTGS2 to alleviate breast cancer-related depression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155560. [PMID: 38815404 DOI: 10.1016/j.phymed.2024.155560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Quercetin, the key ingredient in Xiaoyao Kangai Jieyu Formula, has been previously found to relieve breast cancer-related depression (BCRD). PURPOSE We want to explore the potential mechanisms and therapeutic targets of quercetin alleviating BCRD. METHODS BALB/c mice were injected subcutaneously with 4T1 cells and corticosterone (CORT) to create a BCRD mice model. The primary hippocampal neurons were co-induced with 10 μg/ml lipopolysaccharide (LPS) and 200 μM CORT for 6 h to establish an in vitro model of BCRD. Quercetin was applied to explore its effect on disease symptoms, gut microbiota, and lipid metabolism of BCRD mice. Lipid metabolism-related genes were screened based on network pharmacology. Molecular docking was employed to prove whether quercetin bound to prostaglandin-endoperoxide synthase 2 (PTGS2). PTGS2 overexpression was carried out to explore the underlying mechanism of quercetin treatment on BCRD. RESULTS Quercetin treatment not only altered the composition and abundance of gut microbiota but also alleviated abnormal lipid metabolism in BCRD mice. In particular, quercetin down-regulated BCRD and lipid metabolism-related genes screened by network pharmacology, especially PTGS2. Further, molecular docking verified the stable binding between quercetin and PTGS2. In hippocampal neurons, quercetin promoted proliferation but reduced ferroptosis-related markers (total Fe, Fe2+, MDA, and ROS) levels by targeting PTGS2. In BCRD mice, quercetin reduced the high immobility time and increased the sucrose preference rate and serotonin (5-HT), dopamine (DA), and noradrenaline (NE) levels. Meanwhile, quercetin increased CD4+/CD8+ T cells ratio and IL-2 and IFN-γ levels but reduced CA153 and IL-10 levels to alleviate BCRD development. However, PTGS2 overexpression reversed these effects of quercetin on BCRD. CONCLUSION Quercetin inhibited neuronal ferroptosis and promoted immune responses in BCRD mice by targeting the lipid metabolism-related gene PTGS2. This provided a reference for quercetin in the treatment of BCRD.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yuanshan Han
- Research Office of the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, PR China
| | - Ying He
- The Second Department of Breast Surgery, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Pan Meng
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Hui Yang
- Animal Experiment Center, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, PR China
| | - Gefei He
- Department of Pharmacy, the First Hospital of Changsha, Changsha 410005, PR China
| | - Minghui Long
- Department of Pharmacy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| | - Yingrui Shi
- Hunan Province Maternal and Child Care Hospital, The Maternal and Child Care Hospital of South University of China, Changsha 410028, PR China.
| |
Collapse
|
34
|
Ji Y, Chen L, Wang Y, Zhang J, Yu Y, Wang M, Wang X, Liu W, Yan B, Xiao L, Song X, Lv C, Chen L. Realistic Nanoplastics Induced Pulmonary Damage via the Crosstalk of Ferritinophagy and Mitochondrial Dysfunction. ACS NANO 2024; 18:16790-16807. [PMID: 38869479 DOI: 10.1021/acsnano.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The smaller size fraction of plastics may be more substantially existing and detrimental than larger-sized particles. However, reports on nanoplastics (NPs), especially their airborne occurrences and potential health hazards to the respiratory system, are scarce. Previous studies limit the understanding of their real respiratory effects, since sphere-type polystyrene (PS) nanoparticles differ from NPs occurring in nature with respect to their physicochemical properties. Here, we employ a mechanical breakdown method, producing NPs directly from bulk plastic, preserving NP properties in nature. We report that among four relatively high abundance NP materials PS, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polyethylene (PE) with a size of 100 nm, PVC induced slightly more severe lung toxicity profiles compared to the other plastics. The lung cytotoxicity of NPs is higher than that of commercial PS NPs and comparable to natural particles silicon dioxide (SiO2) and anatase titanium dioxide (TiO2). Mechanistically, BH3-interacting domain death agonist (Bid) transactivation-mediated mitochondrial dysfunction and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy or ferroptosis are likely common mechanisms of NPs regardless of their chemical composition. This study provides relatively comprehensive data for evaluating the risk of atmospheric NPs to lung health.
Collapse
Affiliation(s)
- Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yue Yu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Lingxin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
35
|
Li YZ, Deng J, Zhang XD, Li DY, Su LX, Li S, Pan JM, Lu L, Ya JQ, Yang N, Zhou J, Yang LH. Naringenin enhances the efficacy of ferroptosis inducers by attenuating aerobic glycolysis by activating the AMPK-PGC1α signalling axis in liver cancer. Heliyon 2024; 10:e32288. [PMID: 38912485 PMCID: PMC11190665 DOI: 10.1016/j.heliyon.2024.e32288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Liver cancer is a heterogeneous disease characterized by poor responses to standard therapies and therefore unfavourable clinical outcomes. Understanding the characteristics of liver cancer and developing novel therapeutic strategies are imperative. Ferroptosis, a type of programmed cell death induced by lipid peroxidation, has emerged as a potential target for treatment. Naringenin, a natural compound that modulates lipid metabolism by targeting AMPK, shows promise in enhancing the efficacy of ferroptosis inducers. In this study, we utilized liver cancer cell lines and xenograft mice to explore the synergistic effects of naringenin in combination with ferroptosis inducers, examining both phenotypic outcomes and molecular mechanisms. Our study results indicate that the use of naringenin at non-toxic doses to hepatocytes can significantly enhance the anticancer effects of ferroptosis inducers (erastin, RSL3, and sorafenib). The combination index method confirmed a synergistic effect between naringenin and ferroptosis inducers. In comparison to naringenin or ferroptosis inducers alone, the combined therapy caused more robust lipid peroxidation and hence more severe ferroptotic damage to cancer cells. The inhibition of aerobic glycolysis mediated by the AMPK-PGC1α signalling axis is the key to naringenin's effect on reducing ferroptosis resistance in liver cancer, and the synergistic cytotoxic effect of naringenin and ferroptosis inducers on cancer cells was reversed after pretreatment with an AMPK inhibitor or a PGC1α inhibitor. Taken together, these findings suggest that naringenin could boost cancer cell sensitivity to ferroptosis inducers, which has potential clinical translational value.
Collapse
Affiliation(s)
- Yong-Zhuo Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Deng
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Yang Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Xi Su
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Min Pan
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Lan Lu
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Qi Ya
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Hui Yang
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Biological Molecular Medicine Research(Guangxi Medical University), Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
36
|
Wang Y, Li Q, Yang X, Guo H, Ren T, Zhang T, Ghadakpour P, Ren F. Exosome-Mediated Communication in Thyroid Cancer: Implications for Prognosis and Therapeutic Targets. Biochem Genet 2024:10.1007/s10528-024-10833-2. [PMID: 38839646 DOI: 10.1007/s10528-024-10833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Thyroid cancer (THCA) is one of the most common malignancies of the endocrine system. Exosomes have significant value in performing molecular treatments, evaluating the diagnosis and determining tumor prognosis. Thus, the identification of exosome-related genes could be valuable for the diagnosis and potential treatment of THCA. In this study, we examined a set of exosome-related differentially expressed genes (DEGs) (BIRC5, POSTN, TGFBR1, DUSP1, BID, and FGFR2) by taking the intersection between the DEGs of the TCGA-THCA and GeneCards datasets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the exosome-related DEGs indicated that these genes were involved in certain biological functions and pathways. Protein‒protein interaction (PPI), mRNA‒miRNA, and mRNA-TF interaction networks were constructed using the 6 exosome-related DEGs as hub genes. Furthermore, we analyzed the correlation between the 6 exosome-related DEGs and immune infiltration. The Genomics of Drug Sensitivity in Cancer (GDSC), the Cancer Cell Line Encyclopedia (CCLE), and the CellMiner database were used to elucidate the relationship between the exosome-related DEGs and drug sensitivity. In addition, we verified that both POSTN and BID were upregulated in papillary thyroid cancer (PTC) patients and that their expression was correlated with cancer progression. The POSTN and BID protein expression levels were further examined in THCA cell lines. These findings provide insights into exosome-related clinical trials and drug development.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Anatomy, College of Basic Medical Sciences of Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
- Molecular Morphology Laboratory, College of Basic Medical Sciences, Liaoning, Shenyang Medical College, Shenyang, People's Republic of China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Qiang Li
- Department of Orthopedics, Liaoning, Fuxin Central Hospital, Fuxin, People's Republic of China
| | - Xinrui Yang
- Molecular Morphology Laboratory, College of Basic Medical Sciences, Liaoning, Shenyang Medical College, Shenyang, People's Republic of China
| | - Hanyu Guo
- Department of Anatomy, College of Basic Medical Sciences of Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Tian Ren
- Emergency Medical Center, Liaoning, Affiliated Central Hospital of Shenyang Medical College, Shenyang, People's Republic of China
| | - Tianchi Zhang
- Department of Computer and Information Technology, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Fu Ren
- Department of Anatomy, College of Basic Medical Sciences of Shenyang Medical College, Shenyang, Liaoning, People's Republic of China.
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
37
|
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJ, Simon HU, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein DC, Chi JT, Zhang DD, Li C, Toyokuni S, Liu J, Roh JL, Dai E, Juhasz G, Liu W, Zhang J, Yang M, Liu J, Zhu LQ, Zou W, Piacentini M, Ding WX, Yue Z, Xie Y, Petersen M, Gewirtz DA, Mandell MA, Chu CT, Sinha D, Eftekharpour E, Zhivotovsky B, Besteiro S, Gabrilovich DI, Kim DH, Kagan VE, Bayir H, Chen GC, Ayton S, Lünemann JD, Komatsu M, Krautwald S, Loos B, Baehrecke EH, Wang J, Lane JD, Sadoshima J, Yang WS, Gao M, Münz C, Thumm M, Kampmann M, Yu D, Lipinski MM, Jones JW, Jiang X, Zeh HJ, Kang R, Klionsky DJ, Kroemer G, Tang D. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 2024; 20:1213-1246. [PMID: 38442890 PMCID: PMC11210914 DOI: 10.1080/15548627.2024.2319901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrey S. Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ciro Isidoro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Werner J.H. Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer-University of Liège, Liège, Belgium
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Donna D. Zhang
- Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Enyong Dai
- The Second Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gabor Juhasz
- Biological Research Center, Institute of Genetics, Szeged, Hungary
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangchun Xie
- Department of Oncology, Central South University, Changsha, Hunan, China
| | - Morten Petersen
- Functional genomics, Department of Biology, Copenhagen University, Denmark
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, USA
| | - Charleen T. Chu
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Wilmer Eye lnstitute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Europe
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sébastien Besteiro
- LPHI, University Montpellier, CNRS, Montpellier, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Valerian E. Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, USA
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Scott Ayton
- Florey Institute, University of Melbourne, Parkville, Australia
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine, Bunkyo-ku Tokyo, Japan
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jon D. Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Junichi Sadoshima
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John’s University, New York City, NY, USA
| | - Minghui Gao
- The HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Martin Kampmann
- Department of Biochemistry & Biophysics, University of California, San Francisco, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, Australia
- Faculty of Medicine, Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Marta M. Lipinski
- Department of Anesthesiology & Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Miao S, Yang L, Xu T, Liu Z, Zhang Y, Ding L, Ding W, Ao X, Wang J. A novel circPIK3C2A/miR‐31‐5p/TFRC axis drives ferroptosis and accelerates myocardial injury. MedComm (Beijing) 2024; 5:e571. [PMID: 38840772 PMCID: PMC11151151 DOI: 10.1002/mco2.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 06/07/2024] Open
Abstract
Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lanting Yang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Tao Xu
- Central LaboratoryQingdao Agricultural UniversityQingdaoChina
| | - Zhantao Liu
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yixiao Zhang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lin Ding
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- Department of Comprehensive Internal MedicineAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
39
|
Deng L, Tian W, Luo L. Application of natural products in regulating ferroptosis in human diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155384. [PMID: 38547620 DOI: 10.1016/j.phymed.2024.155384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.
Collapse
Affiliation(s)
- Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
40
|
Yang R, Ouyang J, Jiang J, Zhao Y, Wu D, Chen D, Xi B. Discussion on the mechanism of Tiaoqi Xiaowei decoction in the treatment of chronic atrophic gastritis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e38224. [PMID: 39259113 PMCID: PMC11142837 DOI: 10.1097/md.0000000000038224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 09/12/2024] Open
Abstract
To explore the mechanism of Tiaoqi Xiaowei decoction in the treatment of chronic atrophic gastritis by network pharmacology and molecular docking. The main active components and targets of Tiaoqi Xiaowei decoction were obtained from TCMSP database. The databases of Disgenet, GeneCards, and OMIM were used to obtain chronic atrophic gastritis-related targets. The component-target-disease network was constructed by Cytoscape 3.7.1 software, and the protein-protein interaction network was constructed by String database. The core targets were screened by CytoNCA plug-in. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis were performed using the Metascape database. The core components and targets were subjected to molecular docking verification using AutoDock Tools 1.5.6 software, and the binding score was obtained. A total of 48 active components were identified, involving 82 action targets. Core active components such as quercetin, beta-sitosterol, kaempferol, luteolin, and naringenin, and core targets such as AKT1, TP53, VEGFA, TNF, IL6, and PTGS2 were obtained. A total of 188 signaling pathways were screened out, including cancer pathway, PI3K-Akt, IL-17, and TNF signaling pathway. Molecular docking results showed that the key components of Tiaoqi Xiaowei decoction had a favorable binding affinity with key targets. Tiaoqi Xiaowei decoction acts on multiple targets such as AKT1, TP53, VEGFA, TNF, IL6, PTGS2, and synergistically treats chronic atrophic gastritis by regulating inflammatory responses and tumor-related signaling pathways.
Collapse
Affiliation(s)
- Ruwen Yang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Jun Ouyang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Jiawei Jiang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Yuanpei Zhao
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Defeng Wu
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Dongmei Chen
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Biao Xi
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| |
Collapse
|
41
|
Li M, Zhang G, Tang Q, Xi K, Lin Y, Chen W. Network-based analysis identifies potential therapeutic ingredients of Chinese medicines and their mechanisms toward lung cancer. Comput Biol Med 2024; 173:108292. [PMID: 38513387 DOI: 10.1016/j.compbiomed.2024.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Lung cancer is one of the most common malignant tumors around the world, which has the highest mortality rate among all cancers. Traditional Chinese medicine (TCM) has attracted increased attention in the field of lung cancer treatment. However, the abundance of ingredients in Chinese medicines presents a challenge in identifying promising ingredient candidates and exploring their mechanisms for lung cancer treatment. In this work, two network-based algorithms were combined to calculate the network relationships between ingredient targets and lung cancer targets in the human interactome. Based on the enrichment analysis of the constructed disease module, key targets of lung cancer were identified. In addition, molecular docking and enrichment analysis of the overlapping targets between lung cancer and ingredients were performed to investigate the potential mechanisms of ingredient candidates against lung cancer. Ten potential ingredients against lung cancer were identified and they may have similar effect on the development of lung cancer. The results obtained from this study offered valuable insights and provided potential avenues for the development of novel drugs aimed at treating lung cancer.
Collapse
Affiliation(s)
- Mingrui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guiyang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kexing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
42
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
43
|
Pandey P, Elsori D, Kumar R, Lakhanpal S, Rautela I, Alqahtani TM, Ahmad F, Iqbal D, Khan F. Ferroptosis targeting natural compounds as a promising approach for developing potent liver cancer agents. Front Pharmacol 2024; 15:1399677. [PMID: 38738178 PMCID: PMC11082342 DOI: 10.3389/fphar.2024.1399677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death worldwide. However, treatment options, including surgical resection, transplantation, and molecular drug therapies, are of limited effectiveness. Recent studies have demonstrated that suppressing ferroptosis might be a pivotal signal for liver cancer initiation, thus providing a new way to combat liver cancer. Ferroptosis is a distinct form of controlled cell death that differs from conventional cell death routes like apoptosis, necrosis, and pyroptosis. It results from intracellular iron overload, which raises iron-dependent reactive oxygen species. This, in turn, leads to the accumulation of lipid peroxides that further result in oxidative damage to cell membranes, disrupt normal functioning, and ultimately speed up the ferroptosis phenomenon. Ferroptosis regulation is intricately linked to cellular physiological processes, encompassing iron metabolism, lipid metabolism, and the equilibrium between oxygen-free radical reactions and lipid peroxidation. This review intends to summarize the natural compounds targeting ferroptosis in liver cancer to offer new therapeutic ideas for liver cancer. Furthermore, it serves as the foundation for identifying and applying chemical medicines and natural chemicals that target ferroptosis to treat liver cancer efficiently.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indra Rautela
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Tariq Mohammed Alqahtani
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Majmaah university, Al Majma’ah, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Riyadh, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
44
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
45
|
Feng J, Wang ZX, Bin JL, Chen YX, Ma J, Deng JH, Huang XW, Zhou J, Lu GD. Pharmacological approaches for targeting lysosomes to induce ferroptotic cell death in cancer. Cancer Lett 2024; 587:216728. [PMID: 38431036 DOI: 10.1016/j.canlet.2024.216728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Zi-Xuan Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Yong-Xin Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing Ma
- Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing-Huan Deng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, Guangxi Province, 530021, PR China.
| |
Collapse
|
46
|
Lv S, Pan Q, Lu W, Zhang W, Wang N, Huang L, Li L, Liu J, Ma J, Li Z, Huang Y, Deng Q, Lei X. Tenovin 3 induces apoptosis and ferroptosis in EGFR 19del non small cell lung cancer cells. Sci Rep 2024; 14:7654. [PMID: 38561419 PMCID: PMC10985106 DOI: 10.1038/s41598-024-58499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) exon 19 deletion is a major driver for the drug resistance of non-small cell lung cancer (NSCLC). Identification small inhibitor capable of selectively inhibiting EGFR-19del NSCLC is a desirable strategy to overcome drug resistance in NSCLC. This study aims to screen an inhibitor for EGFR exon 19 deletion cells and explore its underlying mechanism. High through-put screen was conducted to identify an inhibitor for EGFR-19del NSCLC cells. And tenovin-3 was identified as a selective inhibitor of PC9 cells, an EGFR-19del NSCLC cells. Tenovin-3 showed particular inhibition effect on PC9 cells proliferation through inducing apoptosis and ferroptosis. Mechanistically, tenovin-3 might induce the apoptosis and ferroptosis of PC9 cells through mitochondrial pathway, as indicated by the change of VDAC1 and cytochrome c (cyt c). And bioinformatics analyses showed that the expression levels of SLC7A11 and CPX4 were correlated with NSCLC patient's survival. Our findings provide evidences for tenovin-3 to be developed into a novel candidate agent for NSCLC with EGFR exon 19 deletion. Our study also suggests that inducing ferroptosis may be a therapeutic strategy for NSCLC with EGFR exon 19 deletion.
Collapse
Affiliation(s)
- Sha Lv
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qianrong Pan
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Weijin Lu
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, 517000, China
| | - Weisong Zhang
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Naike Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lijuan Huang
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lianjing Li
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jieyao Liu
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jiamei Ma
- Medicine and Health Science College, Guangzhou Huashang College, Guangzhou, People's Republic of China
| | - Zhan Li
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yong Huang
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xueping Lei
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
47
|
Jian X, Shi C, Luo W, Zhou L, Jiang L, Liu K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed Pharmacother 2024; 173:116418. [PMID: 38461683 DOI: 10.1016/j.biopha.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Quercetin is a representative flavonoid that is widely present in fruits, herbs, and vegetables. It is also an important active core component in traditional Chinese medicines. As an important flavonoid, quercetin has various properties and exerts antioxidant, anti-inflammatory, and cardioprotective effects. The public interest in quercetin is increasing, and quercetin has been used to prevent or treat numerous of diseases, such as polycystic ovary syndrome (PCOS), cancer, autoimmune diseases and chronic cardiovascular diseases, in clinical experiments and animal studies due to its powerful antioxidant properties and minimal side effects. Quercetin exerts marked pharmacological effects on gynecological disorders; however, there have been no reviews about the potential health benefits of quercetin in the context of gynecological disorders, including PCOS, premature ovary failure (POF), endometriosis (EM), ovarian cancer (OC), cervical cancer (CC) and endometrial carcinoma (EC). Thus, this review aimed to summarize the biological effects of quercetin on gynecological disorders and its mechanisms.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Weichen Luo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
48
|
Chen T, Liang L, Wang Y, Li X, Yang C. Ferroptosis and cuproptposis in kidney Diseases: dysfunction of cell metabolism. Apoptosis 2024; 29:289-302. [PMID: 38095762 PMCID: PMC10873465 DOI: 10.1007/s10495-023-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 02/18/2024]
Abstract
Metal ions play an important role in living organisms and are involved in essential physiological activities. However, the overload state of ions can cause excess free radicals, cell damage, and even cell death. Ferroptosis and cuproptosis are specific forms of cell death that are distinct from apoptosis, necroptosis, and other regulated cell death. These unique modalities of cell death, dependent on iron and copper, are regulated by multiple cellular metabolic pathways, including steady-state metal redox treatment mitochondrial activity of lipid, amino acid and glucose metabolism, and various signaling pathways associated with disease. Although the mechanisms of ferroptosis and cuproptosis are not yet fully understood, there is no doubt that ion overload plays a crucial act in these metal-dependent cell deaths. In this review, we discussed the core roles of ion overload in ferroptosis and cuproptosis, the association between metabolism imbalance and ferroptosis and cuproptosis, the extract the diseases caused by ion overload and current treatment modalities.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yuzhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
- Zhangjiang Institue of Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
50
|
Lu Y, Sun J, Yang M, Xing Y, Zhu W, Zhu J, Ma X, Wang Y, Wang L, Jia Y. Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6178-6188. [PMID: 38483540 DOI: 10.1021/acs.jafc.3c05243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Ferroptosis holds great potential as a therapeutic approach for gastric cancer (GC), a prevalent and deadly malignant tumor associated with high rates of incidence and mortality. Myricetin, well-known for its multifaceted biomedical attributes, particularly its anticancer properties, has yet to be thoroughly investigated regarding its involvement in ferroptosis. The aim of this research was to elucidate the impact of myricetin on ferroptosis in GC progression. The present study observed that myricetin could trigger ferroptosis in GC cells by enhancing malondialdehyde production and Fe2+ accumulation while suppressing glutathione levels. Mechanistically, myricetin directly interacted with NADPH oxidase 4 (NOX4), influencing its stability by inhibiting its ubiquitin degradation. Moreover, myricetin regulated the inhibition of ferroptosis induced by Helicobacter pylori cytotoxin-associated gene A (CagA) through the NOX4/NRF2/GPX4 pathway. In vivo experiments demonstrated that myricetin treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice. It was accompanied by increased NOX4 expression in tumor tissue and suppression of the NRF2/GPX4 antioxidant pathway. Therefore, this research underscores myricetin as a novel inducer of ferroptosis in GC cells through its interaction with NOX4. It is a promising candidate for GC treatment.
Collapse
Affiliation(s)
- Yi Lu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingguo Sun
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China
| | - Mingyue Yang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China
| | - Lu Wang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan 2250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China
| |
Collapse
|