1
|
Pir R, Sulukan E, Şenol O, Atakay M, Baran A, Kankaynar M, Yıldız E, Salih B, Ceyhun SB. Co-exposure effect of different colour of LED lights and increasing temperature on zebrafish larvae (Danio rerio): Immunohistochemical, metabolomics, molecular and behaviour approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175468. [PMID: 39147052 DOI: 10.1016/j.scitotenv.2024.175468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Although there are studies in the literature on the effects of different coloured light-emitting diodes (LEDs) on different organisms, there is limited information on how these effects change with temperature increase. In this study, the effects of blue, green, red and white LED lights on the early development process of zebrafish (Danio rerio (Hamilton, 1822)) were comprehensively investigated. In addition, to simulate global warming, it was examined how a one-degree temperature increase affects this process. For this purpose, zebrafish embryos, which were placed at 4 hpf (hours post fertilization) in an incubator whose interior was divided into four areas, were kept at three different temperatures (28, 29 and 30 °C) for 120 h. The group kept in a dark environment was chosen as the control. The temperature of the control group was also increased at the same rate as the other groups. The results showed that at the end of the exposure period, temperature and light colour caused an increase in body malformations. Histopathological damage and immunopositive signals of HSP 70 and 8-OHdG biomarkers in larval brains, increase in free oxygen radicals, apoptotic cells and lipid accumulation throughout the body, increase in locomotor activity, decrease in heart rate and blood flow, and significant changes in more than thirty metabolite levels were detected. In addition, it has been determined that many metabolic pathways are affected, especially glutathione, vitamin B6 and pyrimidine metabolism. Moreover, it has been observed that a one-degree temperature increase worsens this negative effect. It was concluded that blue light was the closest light to the control group and was less harmful than other light colours. The study revealed that blue light produced results that were most similar to those seen in the control group.
Collapse
Affiliation(s)
- Rabia Pir
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Basic Science Department, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Türkiye
| | - Mehmet Atakay
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Türkiye
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Veterinary Public Health, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Türkiye
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Emriye Yıldız
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Türkiye
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye.
| |
Collapse
|
2
|
Adebayo O, Bhatnagar S, Webb J, Campbell C, Fowler M, MacAdam NM, Macdonald A, Li C, Hubert CRJ. Hydrocarbon-degrading microbial populations in permanently cold deep-sea sediments in the NW Atlantic. MARINE POLLUTION BULLETIN 2024; 208:117052. [PMID: 39357372 DOI: 10.1016/j.marpolbul.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Permanently cold deep-sea sediments (2500-3500 m water depth) with and without indications of thermogenic hydrocarbon seepage were exposed to naphtha to examine the presence and potential of cold-adapted aerobic hydrocarbon-degrading microbial populations. Monitoring these microcosms for volatile hydrocarbons by GC-MS revealed sediments without in situ hydrocarbons responded more rapidly to naphtha amendment than hydrocarbon seep sediments overall, but seep sediments removed aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) more readily. Naphtha-driven aerobic respiration was more evident in surface sediment (0-20 cmbsf) than deeper anoxic layers (>130 cmbsf) that responded less rapidly. In all cases, enrichment of Gammaproteobacteria included lineages of Oleispira, Pseudomonas, and Alteromonas known to be associated with marine oil spills. On the other hand, taxa known to be prevalent in situ and diagnostic for thermogenic hydrocarbon seepage in deep sea sediment, did not respond to naphtha amendment. This suggests a limited role for these prevalent seep-associated populations in the context of aerobic hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Oyeboade Adebayo
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada.
| | - Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada; Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada
| | - Jamie Webb
- Applied Petroleum Technology (Canada), Calgary, AB T2N 1Z6, Canada
| | - Calvin Campbell
- Geological Survey of Canada-Atlantic, Dartmouth, NS B3B 1A6, Canada
| | - Martin Fowler
- Applied Petroleum Technology (Canada), Calgary, AB T2N 1Z6, Canada
| | - Natasha M MacAdam
- Nova Scotia Department of Natural Resources and Renewables, Halifax, NS B2H 4G8, Canada
| | - Adam Macdonald
- Nova Scotia Department of Natural Resources and Renewables, Halifax, NS B2H 4G8, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
3
|
Lu X, Shen C, Yang C, Xu W, Yang J, Wang C, Sun D. Megabenthic Diversity Patterns on a Seamount in the Philippine Sea: Implications for Conservation Planning on the Kyushu-Palau Ridge. Ecol Evol 2024; 14:e70427. [PMID: 39429797 PMCID: PMC11486664 DOI: 10.1002/ece3.70427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
The oligotrophic tropical western Pacific region is characterized by a high density of seamounts, with the Kyushu-Palau Ridge (KPR) being the longest seamount chain here. Effective spatial management plans for seamount ecosystems necessitate an understanding of distribution patterns and key environmental factors influencing benthic communities. However, knowledge regarding deep-sea biodiversity patterns over intricate topography remains limited. In this study, we investigated a seamount with a water depth of 522 m at the summit located in the southern section of KPR. Survey transects were conducted from 522 m to 4059 m. By analyzing video-recorded data obtained by a human-occupied vehicle (HOV) during dives and environmental variables derived from bathymetry, distinct assemblages were identified through noise clustering. α- and β-diversity patterns within the seamount megabenthic community were analyzed across the depth gradient, along with investigation of their environmental drivers. A total of 10,596 megafauna individuals were documented, categorized into 88 morphospecies and statistically separated into six distinct community clusters using noise clustering analysis. Species abundance and richness were highest within the 700-800 m water depth range, declining notably beyond 2100 m, indicating a critical threshold for habitat classification in this region. The β-diversity of megabenthic communities was high (0.836). Although β-diversity patterns along the depth gradient were mostly dominated by differences in species richness, the contribution of species replacement increased with depth, becoming dominant at depths greater than 3000 m. Depth emerged as the primary driver of spatial variation in community structure, while near-bottom current velocity, topographic parameters (bathymetric position index, slope), and substrate type also influenced the formation of microhabitats. The study highlights the depth gradients, thresholds, and other intricate environmental factors shaping the spatial heterogeneity of these communities. It provides valuable insights for the future development of effective survey and conservation strategies for benthic biodiversity on the KPR.
Collapse
Affiliation(s)
- Xun Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural ResourcesHangzhouP. R. China
- School of Marine ScienceChina University of GeosciencesBeijingP. R. China
| | - Chengcheng Shen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural ResourcesHangzhouP. R. China
| | - Chenghao Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural ResourcesHangzhouP. R. China
| | - Weikun Xu
- National Deep Sea Center, Ministry of Natural ResourcesQingdaoP. R. China
| | - Juan Yang
- School of Marine ScienceChina University of GeosciencesBeijingP. R. China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural ResourcesHangzhouP. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiP. R. China
- School of OceanographyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural ResourcesHangzhouP. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiP. R. China
| |
Collapse
|
4
|
Zhao R, Yang Y, Li S, Chen S, Ding J, Wu Y, Qu M, Di Y. Comparative study of integrated bio-responses in deep-sea and nearshore mussels upon abiotic condition changes: Insight into distinct regulation and adaptation. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106610. [PMID: 38879901 DOI: 10.1016/j.marenvres.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Deep-sea mussels, one of the dominant species in most deep-sea ecosystems, have long been used as model organisms to investigate the adaptations and symbiotic relationships of deep-sea macrofauna under laboratory conditions due to their ability to survive under atmospheric pressure. However, the impact of additional abiotic conditions beyond pressure, such as temperature and light, on their physiological characteristics remains unknown. In this study, deep-sea mussels (Gigantidas platifrons) from cold seep of the South China Sea, along with nearshore mussels (Mytilus coruscus) from the East China Sea, were reared in unfavorable abiotic conditions for up to 8 days. Integrated biochemical indexes including antioxidant defense, immune ability and energy metabolism were investigated in the gill and digestive gland, while cytotoxicity was determined in hemocytes of both types of mussels. The results revealed mild bio-responses in two types of mussels in the laboratory, represented by the effective antioxidant defense with constant total antioxidant capability level and malondialdehyde content. There were also disparate adaptations in deep-sea and nearshore mussels. In deep-sea mussels, significantly increased immune response and energy reservation were observed in gills, together with the elevated cytotoxicity in hemocytes, implying the more severe biological adaptation was required, mainly due to the symbiotic bacteria loss under laboratory conditions. On the contrary, insignificant biological responses were exhibited in nearshore mussels except for the increased energy consumption, indicating the trade-off strategy to use more energy to deal with potential stress. Overall, this comparative study highlights the basal bio-responses of deep-sea and nearshore mussels out of their native environments, providing evidence that short-term culture of both mussels under easily achievable laboratory conditions would not dramatically alter their biological status. This finding will assist in broadening the application of deep-sea mussels as model organism in future research regardless of the specialized research equipment.
Collapse
Affiliation(s)
- Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yingli Yang
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Siyu Chen
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Jiawei Ding
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yusong Wu
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
5
|
Zhang R, Zhang H, Chen M, Liu L, Tan H, Tang Y. Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2151. [PMID: 38730957 PMCID: PMC11084592 DOI: 10.3390/ma17092151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
In order to address the issues of energy depletion, more resources are being searched for in the deep sea. Therefore, research into how the deep-sea environment affects cement-based materials for underwater infrastructure is required. This paper examines the impact of ocean depth (0, 500, 1000, and 1500 m) on the ion interaction processes in concrete nanopores using molecular dynamics simulations. At the portlandite interface, the local structural and kinetic characteristics of ions and water molecules are examined. The findings show that the portlandite surface hydrophilicity is unaffected by increasing depth. The density profile and coordination number of ions alter as depth increases, and the diffusion speed noticeably decreases. The main cause of the ions' reduced diffusion velocity is expected to be the low temperature. This work offers a thorough understanding of the cement hydration products' microstructure in deep sea, which may help explain why cement-based underwater infrastructure deteriorates over time.
Collapse
Affiliation(s)
- Run Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (R.Z.); (L.L.); (H.T.)
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610100, China
| | - Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China;
| | - Laibao Liu
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (R.Z.); (L.L.); (H.T.)
| | - Hongbin Tan
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (R.Z.); (L.L.); (H.T.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
6
|
Hartwell AM, Wheat AE, Dijkstra JA. Natural warming differentiates communities and increases diversity in deep-sea Ridge Flank Hydrothermal Systems. Commun Biol 2024; 7:379. [PMID: 38548927 PMCID: PMC10978836 DOI: 10.1038/s42003-024-06070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Ridge Flank Hydrothermal Systems have discrete pockets of fluid discharge that mimic climate-induced ocean warming. Unlike traditional hydrothermal fluids, those discharged by Ridge Flank Hydrothermal Systems have a chemical composition indistinguishable from background water, enabling evaluation of the effect of warming temperature. Here we link temperature and terrain variables to community composition and biodiversity by combining remotely operated vehicle images of vent and non-vent zone communities with associated environmental variables. We show overall differences in composition, family richness, and biodiversity between zones, though richness and diversity were only significantly greater in vent zones at one location. Temperature was a contributing factor to observed greater biodiversity near vent zones. Overall, our results suggest that warming in the deep sea will affect species composition and diversity. However, due to the diverse outcomes projected for ocean warming, additional research is necessary to forecast the impacts of ocean warming on deep-sea ecosystems.
Collapse
Affiliation(s)
- Anne M Hartwell
- University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center, 24 Colovos Rd, Durham, NH, USA.
| | - Anna E Wheat
- Oregon State University, 1500 SW Jefferson Ave, Corvallis, OR, 97331, USA
| | - Jennifer A Dijkstra
- University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center, 24 Colovos Rd, Durham, NH, USA
| |
Collapse
|
7
|
Wang C, Song Z, Zhang H, Sun Y, Hu X. Deciphering variations in the surficial bacterial compositions and functional profiles in the intersection between North and South Yellow Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106355. [PMID: 38244366 DOI: 10.1016/j.marenvres.2024.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The coastal ocean systems play paramount role in the nutrient biogeochemistry because of its interconnected environment. To gain a novel insight into coupling relationships between bacterial community, functioning properties and nutrient metabolism, we conducted analysis on the patterns and driving factors of planktonic bacterial functional community across subsurface water of marine ranching near the Yellow Sea in both summer and winter. Illumina HiSeq Sequencing and a corresponding set of biogeochemical data were used to assess distribution patterns of taxa, adaptive mechanism and metabolic function. Results demonstrated that Proteobacteria, Cyanobacteria, Actinobacteriota and Bacteroidota were dominant phyla both in summer and winter. Taxonomic profiles related to nutrient variation were found to be highly correlated with Dissolved Oxygen (DO) and Chlorophyll fluorescence (FLUO), and distinct diversity differences were also found between summer and winter samples. Functional activity in summer associated with the relative abundance of phototrophy and photoautotrophy were the highest in the subsurface water, while in winter the dominant functional properties were mainly include chemoheterotrophy and aerobic_ chemoheterotrophy. A significant difference related to functional activity between summer and winter, mainly representing ligninolysis and iron_respiration. In general, our study provides a framework for understanding the relative importance of environmental factors, temperature variation and nutrient availability in shaping the metabolic processes of aquatic microorganisms, particularly in ocean mariculture systems.
Collapse
Affiliation(s)
- Caixia Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zenglei Song
- Yantai Vocational College, Yantai, 264003, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China.
| |
Collapse
|
8
|
Núñez-Flores M, Solórzano A, Avaria-Llautureo J, Gomez-Uchida D, López-González PJ. Diversification dynamics of a common deep-sea octocoral family linked to the Paleocene-Eocene thermal maximum. Mol Phylogenet Evol 2024; 190:107945. [PMID: 37863452 DOI: 10.1016/j.ympev.2023.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The deep-sea has experienced dramatic changes in physical and chemical variables in the geological past. However, little is known about how deep-sea species richness responded to such changes over time and space. Here, we studied the diversification dynamics of one of the most diverse octocorallian families inhabiting deep sea benthonic environments worldwide and sustaining highly diverse ecosystems, Primnoidae. A newly dated species-level phylogeny was constructed to infer their ancestral geographic locations and dispersal rates initially. Then, we tested whether their global and regional (the Southern Ocean) diversification dynamics were mediated by dispersal rate and abiotic factors as changes in ocean geochemistry. Finally, we tested whether primnoids showed changes in speciation and extinction at discrete time points. Our results suggested primnoids likely originated in the southwestern Pacific Ocean during the Lower Cretaceous ∼112 Ma, with further dispersal after the physical separation of continental landmasses along the late Mesozoic and Cenozoic. Only the speciation rate of the Southern Ocean primnoids showed a significant correlation to ocean chemistry. Moreover, the Paleocene-Eocene thermal maximum marked a significant increase in the diversification of primnoids at global and regional scales. Our results provide new perspectives on the macroevolutionary and biogeographic patterns of an ecologically important benthic organism typically found in deep-sea environments.
Collapse
Affiliation(s)
- Mónica Núñez-Flores
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile; Laboratorio Ecología de Abejas, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
| | - Andrés Solórzano
- Escuela de Geología, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | | | - Daniel Gomez-Uchida
- Genomics in Ecology, Evolution, and Conservation Laboratory (GEECLAB), Department of Zoology, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Pablo J López-González
- Biodiversidad y Ecología Acuática. Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
9
|
Han L, Hao P, Wang W, Wu Y, Ruan S, Gao C, Tian W, Tian Y, Li X, Wang L, Zhang W, Wang H, Chang Y, Ding J. Molecular mechanisms that regulate the heat stress response in sea urchins (Strongylocentrotus intermedius) by comparative heat tolerance performance and whole-transcriptome RNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165846. [PMID: 37541492 DOI: 10.1016/j.scitotenv.2023.165846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
In the context of climate change and extreme high temperature, the commercially important sea urchin Strongylocentrotus intermedius suffers high mortality during summer in Northern China. How sea urchins respond to high temperatures is of great concern to academia and industry. How to understand the heat tolerance of sea urchin from the whole transcriptome level. In this study, the heat-resistant S. intermedius bred by our team and its control group were used as the research objects, then we applied whole-transcriptome RNA sequencing to detect differentially expressed mRNAs, microRNAs, long noncoding RNAs that respond to heat stress in the heat-resistant and control S. intermedius. A competitive endogenous RNA (ceRNA) regulatory network was constructed with predicted pairs of differentially expressed mRNAs and noncoding RNAs and revealed the molecular regulatory mechanisms in S. intermedius responding to heat stress. A functional analysis suggested that the ceRNAs were involved in basal metabolism, calcium ion transport, endoplasmic reticulum stress, and apoptosis. This is the whole-transcriptomic analysis of S. intermedius under heat stress to propose ceRNA networks that will provide a basis for studying the potential functions of long noncoding RNAs and miRNAs in the heat stress response in S. intermedius and provide a theoretical basis for the study of the molecular mechanism of sea urchins in response to environmental changes.
Collapse
Affiliation(s)
- Lingshu Han
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Pengfei Hao
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Wenpei Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Yanglei Wu
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Shuchao Ruan
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Chuang Gao
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Wanrong Tian
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Ye Tian
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Xiaonan Li
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Luo Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Weijie Zhang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Heng Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Yaqing Chang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Jun Ding
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, China.
| |
Collapse
|
10
|
Garritano AN, Majzoub ME, Ribeiro B, Damasceno T, Modolon F, Messias C, Vilela C, Duarte G, Hill L, Peixoto R, Thomas T. Species-specific relationships between deep sea sponges and their symbiotic Nitrosopumilaceae. THE ISME JOURNAL 2023; 17:1517-1519. [PMID: 37258653 PMCID: PMC10432484 DOI: 10.1038/s41396-023-01439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Sponges thrive in the deep, dark and nutrient-depleted ocean and may rely on microbial symbionts for carbon acquisition and energy generation. However, these symbiotic relationships remain largely unexplored. In this study, we analyze the microbiome of deep-sea sponges and show that ammonia-oxidizing archaea (AOA) of the family Nitrosopumilaceae make up at least 75% of the microbial communities of the sponges Aphrocallistes sp., Farrea sp. and Paratimea sp.. Given the known autotrophic metabolism of AOAs, this implies that these sponge holobionts can have the capacity for primary production in the deep-sea. We also show that specific AOA lineages are highly specific towards their hosts, hinting towards an unprecedent vertical transmission of these symbionts in deep-sea sponges. Our results show that the ecology and evolution of symbiotic relationships in deep-sea sponge is distinct from that of their shallow-water counterparts.
Collapse
Affiliation(s)
- Alessandro N Garritano
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Bárbara Ribeiro
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Taissa Damasceno
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Fluvio Modolon
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Camila Messias
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Caren Vilela
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Gustavo Duarte
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Lilian Hill
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Microbiologia Paulo de Goes, LEMM Laboratory, Rio de Janeiro, Brazil
| | - Raquel Peixoto
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
11
|
Simon-Lledó E, Amon DJ, Bribiesca-Contreras G, Cuvelier D, Durden JM, Ramalho SP, Uhlenkott K, Arbizu PM, Benoist N, Copley J, Dahlgren TG, Glover AG, Fleming B, Horton T, Ju SJ, Mejía-Saenz A, McQuaid K, Pape E, Park C, Smith CR, Jones DOB. Carbonate compensation depth drives abyssal biogeography in the northeast Pacific. Nat Ecol Evol 2023; 7:1388-1397. [PMID: 37488225 PMCID: PMC10482686 DOI: 10.1038/s41559-023-02122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023]
Abstract
Abyssal seafloor communities cover more than 60% of Earth's surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000 km span of the Clarion-Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800 m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth's largest biome.
Collapse
Affiliation(s)
| | - Diva J Amon
- SpeSeas, D'Abadie, Trinidad and Tobago
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Daphne Cuvelier
- Institute of Marine Sciences-Okeanos, University of the Azores, Horta, Portugal
| | | | - Sofia P Ramalho
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Katja Uhlenkott
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Pedro Martinez Arbizu
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | | | - Jonathan Copley
- Ocean & Earth Science, University of Southampton, Southampton, UK
| | - Thomas G Dahlgren
- NORCE Climate and Environment, Bergen, Norway
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | - Bethany Fleming
- National Oceanography Centre, Southampton, UK
- Ocean & Earth Science, University of Southampton, Southampton, UK
| | | | - Se-Jong Ju
- Korea Institute of Ocean Science and Technology, Busan, South Korea
- Ocean Science Major, University of Science and Technology, Daejeon, South Korea
| | | | | | - Ellen Pape
- Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Chailinn Park
- Korea Institute of Ocean Science and Technology, Busan, South Korea
- Ocean Science Major, University of Science and Technology, Daejeon, South Korea
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Manoa, Honolulu, HI, USA
| | | |
Collapse
|
12
|
Wiese F, Schlüter N, Zirkel J, Herrle JO, Friedrich O. A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang. PLoS One 2023; 18:e0288046. [PMID: 37556403 PMCID: PMC10411753 DOI: 10.1371/journal.pone.0288046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
Deep-sea macrobenthic body fossils are scarce due to the lack of deep-sea sedimentary archives in onshore settings. Therefore, hypothesized migrations of shallow shelf taxa into the deep-sea after phases of mass extinction (onshore-offshore pattern in the literature) due to anoxic events is not constrained by the fossil record. To resolve this conundrum, we investigated 1,475 deep-sea sediment samples from the Atlantic, Pacific and Southern oceans (water depth ranging from 200 to 4,700 m), providing 41,460 spine fragments of the crown group Atelostomata (Holasteroida, Spatangoida). We show that the scarce fossil record of deep-sea echinoids is in fact a methodological artefact because it is limited by the almost exclusive use of onshore fossil archives. Our data advocate for a continuous record of deep-sea Atelostomata back to at least 104 Ma (late early Cretaceous), and literature records suggest even an older age (115 Ma). A gradual increase of different spine tip morphologies from the Albian to the Maastrichtian is observed. A subsequent, abrupt reduction in spine size and the loss of morphological inventory in the lowermost Paleogene is interpreted to be an expression of the "Lilliput Effect", related to nourishment depletion on the sea floor in the course of the Cretaceous-Paleogene (K-Pg) Boundary Event. The recovery from this event lasted at least 5 Ma, and post-K-Pg Boundary Event assemblages progress-without any further morphological breaks-towards the assemblages observed in modern deep-sea environments. Because atelostomate spine morphology is often species-specific, the variations in spine tip morphology trough time would indicate species changes taking place in the deep-sea. This observation is, therefore, interpreted to result from in-situ evolution in the deep-sea and not from onshore-offshore migrations. The calculation of the "atelostomate spine accumulation rate" (ASAR) reveals low values in pre-Campanian times, possibly related to high remineralization rates of organic matter in the water column in the course of the mid-Cretaceous Thermal Maximum and its aftermath. A Maastrichtian cooling pulse marks the irreversible onset of fluctuating but generally higher atelostomate biomass that continues throughout the Cenozoic.
Collapse
Affiliation(s)
- Frank Wiese
- Department of Geobiology, Geoscience Centre, Georg-August-Universität Göttingen, Göttingen, Germany
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Nils Schlüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jessica Zirkel
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Jens O. Herrle
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Oliver Friedrich
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
14
|
Gasbarro R, Sowers D, Margolin A, Cordes EE. Distribution and predicted climatic refugia for a reef-building cold-water coral on the southeast US margin. GLOBAL CHANGE BIOLOGY 2022; 28:7108-7125. [PMID: 36054745 DOI: 10.1111/gcb.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Climate change is reorganizing the planet's biodiversity, necessitating proactive management of species and habitats based on spatiotemporal predictions of distributions across climate scenarios. In marine settings, climatic changes will predominantly manifest via warming, ocean acidification, deoxygenation, and changes in hydrodynamics. Lophelia pertusa, the main reef-forming coral present throughout the deep Atlantic Ocean (>200 m), is particularly sensitive to such stressors with stark reductions in suitable habitat predicted to accrue by 2100 in a business-as-usual scenario. However, with new occurrence data for this species along with higher-resolution bathymetry and climate data, it may be possible to locate further climatic refugia. Here, we synthesize new and published biogeographic, geomorphological, and climatic data to build ensemble, multi-scale habitat suitability models for L. pertusa on the continental margin of the southeast United States (SEUS). We then project these models in two timepoints (2050, 2100) and four climate change scenarios to characterize the occurrence probability of this critical cold-water coral (CWC) habitat now and in the future. Our models reveal the extent of reef habitat in the SEUS and corroborate it as the largest currently known essentially continuous CWC reef province on earth, and also predict abundance of L. pertusa to identify key areas, including those outside areas currently protected from bottom-contact fishing. Drastic reductions in L. pertusa climatic suitability index emerged primarily after 2050 and were concentrated at the shallower end (<~550 m) of the regional distribution under the Gulf Stream main axis. Our results thus suggest a depth-driven climate refuge effect where deeper, cooler reef sites experience lesser declines. The strength of this effect increases with climate scenario severity. Taken together, our study has implications for the regional and global management of this species, portending changes in the biodiversity reliant on CWC habitats and the critical ecosystem services they provide.
Collapse
Affiliation(s)
- Ryan Gasbarro
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Derek Sowers
- NOAA Office of Ocean Exploration and Research, Durham, New Hampshire, USA
| | - Alex Margolin
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Erik E Cordes
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Gao J, Su Q. A multi-level exploration of the relationship between temperature and species diversity: Two cases of marine phytoplankton. Ecol Evol 2022; 12:e9584. [PMID: 36523537 PMCID: PMC9745263 DOI: 10.1002/ece3.9584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The relationship between temperature (T) and diversity is one of the most important issues in ecology. It provides a key direction not only for exploring the determinants of diversity's patterns, but also for understanding diversity's responses to climate change. Previous studies suggested that T-diversity relationships could be positive, negative, or unimodal. Although these studies accumulated many informative achievements, they might be unsatisfied due to (1) investigating inadequate range of T, (2) selecting incomplete diversity metrics, and (3) making insufficiently detailed analysis of correlation. In this study, species diversity is estimated by four most commonly used diversity metrics and three parameters of species abundance distribution (SAD), and two global datasets of marine phytoplankton (covering a wider range of T) are used to evaluate the T-diversity relationships according to a piecewise model. Results show that all aspects of diversity (except evenness) have the similar relationship with T in the range of lower T, noting that diversity significantly increases as T increases. However, in the range of higher T, diversity may significantly decrease or nearly constant, which indicates that their relationships may be the unimodal or asymptotic. The asymptotic relationship found by this study is assumed that increasing diversity with T will gradually approach the Zipf's law (1:1/2:1/3…). If such assumption can be verified by future investigations, the intrinsic mechanism of the asymptotic relationship is likely to be crucial in understanding the T-diversity relationships.
Collapse
Affiliation(s)
- Junfeng Gao
- College of Earth and Planetary Sciences (CEPS)University of Chinese Academy of Sciences (UCAS)BeijingChina
| | - Qiang Su
- College of Earth and Planetary Sciences (CEPS)University of Chinese Academy of Sciences (UCAS)BeijingChina
| |
Collapse
|
16
|
Bryant SRD, McClain CR. Functional space expansion driven by transitions between energetically advantageous traits in the deep sea. Proc Biol Sci 2022; 289:20221302. [PMID: 36382521 PMCID: PMC9667370 DOI: 10.1098/rspb.2022.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2023] Open
Abstract
Climate change is shifting community structure and biodiversity on a global scale, in part due to alterations of chemical and thermal energy availability. These changes may impact ecosystem functioning through their influence on functional diversity. We investigate patterns of functional diversity, functional niches, and functional traits in bivalve communities across the energetic gradient of the deep Atlantic Ocean. We use the functional traits feeding type, tiering, and motility level to define the axes of functional space and the unique combinations of these traits as functional niches. We find that increased energy affords new species, added into functional space through niche expansion rather than niche packing. Underlying this pattern are complex dynamics of gains and losses of individual functional niches, with few adapted to the low- and high-energy extremes, and most occurring at intermediate energy. Adaptive qualities of specific traits are evidenced by those functional niches occurring at energetic extremes. Tradeoffs between these traits within the intermediate energy zone underlie an increased coexistence of functional niches, which in turn drives a unimodal pattern of functional niches and expansion of used functional space. This work suggests that energy-limited communities may be especially vulnerable to continued shifts in food availability through the Anthropocene.
Collapse
Affiliation(s)
- S. River D. Bryant
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, LA 70344, USA
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Billeaud Hall, Lafayette, LA 70503, USA
| | - Craig R. McClain
- Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, LA 70344, USA
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Billeaud Hall, Lafayette, LA 70503, USA
| |
Collapse
|
17
|
Emblemsvåg M, Pecuchet L, Velle LG, Nogueira A, Primicerio R. Recent warming causes functional borealization and diversity loss in deep fish communities east of Greenland. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Han L, Quan Z, Wu Y, Hao P, Wang W, Li Y, Zhang X, Liu P, Gao C, Wang H, Wang L, Zhang W, Yin D, Chang Y, Ding J. Expression Regulation Mechanisms of Sea Urchin (Strongylocentrotus intermedius) Under the High Temperature: New Evidence for the miRNA-mRNA Interaction Involvement. Front Genet 2022; 13:876308. [PMID: 35846155 PMCID: PMC9277089 DOI: 10.3389/fgene.2022.876308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
In the context of global warming and continuous high temperatures in the northern part of China during summer, the mortality rate of our main breeding species, Strongylocentrotus intermedius, reached 80% in 2020. How sea urchins respond to high temperatures is of great concern to academia and industry. In this study, we examined the antioxidant enzyme activities of different color tube-footed sea urchins under heat stress and compared their transcriptome and microRNA (miRNA) profiles using RNA-Seq. The results showed that the antioxidant enzyme activities of sea urchins were altered by thermal stress, and the changes in peroxidase activities of red tube-footed sea urchins were particularly significant. Investigations revealed that 1,079 differentially expressed genes (DEGs), 11 DE miRNAs, and 104 “DE miRNA-DEG” pairs in total were detected in sea urchins under high temperature stress. Several mRNA and miRNAs were significantly changed (e.g. HSP70, DnaJ11, HYAL, CALR, miR-184-p5, miR-92a, miR-92c, and miR-124-p5), suggesting these genes and miRNAs exerted important functions in response to high temperature. At the transcriptional level, red tube-footed sea urchins were found to be more sensitive to high temperature and could respond to high temperature rapidly. DE miRNA-mRNA network showed that miR-92b-3p and PC-5p-7420 were the most corresponding miRNAs. Five mRNAs (DnaJ11, SAR1B, CALR, HYOU1, TUBA) may be potential markers of sea urchin response to high temperature. Possible interaction between miRNA-mRNA could be linked to protein folding in the endoplasmic reticulum, Phagosomes, and calcium transport. This study provides a theoretical basis for the molecular mechanism of sea urchin heat tolerance and information that will aid in the selection and breeding of sea urchins with high temperature tolerance.
Collapse
Affiliation(s)
| | - Zijiao Quan
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yanglei Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Peng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
- *Correspondence: Jun Ding,
| |
Collapse
|
19
|
Godefroid M, Hédouin L, Mercière A, Dubois P. Thermal stress responses of the antipatharian Stichopathes sp. from the mesophotic reef of Mo'orea, French Polynesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153094. [PMID: 35051469 DOI: 10.1016/j.scitotenv.2022.153094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Antipatharians, also called black corals, are present in almost all oceans of the world, until extreme depths. In several regions, they aggregate in higher densities to form black coral beds that support diverse animal communities and create biodiversity hotspots. These recently discovered ecosystems are currently threatened by fishing activities and illegal harvesting for commercial purposes. Despite this, studies dedicated to the physiology of antipatharians are scarce and their responses to global change stressors have remained hardly explored since recently. Here, we present the first study on the physiological responses of a mesophotic antipatharian Stichopathes sp. (70-90 m) to thermal stress through a 16-d laboratory exposure (from 26 to 30.5 °C). Oxygen consumption measurements allowed identifying the physiological tipping point of Stichopathes sp. (Topt = 28.3 °C; 2.7 °C above mean ambient condition). Our results follow theoretical predictions as performances start to decrease beyond Topt, with lowered oxygen consumption rates, impairment of the healing capacities, increased probability of tissue necrosis and stress responses activated as a function of temperature (i.e. increase in mucocyte density and total antioxidant capacity). Altogether, our work indicates that Stichopathes sp. lives at suboptimal performances during the coldest months of the year, but also that it is likely to have low acclimatization capacity and a narrow thermal breadth.
Collapse
Affiliation(s)
- Mathilde Godefroid
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium.
| | - Laetitia Hédouin
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Alexandre Mercière
- PSL Research University: EPHE-CNRS-UPVD, USR 3278 CRIOBE, BP 1013, 98729 Papetoai, Mo'orea, French Polynesia; Laboratoire d'Excellence « CORAIL», Mo'orea, French Polynesia
| | - Philippe Dubois
- Laboratoire de Biologie marine, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP160/15, 1050 Bruxelles, Belgium
| |
Collapse
|
20
|
Nomaki H, Rastelli E, Ogawa NO, Matsui Y, Tsuchiya M, Manea E, Corinaldesi C, Hirai M, Ohkouchi N, Danovaro R, Nunoura T, Amaro T. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. GLOBAL CHANGE BIOLOGY 2021; 27:6139-6155. [PMID: 34523189 PMCID: PMC9293103 DOI: 10.1111/gcb.15882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Abyssal plains cover more than half of Earth's surface, and the main food source in these ecosystems is phytodetritus, mainly originating from primary producers in the euphotic zone of the ocean. Global climate change is influencing phytoplankton abundance, productivity, and distribution. Increasing importance of picoplankton over diatom as primary producers in surface oceans (especially projected for higher latitudes) is projected and hence altering the quantity of organic carbon supplied to the abyssal seafloor as phytodetritus, consequences of which remain largely unknown. Here, we investigated the in situ responses of abyssal biota from viruses to megafauna to different types of phytoplankton input (diatoms or cyanobacteria which were labeled with stable isotopes) at equatorial (oligotrophic) and temperate (eutrophic) benthic sites in the Pacific Ocean (1°N at 4277 m water depth and 39°N at 5260 m water depth, respectively). Our results show that meiofauna and macrofauna generally preferred diatoms as a food source and played a relatively larger role in the consumption of phytodetritus at higher latitudes (39°N). Contrarily, prokaryotes and viruses showed similar or even stronger responses to cyanobacterial than to diatom supply. Moreover, the response of prokaryotes and viruses was very rapid (within 1-2 days) at both 1°N and 39°N, with quickest responses reported in the case of cyanobacterial supply at higher latitudes. Overall, our results suggest that benthic deep-sea eukaryotes will be negatively affected by the predicted decrease in diatoms in surface oceans, especially at higher latitudes, where benthic prokaryotes and viruses will otherwise likely increase their quantitative role and organic carbon cycling rates. In turn, such changes can contribute to decrease carbon transfer from phytodetritus to higher trophic levels, with strong potential to affect oceanic food webs, their biodiversity and consequently carbon sequestration capacity at the global scale.
Collapse
Affiliation(s)
- Hidetaka Nomaki
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Eugenio Rastelli
- Department of Marine BiotechnologyStazione Zoologica Anton DohrnFano Marine CentreFanoItaly
| | | | - Yohei Matsui
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Elisabetta Manea
- Institute of Marine SciencesNational Research Council (ISMAR‐CNR)VeniceItaly
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban PlanningPolytechnic University of MarcheAnconaItaly
| | - Miho Hirai
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Roberto Danovaro
- Department of Environmental and Life SciencesPolytechnic University of MarcheAnconaItaly
- Stazione Zoologica Anton DohrnNaplesItaly
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN)JAMSTECYokosukaJapan
| | - Teresa Amaro
- Department of Biology & CESAMUniversity of AveiroAveiroPortugal
- Hellenic Center for Marine Research (HCMR)HeraklionGreece
| |
Collapse
|
21
|
Li J, Convertino M. Temperature increase drives critical slowing down of fish ecosystems. PLoS One 2021; 16:e0246222. [PMID: 34669703 PMCID: PMC8528280 DOI: 10.1371/journal.pone.0246222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2021] [Indexed: 01/13/2023] Open
Abstract
Fish ecosystems perform ecological functions that are critically important for the sustainability of marine ecosystems, such as global food security and carbon stock. During the 21st century, significant global warming caused by climate change has created pressing challenges for fish ecosystems that threaten species existence and global ecosystem health. Here, we study a coastal fish community in Maizuru Bay, Japan, and investigate the relationships between fluctuations of ST, abundance-based species interactions and salient fish biodiversity. Observations show that a local 20% increase in temperature from 2002 to 2014 underpins a long-term reduction in fish diversity (∼25%) played out by some native and invasive species (e.g. Chinese wrasse) becoming exceedingly abundant; this causes a large decay in commercially valuable species (e.g. Japanese anchovy) coupled to an increase in ecological productivity. The fish community is analyzed considering five temperature ranges to understand its atemporal seasonal sensitivity to ST changes, and long-term trends. An optimal information flow model is used to reconstruct species interaction networks that emerge as topologically different for distinct temperature ranges and species dynamics. Networks for low temperatures are more scale-free compared to ones for intermediate (15-20°C) temperatures in which the fish ecosystem experiences a first-order phase transition in interactions from locally stable to metastable and globally unstable for high temperatures states as suggested by abundance-spectrum transitions. The dynamic dominant eigenvalue of species interactions shows increasing instability for competitive species (spiking in summer due to intermediate-season critical transitions) leading to enhanced community variability and critical slowing down despite higher time-point resilience. Native competitive species whose abundance is distributed more exponentially have the highest total directed interactions and are keystone species (e.g. Wrasse and Horse mackerel) for the most salient links with cooperative decaying species. Competitive species, with higher eco-climatic memory and synchronization, are the most affected by temperature and play an important role in maintaining fish ecosystem stability via multitrophic cascades (via cooperative-competitive species imbalance), and as bioindicators of change. More climate-fitted species follow temperature increase causing larger divergence divergence between competitive and cooperative species. Decreasing dominant eigenvalues and lower relative network optimality for warmer oceans indicate fishery more attracted toward persistent oscillatory states, yet unpredictable, with lower cooperation, diversity and fish stock despite the increase in community abundance due to non-commercial and venomous species. We emphasize how changes in species interaction organization, primarily affected by temperature fluctuations, are the backbone of biodiversity dynamics and yet for functional diversity in contrast to taxonomic richness. Abundance and richness manifest gradual shifts while interactions show sudden shift. The work provides data-driven tools for analyzing and monitoring fish ecosystems under the pressure of global warming or other stressors. Abundance and interaction patterns derived by network-based analyses proved useful to assess ecosystem susceptibility and effective change, and formulate predictive dynamic information for science-based fishery policy aimed to maintain marine ecosystems stable and sustainable.
Collapse
Affiliation(s)
- Jie Li
- Nexus Group, Laboratory of Information Communication Networks, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Matteo Convertino
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
22
|
Biological and Ecological Aspects of the Blackmouth Catshark (Galeus melastomus Rafinesque, 1810) in the Southern Tyrrhenian Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9090967] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Data on the biology and ecology of Galeus melastomus are old/absent for the Southern Tyrrhenian Sea, despite there being numerous studies in the wider area. A total of 127 specimens of G. melastomus from the southern Tyrrhenian Sea, collected in 2018–2019 using trawling nets, were analyzed to investigate size at sexual maturity, sex ratio, length–weight relationships, and feeding habits. To our best knowledge, this is the first time in which all these features were investigated in the Southern Tyrrhenian Sea for G. melastomus. The stomach content analysis showed that G. melastomus had intermediate feeding habits, preying on a great variety of species, especially Cephalopoda, Osteichthyes, and Crustacea. The Levin’s index value (Bi) was 0.53. Sex ratio was 0.92:1, with females slightly more abundant and bigger than males. The results also showed a decrease (33.7 cm for females, 31.1 cm for males) in length at 50% maturity (L50). This could be a result of anthropogenic stressors, such as overfishing and/or and environmental changes, which can induce physiological responses in several species. Our results highlighted the differences related to sexual maturity, growth, and feeding habits of the blackmouth catshark in the studied area, providing reference data to allow comparison with future studies on this species adaptations to this and other deep-sea areas in the Mediterranean Sea.
Collapse
|
23
|
Lörz AN, Kaiser S, Oldeland J, Stolter C, Kürzel K, Brix S. Biogeography, diversity and environmental relationships of shelf and deep-sea benthic Amphipoda around Iceland. PeerJ 2021; 9:e11898. [PMID: 34447625 PMCID: PMC8364320 DOI: 10.7717/peerj.11898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
The waters around Iceland, bounding the Northern North Atlantic and the Nordic seas, are a region characterized by complex hydrography and seabed topography. This and the presence of the Greenland-Iceland-Faroe-Scotland ridge (GIFR) are likely to have a major impact on the diversity and distribution of the benthic fauna there. Biodiversity in this region is also under increasing threat from climate-induced changes, ocean warming and acidification in particular, affecting the marine realm. The aim of the present study was to investigate the biodiversity and distributional patterns of amphipod crustaceans in Icelandic waters and how it relates to environmental variables and depth. A comprehensive data set from the literature and recent expeditions was compiled constituting distributional records for 355 amphipod species across a major depth gradient (18–3,700 m). Using a 1° hexagonal grid to map amphipod distributions and a set of environmental factors (depth, pH, phytobiomass, velocity, dissolved oxygen, dissolved iron, salinity and temperature) we could identify four distinct amphipod assemblages: A Deep-North, Deep-South, and a Coastal cluster as well as one restricted to the GIFR. In addition to depth, salinity and temperature were the main parameters that determined the distribution of amphipods. Diversity differed greatly between the depth clusters and was significantly higher in coastal and GIFR assemblages compared to the deep-sea clusters north and south of the GIFR. A variety of factors and processes are likely to be responsible for the perceived biodiversity patterns, which, however, appear to vary according to region and depth. Low diversity of amphipod communities in the Nordic basins can be interpreted as a reflection of the prevailing harsh environmental conditions in combination with a barrier effect of the GIFR. By contrast, low diversity of the deep North Atlantic assemblages might be linked to the variable nature of the oceanographic environment in the region over multiple spatio-temporal scales. Overall, our study highlights the importance of amphipods as a constituent part of Icelandic benthos. The strong responses of amphipod communities to certain water mass variables raise the question of whether and how their distribution will change due to climate alteration, which should be a focus of future studies.
Collapse
Affiliation(s)
- Anne-Nina Lörz
- Institute for Marine Ecosystems and Fisheries Science, Universität Hamburg, Hamburg, Germany
| | - Stefanie Kaiser
- Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Lodz, Poland
| | | | - Caroline Stolter
- Department Biology, Zoological Institute, Universität Hamburg, Hamburg, Germany
| | | | - Saskia Brix
- Deutsches Zentrum für Marine Biodiversität, Senckenberg Nature Research Society, Hamburg, Germany
| |
Collapse
|
24
|
Doi H, Yasuhara M, Ushio M. Causal analysis of the temperature impact on deep-sea biodiversity. Biol Lett 2021; 17:20200666. [PMID: 34283931 DOI: 10.1098/rsbl.2020.0666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep-sea species richness in the contexts of the species-energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 103-104-year time scales. The temperature-richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.
Collapse
Affiliation(s)
- Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Moriaki Yasuhara
- Division of Ecology and Biodiversity, School of Biological Sciences, Swire Institute of Marine Science, and State Key Laboratory of Marine Pollution, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Masayuki Ushio
- Hakubi Center, Kyoto University, Kyoto 606-8501, Japan.,Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| |
Collapse
|
25
|
Abstract
This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.
Collapse
|
26
|
Zacaï A, Monnet C, Pohl A, Beaugrand G, Mullins G, Kroeck DM, Servais T. Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. SCIENCE ADVANCES 2021; 7:eabd6709. [PMID: 33827811 PMCID: PMC8026127 DOI: 10.1126/sciadv.abd6709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The latitudinal diversity gradient (LDG)-the decline in species richness from the equator to the poles-is classically considered as the most pervasive macroecological pattern on Earth, but the timing of its establishment, its ubiquity in the geological past, and explanatory mechanisms remain uncertain. By combining empirical and modeling approaches, we show that the first representatives of marine phytoplankton exhibited an LDG from the beginning of the Cambrian, when most major phyla appeared. However, this LDG showed a single peak of diversity centered on the Southern Hemisphere, in contrast to the equatorial peak classically observed for most modern taxa. We find that this LDG most likely corresponds to a truncated bimodal gradient, which probably results from an uneven sediment preservation, smaller sampling effort, and/or lower initial diversity in the Northern Hemisphere. Variation of the documented LDG through time resulted primarily from fluctuations in annual sea-surface temperature and long-term climate changes.
Collapse
Affiliation(s)
- Axelle Zacaï
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France.
- PALEVOPRIM, UMR 7262, CNRS, Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - Claude Monnet
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Alexandre Pohl
- Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, CA, USA
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, F-21000 Dijon, France
| | - Grégory Beaugrand
- Laboratoire d'Océanologie et de Géosciences, UMR 8187, CNRS, Univ. Lille, F-59000 Lille, France
| | | | - David M Kroeck
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Thomas Servais
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
27
|
McGaughran A, Laver R, Fraser C. Evolutionary Responses to Warming. Trends Ecol Evol 2021; 36:591-600. [PMID: 33726946 DOI: 10.1016/j.tree.2021.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
Climate change is predicted to dramatically alter biological diversity and distributions, driving extirpations, extinctions, and extensive range shifts across the globe. Warming can also, however, lead to phenotypic or behavioural plasticity, as species adapt to new conditions. Recent genomic research indicates that some species are capable of rapid evolution as selection favours adaptive responses to environmental change and altered or novel niche spaces. New advances are providing mechanistic insights into how temperature might accelerate evolution in the Anthropocene. These discoveries highlight intriguing new research directions - such as using geothermal and polar systems combined with powerful genomic tools - that will help us to understand the processes underpinning adaptive evolution and better project how ecosystems will change in a warming world.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Rebecca Laver
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ceridwen Fraser
- Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
28
|
Arostegui MC, Gaube P, Berumen ML, DiGiulian A, Jones BH, Røstad A, Braun CD. Vertical movements of a pelagic thresher shark (Alopias pelagicus): insights into the species’ physiological limitations and trophic ecology in the Red Sea. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The pelagic thresher shark Alopias pelagicus is an understudied elasmobranch harvested in commercial fisheries of the tropical Indo-Pacific. The species is endangered, overexploited throughout much of its range, and has a decreasing population trend. Relatively little is known about its movement ecology, precluding an informed recovery strategy. Here, we report the first results from an individual pelagic thresher shark outfitted with a pop-up satellite archival transmitting (PSAT) tag to assess its movement with respect to the species’ physiology and trophic ecology. A 19 d deployment in the Red Sea revealed that the shark conducted normal diel vertical migration, spending the majority of the day at 200-300 m in the mesopelagic zone and the majority of the night at 50-150 m in the epipelagic zone, with the extent of these movements seemingly not constrained by temperature. In contrast, the depth distribution of the shark relative to the vertical distribution of oxygen suggested that it was avoiding hypoxic conditions below 300 m even though that is where the daytime peak of acoustic backscattering occurs in the Red Sea. Telemetry data also indicated crepuscular and daytime overlap of the shark’s vertical habitat use with distinct scattering layers of small mesopelagic fishes and nighttime overlap with nearly all mesopelagic organisms in the Red Sea as these similarly undergo nightly ascents into epipelagic waters. We identify potential depths and diel periods in which pelagic thresher sharks may be most susceptible to fishery interactions, but more expansive research efforts are needed to inform effective management.
Collapse
Affiliation(s)
- MC Arostegui
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - P Gaube
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - ML Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - A DiGiulian
- Saltwater Professional Consulting, Fort Lauderdale, FL 33308, USA
| | - BH Jones
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - A Røstad
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - CD Braun
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
29
|
Levin LA, Wei C, Dunn DC, Amon DJ, Ashford OS, Cheung WWL, Colaço A, Dominguez‐Carrió C, Escobar EG, Harden‐Davies HR, Drazen JC, Ismail K, Jones DOB, Johnson DE, Le JT, Lejzerowicz F, Mitarai S, Morato T, Mulsow S, Snelgrove PVR, Sweetman AK, Yasuhara M. Climate change considerations are fundamental to management of deep-sea resource extraction. GLOBAL CHANGE BIOLOGY 2020; 26:4664-4678. [PMID: 32531093 PMCID: PMC7496832 DOI: 10.1111/gcb.15223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/12/2020] [Indexed: 05/19/2023]
Abstract
Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep-seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full-cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth-System Model projections of climate-change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep-seabed mining. Models that combine climate-induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep-seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral-related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep-ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.
Collapse
Affiliation(s)
- Lisa A. Levin
- Integrative Oceanography Division and Center for Marine Biodiversity and ConservationScripps Institution of OceanographyUniversity of California, San DiegoLa JollaCAUSA
| | - Chih‐Lin Wei
- Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
| | - Daniel C. Dunn
- School of Earth and Environmental SciencesUniversity of QueenslandSt LuciaQldAustralia
| | - Diva J. Amon
- Life Sciences DepartmentNatural History MuseumLondonUK
| | - Oliver S. Ashford
- Integrative Oceanography Division and Center for Marine Biodiversity and ConservationScripps Institution of OceanographyUniversity of California, San DiegoLa JollaCAUSA
| | - William W. L. Cheung
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBCCanada
| | - Ana Colaço
- IMARInstituto do Mar, and Instituto de Investigação em Ciências do Mar – Okeanos da Universidade dos AçoresHortaPortugal
| | - Carlos Dominguez‐Carrió
- IMARInstituto do Mar, and Instituto de Investigação em Ciências do Mar – Okeanos da Universidade dos AçoresHortaPortugal
| | - Elva G. Escobar
- Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Harriet R. Harden‐Davies
- Australian National Centre for Ocean Resources and SecurityUniversity of WollongongWollongongNSWAustralia
| | - Jeffrey C. Drazen
- Department of OceanographyUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Khaira Ismail
- Faculty of Science and Marine EnvironmentUniversiti Malaysia TerengganuKuala TerengganuMalaysia
| | - Daniel O. B. Jones
- Ocean Biogeochemistry and Ecosystems GroupNational Oceanography CentreSouthamptonUK
| | - David E. Johnson
- Global Ocean Biodiversity InitiativeSeascape Consultants Ltd.RomseyUK
| | - Jennifer T. Le
- Integrative Oceanography Division and Center for Marine Biodiversity and ConservationScripps Institution of OceanographyUniversity of California, San DiegoLa JollaCAUSA
| | - Franck Lejzerowicz
- Jacobs School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Satoshi Mitarai
- Marine Biophysics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Telmo Morato
- IMARInstituto do Mar, and Instituto de Investigação em Ciências do Mar – Okeanos da Universidade dos AçoresHortaPortugal
| | - Sandor Mulsow
- Instituto Ciencias Marinas y LimnológicasUniversidad Austral de ChileValdiviaChile
| | - Paul V. R. Snelgrove
- Department of Ocean Sciences and Biology DepartmentMemorial University of NewfoundlandSt. John'sNLCanada
| | - Andrew K. Sweetman
- The Lyell Centre for Earth and Marine Science and TechnologyHeriot Watt UniversityEdinburghUK
| | - Moriaki Yasuhara
- School of Biological Sciences and Swire Institute of Marine ScienceThe University of Hong KongHong Kong SARChina
| |
Collapse
|
30
|
Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. Proc Natl Acad Sci U S A 2020; 117:15450-15459. [PMID: 32554606 PMCID: PMC7355009 DOI: 10.1073/pnas.1920706117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ground-truthed analyses of multibeam sonar data along a fracture zone of the northern Mid-Atlantic Ridge reveal an abyssal seafloor much rockier than previously assumed. Our data show rock exposures occurring at all crustal ages from 0–100 Ma along the Vema Fracture Zone and that approximately 260,000 km2 of rock habitats can be expected to occur along Atlantic fracture zones alone. This higher than expected geodiversity implies that future sampling campaigns should be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity. We provide a baseline to unravel the processes responsible for the evolution and persistence of biodiversity on the deep seafloor as well as to determine the significant scales of these processes in the benthoscape. Habitat heterogeneity and species diversity are often linked. On the deep seafloor, sediment variability and hard-substrate availability influence geographic patterns of species richness and turnover. The assumption of a generally homogeneous, sedimented abyssal seafloor is at odds with the fact that the faunal diversity in some abyssal regions exceeds that of shallow-water environments. Here we show, using a ground-truthed analysis of multibeam sonar data, that the deep seafloor may be much rockier than previously assumed. A combination of bathymetry data, ruggedness, and backscatter from a trans-Atlantic corridor along the Vema Fracture Zone, covering crustal ages from 0 to 100 Ma, show rock exposures occurring at all crustal ages. Extrapolating to the whole Atlantic, over 260,000 km2 of rock habitats potentially occur along Atlantic fracture zones alone, significantly increasing our knowledge about abyssal habitat heterogeneity. This implies that sampling campaigns need to be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity and biodiversity.
Collapse
|
31
|
Manea E, Bianchelli S, Fanelli E, Danovaro R, Gissi E. Towards an Ecosystem-Based Marine Spatial Planning in the deep Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136884. [PMID: 32018103 DOI: 10.1016/j.scitotenv.2020.136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The deep sea covers about 79% of the Mediterranean basin, including habitats potentially able to deliver multiple ecosystem services and numerous resources of high economic value. Thus, the deep Mediterranean Sea represents an important frontier for marine resources exploitation, which is embedded within the European Blue Growth Strategy goals and agendas. The deep sea is crucial for the ecological functioning of the entire basin. For this reason, the deep Mediterranean deserves protection from the potential cumulative impacts derived from existent and developing human activities. Marine Spatial Planning (MSP) has been identified as key instrument for spatially allocating maritime uses in the sea space avoiding spatial conflicts between activities, and between activities and the environment. Indeed, MSP incorporates the ecosystem-based approach (EB-MSP) to balance both socio-economic and environmental objectives, in line with the Maritime Spatial Planning Directive and the Marine Strategy Framework Directive. Despite MSP is under implementation in Europe, the Directive is not applied yet for the managing and monitoring of the environmental status of the deep sea. In the Mediterranean, deep areas fall both in internal and territorial waters, and in High Seas, and its management framework turns out to be complicated. Moreover, a certain level of cumulative impacts in the deep Mediterranean has been already identified and likely underestimated because of paucity of knowledge related with deep-sea ecosystems. Thus, the implementation of scientific knowledge and the establishment of a sustainable management regime of deep-sea resources and space are urgent. This study aims at reflecting on the best available ecological knowledge on the deep Mediterranean to incorporate conservation objectives in EB-MSP. We propose a framework to include key ecological principles in the relevant phases of any EB-MSP processes taking in consideration existing socio-economic and conservation scenarios in the region. We add the uncertainty principle to reflect on the still unexplored and missing knowledge related to the deep Mediterranean. Here, we resume some guidelines to overcome limits and bottlenecks while ensuring protection of deep-sea ecosystems and resources in the Mediterranean Sea.
Collapse
Affiliation(s)
- E Manea
- Department of Architecture and Arts, University Iuav of Venice, Tolentini, Santa Croce 191, 30135 Venice, Italy.
| | - S Bianchelli
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - E Fanelli
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - R Danovaro
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - E Gissi
- Department of Architecture and Arts, University Iuav of Venice, Tolentini, Santa Croce 191, 30135 Venice, Italy
| |
Collapse
|
32
|
Milligan RJ, Scott EM, Jones DOB, Bett BJ, Jamieson AJ, O'Brien R, Pereira Costa S, Rowe GT, Ruhl HA, Smith KL, de Susanne P, Vardaro MF, Bailey DM. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic? J Anim Ecol 2020; 89:1593-1603. [PMID: 32198925 DOI: 10.1111/1365-2656.13215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
Animal migrations are of global ecological significance, providing mechanisms for the transport of nutrients and energy between distant locations. In much of the deep sea (>200 m water depth), the export of nutrients from the surface ocean provides a crucial but seasonally variable energy source to seafloor ecosystems. Seasonal faunal migrations have been hypothesized to occur on the deep seafloor as a result, but have not been documented. Here, we analyse a 7.5-year record of photographic data from the Deep-ocean Environmental Long-term Observatory Systems seafloor observatories to determine whether there was evidence of seasonal (intra-annual) migratory behaviours in a deep-sea fish assemblage on the West African margin and, if so, identify potential cues for the behaviour. Our findings demonstrate a correlation between intra-annual changes in demersal fish abundance at 1,400 m depth and satellite-derived estimates of primary production off the coast of Angola. Highest fish abundances were observed in late November with a smaller peak in June, occurring approximately 4 months after corresponding peaks in primary production. Observed changes in fish abundance occurred too rapidly to be explained by recruitment or mortality, and must therefore have a behavioural driver. Given the recurrent patterns observed, and the established importance of bottom-up trophic structuring in deep-sea ecosystems, we hypothesize that a large fraction of the fish assemblage may conduct seasonal migrations in this region, and propose seasonal variability in surface ocean primary production as a plausible cause. Such trophic control could lead to changes in the abundance of fishes across the seafloor by affecting secondary production of prey species and/or carrion availability for example. In summary, we present the first evidence for seasonally recurring patterns in deep-sea demersal fish abundances over a 7-year period, and demonstrate a previously unobserved level of dynamism in the deep sea, potentially mirroring the great migrations so well characterized in terrestrial systems.
Collapse
Affiliation(s)
- Rosanna J Milligan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA
| | - E Marian Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | | | | | - Alan J Jamieson
- School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne, UK
| | - Robert O'Brien
- BP Exploration Operating Company Limited, Sunbury on Thames, UK
| | - Sofia Pereira Costa
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - Henry A Ruhl
- National Oceanography Centre, Southampton, UK.,Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Ken L Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Philippe de Susanne
- BP Angola (Block 18) BV, BP International Centre for Business & Technology, Sunbury on Thames, UK
| | | | - David M Bailey
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat Ecol Evol 2020; 4:181-192. [PMID: 32015428 DOI: 10.1038/s41559-019-1091-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/19/2019] [Indexed: 11/09/2022]
Abstract
The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.
Collapse
|
34
|
Wei C, Cusson M, Archambault P, Belley R, Brown T, Burd BJ, Edinger E, Kenchington E, Gilkinson K, Lawton P, Link H, Ramey‐Balci PA, Scrosati RA, Snelgrove PVR. Seafloor biodiversity of Canada's three oceans: Patterns, hotspots and potential drivers. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.13013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Chih‐Lin Wei
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Mathieu Cusson
- Département des sciences fondamentales & Québec‐Océan Université du Québec à Chicoutimi Chicoutimi QC Canada
| | - Philippe Archambault
- Département de biologie & Québec‐Océan/Takuvik Université Laval Québec QC Canada
| | - Renald Belley
- Fisheries and Oceans Canada Maurice Lamontagne Institute Mont‐Joli QC Canada
| | - Tanya Brown
- Department of Geography Memorial University of Newfoundland St. John's NL Canada
| | - Brenda J. Burd
- Institute of Ocean Sciences Fisheries and Ocean Canada Sidney BC Canada
| | - Evan Edinger
- Department of Geography Memorial University of Newfoundland St. John's NL Canada
| | - Ellen Kenchington
- Bedford Institute of Oceanography Fisheries and Ocean Canada Dartmouth NS Canada
| | - Kent Gilkinson
- Northwest Atlantic Fisheries Centre Fisheries and Ocean Canada St. John's NL Canada
| | - Peter Lawton
- Biological Station Fisheries and Oceans Canada St. Andrews NB Canada
| | - Heike Link
- Department of Maritime Systems Faculty of Interdisciplinary Research University of Rostock Rostock Germany
| | | | | | - Paul V. R. Snelgrove
- Department of Ocean Sciences and Biology Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
35
|
Ashford OS, Kenny AJ, Barrio Froján CRS, Horton T, Rogers AD. Investigating the environmental drivers of deep-seafloor biodiversity: A case study of peracarid crustacean assemblages in the Northwest Atlantic Ocean. Ecol Evol 2019; 9:14167-14204. [PMID: 31938511 PMCID: PMC6953587 DOI: 10.1002/ece3.5852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 11/14/2022] Open
Abstract
The deep-sea benthos covers over 90% of seafloor area and hosts a great diversity of species which contribute toward essential ecosystem services. Evidence suggests that deep-seafloor assemblages are structured predominantly by their physical environment, yet knowledge of assemblage/environment relationships is limited. Here, we utilized a very large dataset of Northwest Atlantic Ocean continental slope peracarid crustacean assemblages as a case study to investigate the environmental drivers of deep-seafloor macrofaunal biodiversity. We investigated biodiversity from a phylogenetic, functional, and taxonomic perspective, and found that a wide variety of environmental drivers, including food availability, physical disturbance (bottom trawling), current speed, sediment characteristics, topographic heterogeneity, and temperature (in order of relative importance), significantly influenced peracarid biodiversity. We also found deep-water peracarid assemblages to vary seasonally and interannually. Contrary to prevailing theory on the drivers of deep-seafloor diversity, we found high topographic heterogeneity (at the hundreds to thousands of meter scale) to negatively influence assemblage diversity, while broadscale sediment characteristics (i.e., percent sand content) were found to influence assemblages more than sediment particle-size diversity. However, our results support other paradigms of deep-seafloor biodiversity, including that assemblages may vary inter- and intra-annually, and how assemblages respond to changes in current speed. We found that bottom trawling negatively affects the evenness and diversity of deep-sea soft-sediment peracarid assemblages, but that predicted changes in ocean temperature as a result of climate change may not strongly influence continental slope biodiversity over human timescales, although it may alter deep-sea community biomass. Finally, we emphasize the value of analyzing multiple metrics of biodiversity and call for researchers to consider an expanded definition of biodiversity in future investigations of deep-ocean life.
Collapse
Affiliation(s)
- Oliver S. Ashford
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
- Present address:
Scripps Institution of OceanographyLa JollaCAUSA
| | - Andrew J. Kenny
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
| | | | - Tammy Horton
- National Oceanography CentreUniversity of Southampton Waterfront CampusSouthamptonUK
| | | |
Collapse
|
36
|
Foglia F, Hazael R, Meersman F, Wilding MC, Sakai VG, Rogers S, Bove LE, Koza MM, Moulin M, Haertlein M, Forsyth VT, McMillan PF. In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure. Sci Rep 2019; 9:8716. [PMID: 31213614 PMCID: PMC6581952 DOI: 10.1038/s41598-019-44704-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Rachael Hazael
- Survivability and Advanced Materials group, Centre for Defence Engineering, Cranfield University at the Defence Academy of the UK, Shrivenham, SN6 8LA, UK
| | - Filip Meersman
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Martin C Wilding
- Materials Engineering, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | - Sarah Rogers
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma "La Sapienza", 00185, Roma, Italy.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Université Pierre et Marie Curie, F-75252, Paris, France
| | - Michael Marek Koza
- Institut Laue Langevin, 6 Rue Jules Horowitz, BP 156, 38042, Grenoble, Cedex, France
| | - Martine Moulin
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - V Trevor Forsyth
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France.,Faculty of Natural Sciences/ISTM, Keele University, Staffordshire, ST5 5BG, UK
| | - Paul F McMillan
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
37
|
Bryndum-Buchholz A, Tittensor DP, Blanchard JL, Cheung WWL, Coll M, Galbraith ED, Jennings S, Maury O, Lotze HK. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. GLOBAL CHANGE BIOLOGY 2019; 25:459-472. [PMID: 30408274 DOI: 10.1111/gcb.14512] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 05/06/2023]
Abstract
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio-economic impacts on ecosystem services, marine fisheries, and fishery-dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%-30% (±12%-17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%-80% (±35%-200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size-classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.
Collapse
Affiliation(s)
| | - Derek P Tittensor
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Julia L Blanchard
- Institute for Marine and Antarctic Studies, Center for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - William W L Cheung
- Nippon Foundation-UBC Nereus Program and Changing Ocean Research Unite, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marta Coll
- Institute of Marine Science (ICM-CSIC) and Ecopath International Initiative, Barcelona, Spain
| | - Eric D Galbraith
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Mathematics, Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Simon Jennings
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- International Council for the Exploration of the Sea, København V, Denmark
| | - Olivier Maury
- Institut de Recherche pour le Développement (IRD), UMR 248 MARBEC, Sète Cedex, France
- International Lab. ICEMASA, University of Cape Town, Rondebosch, South Africa
| | - Heike K Lotze
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
38
|
Vereshchagina K, Kondrateva E, Axenov-Gribanov D, Shatilina Z, Khomich A, Bedulina D, Zadereev E, Timofeyev M. Nonspecific stress response to temperature increase in Gammarus lacustris Sars with respect to oxygen-limited thermal tolerance concept. PeerJ 2018; 6:e5571. [PMID: 30245929 PMCID: PMC6147124 DOI: 10.7717/peerj.5571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
The previously undescribed dynamics of the heat shock protein HSP70 and subsequent lipid peroxidation products have been assessed alongside lactate dehydrogenase activity for Gammarus lacustris Sars, an amphipod species from the saltwater Lake Shira (Republic of Khakassia). Individuals were exposed to a gradual temperature increase of 1 °C/hour (total exposure duration of 26 hours) starting from the mean annual temperature of their habitat (7 °C) up to 33 °C. A complex of biochemical reactions occurred when saltwater G. lactustris was exposed to the gradual changes in temperature. This was characterized by a decrease in lactate dehydrogenase activity and the launching of lipid peroxidation. The HSP70 level did not change significantly during the entire experiment. In agreement with the concept of oxygen-limited thermal tolerance, an accumulation of the most toxic lipid peroxides (triene conjugates and Schiff bases) in phospholipids occurred at the same time and temperature as the accumulation of lactate. The main criterion overriding the temperature threshold was, therefore, the transition to anaerobiosis, confirmed by the elevated lactate levels as observed in our previous associated study, and by the development of cellular stress, which was expressed by an accumulation of lipid peroxidation products. An earlier hypothesis, based on freshwater individuals of the same species, has been confirmed whereby the increased thermotolerance of G. lacustris from the saltwater lake was caused by differences in energy metabolism and energy supply of nonspecific cellular stress-response mechanisms. With the development of global climate change, these reactions could be advantageous for saltwater G. lacustris. The studied biochemical reactions can be used as biomarkers for the stress status of aquatic organisms when their habitat temperature changes.
Collapse
Affiliation(s)
- Kseniya Vereshchagina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | | | - Denis Axenov-Gribanov
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Zhanna Shatilina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Andrey Khomich
- International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Egor Zadereev
- Institute of Biophysics SB RAS, Krasnoyarsk Research Center SB RAS, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| |
Collapse
|
39
|
Urbano B, Hendrickx ME. Offshore cephalopods (Mollusca: Cephalopoda) collected off the west coast of Mexico during the TALUD cruises. MOLLUSCAN RESEARCH 2018. [DOI: 10.1080/13235818.2018.1495799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Brian Urbano
- Posgrado en Ciencias Biológicas, UNAM Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Michel E. Hendrickx
- Laboratorio de Invertebrados Bentónicos, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| |
Collapse
|
40
|
Costello MJ, Basher Z, Sayre R, Breyer S, Wright DJ. Stratifying ocean sampling globally and with depth to account for environmental variability. Sci Rep 2018; 8:11259. [PMID: 30050102 PMCID: PMC6062513 DOI: 10.1038/s41598-018-29419-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/29/2018] [Indexed: 11/23/2022] Open
Abstract
With increasing depth, the ocean is less sampled for physical, chemical and biological variables. Using the Global Marine Environmental Datasets (GMED) and Ecological Marine Units (EMUs), we show that spatial variation in environmental variables decreases with depth. This is also the case over temporal scales because seasonal change, surface weather conditions, and biological activity are highest in shallow depths. A stratified sampling approach to ocean sampling is therefore proposed whereby deeper environments, both pelagic and benthic, would be sampled with relatively lower spatial and temporal resolutions. Sampling should combine measurements of physical and chemical parameters with biological species distributions, even though species identification is difficult to automate. Species distribution data are essential to infer ecosystem structure and function from environmental data. We conclude that a globally comprehensive, stratification-based ocean sampling program would be both scientifically justifiable and cost-effective.
Collapse
Affiliation(s)
- Mark John Costello
- Institute of Marine Science, University of Auckland, P. Bag 92019, Auckland, 1142, New Zealand.
| | | | - Roger Sayre
- United States Geological Survey, Reston, Virginia, USA
| | | | | |
Collapse
|
41
|
Dunn DC, Van Dover CL, Etter RJ, Smith CR, Levin LA, Morato T, Colaço A, Dale AC, Gebruk AV, Gjerde KM, Halpin PN, Howell KL, Johnson D, Perez JAA, Ribeiro MC, Stuckas H, Weaver P. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. SCIENCE ADVANCES 2018; 4:eaar4313. [PMID: 29978040 PMCID: PMC6031377 DOI: 10.1126/sciadv.aar4313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/23/2018] [Indexed: 05/24/2023]
Abstract
Mineral exploitation has spread from land to shallow coastal waters and is now planned for the offshore, deep seabed. Large seafloor areas are being approved for exploration for seafloor mineral deposits, creating an urgent need for regional environmental management plans. Networks of areas where mining and mining impacts are prohibited are key elements of these plans. We adapt marine reserve design principles to the distinctive biophysical environment of mid-ocean ridges, offer a framework for design and evaluation of these networks to support conservation of benthic ecosystems on mid-ocean ridges, and introduce projected climate-induced changes in the deep sea to the evaluation of reserve design. We enumerate a suite of metrics to measure network performance against conservation targets and network design criteria promulgated by the Convention on Biological Diversity. We apply these metrics to network scenarios on the northern and equatorial Mid-Atlantic Ridge, where contractors are exploring for seafloor massive sulfide (SMS) deposits. A latitudinally distributed network of areas performs well at (i) capturing ecologically important areas and 30 to 50% of the spreading ridge areas, (ii) replicating representative areas, (iii) maintaining along-ridge population connectivity, and (iv) protecting areas potentially less affected by climate-related changes. Critically, the network design is adaptive, allowing for refinement based on new knowledge and the location of mining sites, provided that design principles and conservation targets are maintained. This framework can be applied along the global mid-ocean ridge system as a precautionary measure to protect biodiversity and ecosystem function from impacts of SMS mining.
Collapse
Affiliation(s)
- Daniel C. Dunn
- Marine Geospatial Ecology Lab, Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Cindy L. Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - Ron J. Etter
- Biology Department, University of Massachusetts, Boston, MA 02125, USA
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Lisa A. Levin
- Center for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92093, USA
- Deep-Ocean Stewardship Initiative and Deep Ocean Observing Strategy, University of Southampton, University Road, Southampton, UK
| | - Telmo Morato
- IMAR Instituto do Mar, Departamento de Oceanografia e Pescas, and MARE Marine and Environmental Sciences Centre, University of the Azores, Horta, Portugal
| | - Ana Colaço
- IMAR Instituto do Mar, Departamento de Oceanografia e Pescas, and MARE Marine and Environmental Sciences Centre, University of the Azores, Horta, Portugal
| | - Andrew C. Dale
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, UK
| | - Andrey V. Gebruk
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Kristina M. Gjerde
- IUCN Global Marine and Polar Programme and World Commission on Protected Areas, Cambridge, MA 02138, USA
- Middlebury Institute of International Studies, Monterey, CA 93940, USA
| | - Patrick N. Halpin
- Marine Geospatial Ecology Lab, Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kerry L. Howell
- Deep-Sea Conservation Research Unit, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, UK
| | | | - José Angel A. Perez
- Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Marta Chantal Ribeiro
- Faculty of Law, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Heiko Stuckas
- Senckenberg Natural History Collections Dresden, Dresden, Germany
| | | | | |
Collapse
|
42
|
Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Know the distribution to assess the changes: Mediterranean cold-water coral bioconstructions. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0718-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E. Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett 2018; 364:4553516. [PMID: 29045616 DOI: 10.1093/femsle/fnx214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
45
|
Affiliation(s)
- Noam Levin
- Department of Geography The Hebrew University of Jerusalem Mount Scopus Jerusalem 91905 Israel
- School of Earth and Environmental Sciences, ARC Centre of Excellence for Environmental Decisions University of Queensland Brisbane Queensland Australia
| | - Salit Kark
- The Biodiversity Research Group, The School of Biological Sciences, ARC Centre of Excellence for Environmental Decisions and NESP Threatened Species hub, Centre for Biodiversity & Conservation Science The University of Queensland Brisbane Queensland Australia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences Polytechnic University of Marche 60131 Ancona Italy
- Stazione Zoologica Anton Dohrn Naples Italy
| |
Collapse
|
46
|
Yasuhara M, Doi H, Wei CL, Danovaro R, Myhre SE. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0282. [PMID: 27114583 DOI: 10.1098/rstb.2015.0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 11/12/2022] Open
Abstract
The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet.
Collapse
Affiliation(s)
- Moriaki Yasuhara
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China Swire Institute of Marine Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong SAR, China
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Chih-Lin Wei
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Sarah E Myhre
- Future of Ice Initiative, University of Washington, Johnson Hall, Room 377A, Box 351310 Seattle, WA 98195-1310, USA
| |
Collapse
|
47
|
Yool A, Martin AP, Anderson TR, Bett BJ, Jones DOB, Ruhl HA. Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model. GLOBAL CHANGE BIOLOGY 2017; 23:3554-3566. [PMID: 28317324 DOI: 10.1111/gcb.13680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 05/16/2023]
Abstract
Deep-water benthic communities in the ocean are almost wholly dependent on near-surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size-resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size classes of metazoans, successively doubling in mass from approximately 1 μg to 28 mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (-6.1%), and driven by changes in pelagic remineralization with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep-sea communities experience a substantial decline (-32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development.
Collapse
Affiliation(s)
- Andrew Yool
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Adrian P Martin
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Thomas R Anderson
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Brian J Bett
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Henry A Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| |
Collapse
|
48
|
Sperling EA, Frieder CA, Levin LA. Biodiversity response to natural gradients of multiple stressors on continental margins. Proc Biol Sci 2017; 283:rspb.2016.0637. [PMID: 27122565 DOI: 10.1098/rspb.2016.0637] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022] Open
Abstract
Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5-0.15 ml l(-1) (approx. 22-6 µM; approx. 21-5 matm) range, and as temperature increases through the 7-10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.
Collapse
Affiliation(s)
- Erik A Sperling
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| | - Christina A Frieder
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| |
Collapse
|
49
|
Zeppilli D, Pusceddu A, Trincardi F, Danovaro R. Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea. Sci Rep 2016; 6:26352. [PMID: 27211908 PMCID: PMC4876447 DOI: 10.1038/srep26352] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/21/2016] [Indexed: 11/17/2022] Open
Abstract
Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystems.
Collapse
Affiliation(s)
- Daniela Zeppilli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
- IFREMER, Centre Brest, REM/EEP/LEP, Institut Carnot Ifremer-EDROME, ZI de la pointe du diable, CS10070, F-29280 Plouzané, France
| | - Antonio Pusceddu
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy
| | | | - Roberto Danovaro
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
50
|
Woolley SNC, Tittensor DP, Dunstan PK, Guillera-Arroita G, Lahoz-Monfort JJ, Wintle BA, Worm B, O’Hara TD. Deep-sea diversity patterns are shaped by energy availability. Nature 2016; 533:393-6. [DOI: 10.1038/nature17937] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/21/2016] [Indexed: 11/09/2022]
|