1
|
Cheng K, Zhang J, Ye LY, Lin MH, Ding XY, Zheng XE, Zhou XF. Geriatric nutrition risk index in the prediction of all-cause and cardiovascular mortality in older adults with hyperlipidemia: NHANES 1999-2018. BMC Geriatr 2024; 24:634. [PMID: 39068440 PMCID: PMC11282714 DOI: 10.1186/s12877-024-05232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Malnutrition is linked to a higher risk of unfavorable outcomes in various illnesses. The present investigation explored the correlation between inadequate nutritional condition and outcomes in older individuals diagnosed with hyperlipidemia. METHODS The geriatric nutritional risk index (GNRI) was used to evaluate the nutritional status. All patients were divided into two groups according to GNRI. A Kaplan-Meier analysis was used to assess the survival rates of different groups at risk of malnutrition. In addition, GNRI was used in COX proportional risk regression models to evaluate its predictive effect on both overall mortality and cardiovascular mortality among patients with hyperlipidemia. Furthermore, the study employed restricted cubic splines (RCS) to examine the nonlinear correlation between GNRI and mortality. RESULTS The study included 4,532 elderly individuals diagnosed with hyperlipidemia. During a median follow-up duration of 139 months, a total of 1498 deaths from all causes and 410 deaths from cardiovascular causes occurred. The Kaplan-Meier analysis demonstrated significantly poorer survival among individuals at risk of malnutrition, as indicated by the GNRI. In the malnutrition risk group, the modified COX proportional hazards model revealed that a decrease in GNRI was associated with a higher risk of all-cause mortality (HR=1.686, 95% CI 1.212-2.347) and cardiovascular mortality (HR=3.041, 95% CI 1.797-5.147). Furthermore, the restricted cubic splines revealed a non-linear association between GNRI and both all-cause mortality and cardiovascular mortality (p-value for non-linearity = 0.0039, p-value for non-linearity=0.0386). CONCLUSIONS In older patients with hyperlipidemia, lower levels of GNRI are associated with mortality. The GNRI could potentially be used to predict all-cause mortality and cardiovascular mortality.
Collapse
Affiliation(s)
- Kun Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- The Fourth Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Jing Zhang
- Second Department of Infectious Disease, Shanghai Fifth People's Hospital of Fudan University, Shanghai, 200240, China
| | - Lu-Ya Ye
- Medical Intensive Care Unit, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China
| | - Mou-Hui Lin
- The School of Clinical Medicine Department, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xiao-Yan Ding
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- The Fourth Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xiao-E Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- The Fourth Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xiao-Fen Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
- The Fourth Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Lian X, Cheng Y, Kang H. New insights of acylation stimulating protein in modulating the pathological progression of metabolic syndromes. Int Immunopharmacol 2024; 132:112018. [PMID: 38588630 DOI: 10.1016/j.intimp.2024.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α). Concerning on the vital role of adipokines, it is proposed that one of the critical pathological factors of obesity is the dysfunctional adipocytic pathways. Among these adipokines, acylation stimulating protein, as an adipokine synthesized by adipocytes during the process of cell differentiation, is shown to activate the metabolism of triglyceride (TG) by regulating the catabolism of glucose and free fatty acid (FFA). Recent attention has paid to explore the underlying mechanism whereby acylation stimulating protein influences the biological function of adipocyte and the pathological development of obesity. In the present review, we summarized the progression of acylation stimulating protein in modulating the physiological and hormonal catabolism which affects fat distribution. Furthermore, the potential mechanisms which acylation stimulating protein regulates the metabolism of adipose tissue and the process of metabolic syndrome were also summarized.
Collapse
Affiliation(s)
- Xi Lian
- Department of Anesthesia Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huiyuan Kang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Yang C, Yu Y, An J. Effect of High-Sucrose Diet on the Occurrence and Progression of Diabetic Retinopathy and Dietary Modification Strategies. Nutrients 2024; 16:1393. [PMID: 38732638 PMCID: PMC11085904 DOI: 10.3390/nu16091393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
As the most serious of the many worse new pathological changes caused by diabetes, there are many risk factors for the occurrence and development of diabetic retinopathy (DR). They mainly include hyperglycemia, hypertension, hyperlipidemia and so on. Among them, hyperglycemia is the most critical cause, and plays a vital role in the pathological changes of DR. High-sucrose diets (HSDs) lead to elevated blood glucose levels in vivo, which, through oxidative stress, inflammation, the production of advanced glycation end products (AGEs) and vascular endothelial growth factor (VEGF), cause plenty of pathological damages to the retina and ultimately bring about loss of vision. The existing therapies for DR primarily target the terminal stage of the disease, when irreversible visual impairment has appeared. Therefore, early prevention is particularly critical. The early prevention of DR-related vision loss requires adjustments to dietary habits, mainly by reducing sugar intake. This article primarily discusses the risk factors, pathophysiological processes and molecular mechanisms associated with the development of DR caused by HSDs. It aims to raise awareness of the crucial role of diet in the occurrence and progression of DR, promote timely changes in dietary habits, prevent vision loss and improve the quality of life. The aim is to make people aware of the importance of diet in the occurrence and progression of DR. According to the dietary modification strategies that we give, patients can change their poor eating habits in a timely manner to avoid theoretically avoidable retinopathy and obtain an excellent prognosis.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China;
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jianhong An
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China;
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| |
Collapse
|
4
|
Yang TY, Chang PJ, Ko YS, Shen SR, Chang SF. Assessment of the (Pro)renin Receptor Protein Expression in Organs. Curr Issues Mol Biol 2024; 46:1741-1753. [PMID: 38534729 DOI: 10.3390/cimb46030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The (pro)renin receptor ((P)RR) is an essential component of the renin-angiotensin system (RAS) as a specific single-pass transmembrane receptor for prorenin and renin and has now emerged as a multifunctional protein implicated in a wide variety of developmental and physio-pathological processes and pathways. The (P)RR may be of pathological significance in metabolic syndrome. The (P)RR has received much consideration; substantial efforts have been made to understand the localization, regulation, and function of the (P)RR at both a molecular and system level. (P)RR regulation of cell function depends on whether it is intact or cleaved into its constituent forms. Therefore, the present chapter describes immunohistochemical approaches to examine the expression of (P)RR in various organs. It was shown that different molecular forms of (P)RR could be present in different tissue compartments in almost all organs. Among them, the liver has high PRR activity. Our findings could elucidate more detailed distribution of different (P)RR molecular forms in different organs, which could provide useful information to further investigate the pathophysiological mechanisms of the development of various diseases in the future.
Collapse
Affiliation(s)
- Teng-Yao Yang
- Cardiovascular Department, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Shien Ko
- Cardiovascular Division, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Siou-Ru Shen
- Cardiovascular Department, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| |
Collapse
|
5
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Kumar AHS. Network Proteins of Human Sortilin1, Its Expression and Targetability Using Lycopene. Life (Basel) 2024; 14:137. [PMID: 38255751 PMCID: PMC10817468 DOI: 10.3390/life14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Sortilin1 (SORT1) is a ubiquitously expressed transporter involved in sorting or clearing proteins and is pathologically linked to tissue fibrosis and calcification. Targeting SORT1 may have potential clinical efficacy in controlling or reversing cardiovascular fibrosis and/or calcification. Hence, this study assessed the protein-protein network of human SORT1 and its targetability using known nutra-/pharmaceuticals. MATERIAL AND METHODS Network proteins of human SORT1 were identified using the String database, and the affinity of the protein-protein interaction of this network was analysed using Chimera software (Chimera-1.17.3-mac64). The tissue-specific expression profile of SORT1 was evaluated and assessed for enrichment in different cell types, including immune cells. A library of in-house small molecules and currently used therapeutics for cardiovascular diseases were screened using AutoDock Vina to assess the targetability of human SORT1. The concentration affinity (CA) ratio of the small molecules was estimated to assess the clinical feasibility of targeting SORT1. RESULTS IGF2R, NTRK2, GRN and GGA1 were identified as high-affinity interaction networks of SORT1. Of these high-affinity interactions, IGF2R and GRN can be considered relevant networks in regulating tissue fibrosis or the microcalcification process due to their influence on T-cell activation, inflammation, wound repair, and the tissue remodelling process. The tissue cell-type enrichment indicated major expression of SORT1 in adipocytes, specialised epithelial cells, monocytes, cardiomyocytes, and thyroid glandular cells. The binding pocket analysis of human SORT1 showed twelve potential drug interaction sites with varying binding scores (0.86 to 5.83) and probability of interaction (0.004 to 0.304). Five of the drug interaction sites were observed to be targetable at the therapeutically feasible concentration of the small molecules evaluated. Empagliflozin, sitagliptin and lycopene showed a superior affinity and CA ratio compared to established inhibitors of SORT1. CONCLUSION IGF2R and GRN are relevant networks of SORT1, regulating tissue fibrosis or the microcalcification process. SORT1 can be targeted using currently approved small-molecule therapeutics (empagliflozin and sitagliptin) or widely used nutraceuticals (lycopene), which should be evaluated in a randomised clinical trial to assess their efficacy in reducing the cardiac/vascular microcalcification process.
Collapse
Affiliation(s)
- Arun H S Kumar
- Stemcology, School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
7
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Bryl A, Mrugacz M, Falkowski M, Zorena K. The Effect of Hyperlipidemia on the Course of Diabetic Retinopathy—Literature Review. J Clin Med 2022; 11:jcm11102761. [PMID: 35628887 PMCID: PMC9146710 DOI: 10.3390/jcm11102761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a very important social issue, and its retinal complications continue to be one of the major causes of blindness worldwide. The effect of glucose level on the development of retinal retinopathy has been the subject of numerous studies and is well understood. Hypertension and hyperlipidemia have been known to be important risk factors in the development of diabetes complications. However, the mechanisms of this effect have not been fully explained and raise a good deal of controversy. The latest research results suggest that some lipoproteins are closely correlated with the incidence of diabetic retinopathy and that by exerting an impact on their level the disease course can be modulated. Moreover, pharmacotherapy which reduces the level of lipids, particularly by means of statins and fibrate, has been shown to alleviate diabetic retinopathy. Therefore, we have decided to review the latest literature on diabetic retinopathy with respect to the impact of hyperlipidemia and possible preventive measures
Collapse
Affiliation(s)
- Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
- Correspondence:
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Mariusz Falkowski
- PhD Studies, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
9
|
Eshghjoo S, Kim DM, Jayaraman A, Sun Y, Alaniz RC. Macrophage Polarization in Atherosclerosis. Genes (Basel) 2022; 13:genes13050756. [PMID: 35627141 PMCID: PMC9142092 DOI: 10.3390/genes13050756] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
The implication of the heterogeneous spectrum of pro- and anti-inflammatory macrophages (Macs) has been an important area of investigation over the last decade. The polarization of Macs alters their functional phenotype in response to their surrounding microenvironment. Macs are the major immune cells implicated in the pathogenesis of atherosclerosis. A hallmark pathology of atherosclerosis is the accumulation of pro-inflammatory M1-like macrophages in coronary arteries induced by pro-atherogenic stimuli; these M1-like pro-inflammatory macrophages are incapable of digesting lipids, thus resulting in foam cell formation in the atherosclerotic plaques. Recent findings suggest that the progression and stability of atherosclerotic plaques are dependent on the quantity of infiltrated Macs, the polarization state of the Macs, and the ratios of different types of Mac populations. The polarization of Macs is defined by signature markers on the cell surface, as well as by factors in intracellular and intranuclear compartments. At the same time, pro- and anti-inflammatory polarized Macs also exhibit different gene expression patterns, with differential cellular characteristics in oxidative phosphorylation and glycolysis. Macs are reflective of different metabolic states and various types of diseases. In this review, we discuss the major differences between M1-like Macs and M2-like Macs, their associated metabolic pathways, and their roles in atherosclerosis.
Collapse
Affiliation(s)
- Sahar Eshghjoo
- Huffington Center on Aging, Baylor College Medicine, Houston, TX 77030, USA;
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Yuxiang Sun
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: (Y.S.); (R.C.A.); Tel.: +1-(979)-862-9143 (Y.S.); +1-(206)-818-9450 (R.C.A.)
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: (Y.S.); (R.C.A.); Tel.: +1-(979)-862-9143 (Y.S.); +1-(206)-818-9450 (R.C.A.)
| |
Collapse
|
10
|
Namitha D, Nusrath A, Asha Rani N, Dhananjaya SY, Lokanathan TH, Kruthi B, Vijay Kumar A. Role of Lipid Indices in the Assessment of Microvascular Risk in Type 2 Diabetic Retinopathy Patients. Cureus 2022; 14:e23395. [PMID: 35481317 PMCID: PMC9033511 DOI: 10.7759/cureus.23395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Diabetic retinopathy (DR) remains the leading cause of blindness and visual impairment in diabetic patients worldwide. Lipid indices (LI) such as atherogenic coefficient (AC), atherogenic index of plasma (AIP), non-high-density lipoprotein cholesterol (non-HDL-C), and Castelli risk index (CRI) I and II may be associated with bio-physiological changes of DR even when traditional lipids are within normal limit. Hence, the present study was undertaken to evaluate the LI and examine the LI predictive role in assessing the microvascular risk in diabetes patients with and without retinopathy. Methodology: This case-control study was conducted for six months at a tertiary care hospital and included 90 subjects divided into three groups. Group I had 30 age and sex-matched healthy controls; group II and group III had 30 type 2 diabetes mellitus (T2DM) cases without DR and with DR, respectively. Plasma glucose and lipid profiles including apolipoprotein A-I (Apo A-I) and apolipoprotein B (Apo B) were measured in all subjects. LI such as AIP, AC, CRI-I, CRI-II, and non-HDL-C were calculated from the lipid profile values. ANOVA test was used to compare the means of three groups. Results: The mean age of the study participants was 51.44 ± 11.72, 53.95 ± 12.43, and 57.16 ± 7.96 years for groups I, II, and III, respectively. Triacylglycerol (TG) showed positive correlation with all LI, AIP (r = 0.768, p < 0.00001), AC (r = 0.363, p = 0.048), non-HDL-C (r = 0.372, p = 0.042), and CRI-I (r = 0.363, p = 0.048), except for CRI-II in group III. Low-density lipoprotein cholesterol (LDL-C) showed a statistically significant positive correlation with non-HDL-C and CRI-II in diabetic subjects with and without retinopathy. Conclusion: The study showed that LI were raised in diabetic patients with or without DR, suggesting the significant role of LI in assessing microvascular risk in T2DM, particularly when the lipid profile values seem to be normal or not disturbed markedly.
Collapse
|
11
|
Su X, Cheng Y, Zhang G, Wang B. Novel insights into the pathological mechanisms of metabolic related dyslipidemia. Mol Biol Rep 2021; 48:5675-5687. [PMID: 34218408 DOI: 10.1007/s11033-021-06529-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Due to the technological advances, it has been well-established that obesity is strongly correlated with various health problems. Among these problems, dyslipidemia is one of the most important concomitant symptoms under obese status which is the main driving force behind the pathological progression of cardio-metabolic disorder diseases. Importantly, the type of dyslipidemia, arising from concerted action of obesity, has been identified as "metabolic related dyslipidemia", which is characterized by increased circulating levels of Low density lipoprotein cholesterol (LDL-C), Triglycerides (TG) accompanied by lower circulating levels of High density lipoprotein cholesterol (HDL-C). On the other hand, the metabolic related dyslipidemia is being verified as a vital link between obesity and hypertension, diabetes mellitus, and Cardiovascular disease (CVD). In this review, we summarized the current understanding of metabolic related dyslipidemia and the potential mechanisms which lead to the pathogenesis of obesity. Meanwhile, we also summarized the emerging results which focused on several novel lipid bio-markers in metabolic related dyslipidemia, such as pro-protein convertase subtilisin/kexin type 9 (PCSK9) and sphingosine-1-phosphate (S1P), and their potential use as biomarkers of metabolic related dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
12
|
Su X, Zhang G, Cheng Y, Wang B. New insights into ANGPTL8 in modulating the development of cardio-metabolic disorder diseases. Mol Biol Rep 2021; 48:3761-3771. [PMID: 33864591 DOI: 10.1007/s11033-021-06335-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
Dyslipidemia is being identified as the most important factors of several health problems, such as obesity, diabetes mellitus, and cardiovascular diseases (CVD), which are always grouped together as cardio-metabolic disorder diseases. Consistently, dyslipidemia has become one of the most rising crisis of general health. Recently, it is worth noting that both genome-wide association studies (GWAS) and experimental research are being taken advantage to elucidate the potential genetic mechanisms of dyslipidemia and to identify new gene loci which contribute to the development of cardio-metabolic disorder diseases. According to the results, both ANGPTL8 gene and ANGPTL8 protein has been shown to embrace vital functions in modulating serum glucose and lipid metabolism. In the current review, the modulatory effects of ANGPTL8 in cardio-metabolic disorder diseases were summarized. In addition, novel insights which elucidate the potential mechanisms whereby ANGPTL8 affects glucose and lipid metabolism were also provided.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
13
|
Su X, Cheng Y, Chang D. The Important Role of Leptin in Modulating the Risk of Dermatological Diseases. Front Immunol 2021; 11:593564. [PMID: 33597945 PMCID: PMC7882601 DOI: 10.3389/fimmu.2020.593564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
It is an indisputable fact that obesity is associated with a series of health problems. One important hallmark of obesity is excessive accumulation of lipids in the adipocyte, especially triglyceride (TG). Currently, the adipocyte has been considered not only as a huge repository of excess energy in the form of fat but also as an important source of multiple hormones and cytokines called adipokines. In obesity, the adipocyte is dysfunctional with excessive production and secretion of pro-inflammatory adipokines, such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and leptin. On the other hand, accumulating evidence has shown that leptin plays a vital role in stimulating angiogenesis, controlling lipid metabolism, and modulating the production of pro-inflammatory cytokines. Furthermore, the various activities of leptin are related to the wide distribution of leptin receptors. Notably, it has been reported that enhanced leptin levels and dysfunction of the leptin signaling pathway can influence diverse skin diseases. Recently, several studies revealed the roles of leptin in wound healing, the hair cycle, and the pathogenic development of skin diseases, such as psoriasis, lupus erythematosus, and dermatological cancers. However, the exact mechanisms of leptin in modulating the dermatological diseases are still under investigation. Therefore, in the present review, we summarized the regulatory roles of leptin in the pathological progression of diverse diseases of skin and skin appendages. Furthermore, we also provided evidence to elucidate the complicated relationship between leptin and different dermatological diseases, such as systemic lupus erythematosus (SLE), psoriasis, hidradenitis suppurativa, and some skin tumors.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, China
| | | | - Dong Chang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Albaker W, El-Ashker S, Baraka MA, El-Tanahi N, Ahsan M, Al-Hariri M. Adiposity and Cardiometabolic Risk assessment Among University Students in Saudi Arabia. Sci Prog 2021; 104:36850421998532. [PMID: 33720790 PMCID: PMC10358492 DOI: 10.1177/0036850421998532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Overweight and obesity have become a significant health hazard among adolescents on account of quick growth in its occurrence rate and its common comorbidities like cardiometabolic disease (CMD). The aim of this study was to evaluate the prevalence of adiposity and assess the risk of CMD among university students in Eastern Province, Saudi Arabia. A cross-sectional study was conducted during the academic year 2017-2018, in a sample of 310 subjects (127 males; 183 females). The measurements were taken using standardized instruments including Body Mass Index (BMI), Fat Mass Index (FMI), Body Fat Percentage BFP), Mass of Body Fat (MBF), Visceral Fat Area (VFA), Waist Circumference (WC), and Waist to Hip Ratio (WHR). Moreover, CMD risk indicators were calculated by Conicity index (C index), WC, and WHR. The findings showed that the majority was overweight and obese (16.8% and 21.6%, respectively). While evaluating obesity indicators, males were found to have higher adiposity (obese students 34.6%) compared to female students (12.6%; p < 0.001). Additionally, FMI showed that the mean was significantly higher among males (8.65 ± 6.06) compared to females (7.26 ± 3.30; p < 0.019). Analysis of the predictors' indices for cardiometabolic risk score highlighted a significantly higher percentage of WC, WHR, and C index among male students (50, 38.5, 59) compared to females (16.9, 14.2, 34; p < 0.001). Significant positive correlations were observed between C index quartiles and BMI with the other cardiometabolic indices (p < 0.001). This study highlighted a high prevalence of adiposity and CMD risk among university students. The prediction of CMD in early age is quite helpful in preventing adiposity related health issues. Decision makers need to spread awareness about healthy consumption as well as the relationship between physical inactivity and chronic diseases.
Collapse
Affiliation(s)
- Waleed Albaker
- College of Medicine, Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Said El-Ashker
- Self-Development Department, Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed A. Baraka
- Clinical Pharmacy department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
- Clinical Pharmacy department, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Nagla El-Tanahi
- Self-Development Department, Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Ahsan
- College of Applied Medical Sciences, Department of Physical Therapy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Al-Hariri
- College of Medicine, Department of Physiology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
15
|
Chou Y, Ma J, Su X, Zhong Y. Emerging insights into the relationship between hyperlipidemia and the risk of diabetic retinopathy. Lipids Health Dis 2020; 19:241. [PMID: 33213461 PMCID: PMC7677820 DOI: 10.1186/s12944-020-01415-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperlipidemia is correlated with a series of health problems. Notably, aside from its established role in promoting cardiovascular morbidity and mortality, hyperlipidemia has also been considered for modulating the risk and the severity of multiple metabolic disorders. According to the results of epidemiologic investigations, several certain circulating lipoprotein species are correlated with the prevalence of diabetic retinopathy, suggesting that the physiological and pathological role of these lipoproteins is analogous to that observed in cardiovascular diseases. Furthermore, the lipid-lowering treatments, particularly using statin and fibrate, have been demonstrated to ameliorate diabetic retinopathy. Thereby, current focus is shifting towards implementing the protective strategies of diabetic retinopathy and elucidating the potential underlying mechanisms. However, it is worth noting that the relationship between major serum cholesterol species and the development of diabetic retinopathy, published by other studies, was inconsistent and overall modest, revealing the relationship is still not clarified. In this review, the current understanding of hyperlipidemia in pathogenesis of diabetic retinopathy was summarized and the novel insights into the potential mechanisms whereby hyperlipidemia modulates diabetic retinopathy were put forward.
Collapse
Affiliation(s)
- Yuyu Chou
- Department, of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jin Ma
- Department, of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, 363001, Fujian, China.
| | - Yong Zhong
- Department, of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
16
|
Su X, Li G, Deng Y, Chang D. Cholesteryl ester transfer protein inhibitors in precision medicine. Clin Chim Acta 2020; 510:733-740. [PMID: 32941836 DOI: 10.1016/j.cca.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Dyslipidemia is associated with atherosclerosis and cardiovascular disease development, posing serious risks to human health. Cholesteryl ester transfer protein (CETP) is responsible for exchange of neutral lipids, such as cholesteryl ester and TG, between plasma high density lipoprotein (HDL) particles and Apolipoprotein B-100 (ApoB-100) containing lipoprotein particles. Genetic studies suggest that single-nucleotide polymorphism (SNPs) with loss of activity CETP is associated with increased HDL-C, reduced LDL-C, and cardiovascular risk. In animal studies, mostly in rabbits, which have similar CETP activity to humans, inhibition of CETP through antisense oligonucleotides reduced aortic arch atherosclerosis. Concerning this notion, inhibiting the CETP is considered as a promise approach to reduce cardiovascular events, and several CETP inhibitors have been recently studied as a cholesterol modifying agent to reduce cardiovascular mortality in high risk cardiovascular disease patients. However, in Phase III cardiovascular outcome trials, three CETP inhibitors, named Torcetrapib, Dalcetrapib, and Evacetrapib, did not provide expected cardiovascular benefits and failed to improve outcomes of patient with cardiovascular diseases (CVD). Although REVEAL trail has recently shown that Anacetrapib could reduce major coronary events, it was also shown to induce excessive lipid accumulation in adipose tissue; thereby, the further regulatory approval will not be sought. On the other hand, growing evidence indicated that the function of CETP inhibitors on modulating the cardiovascular events are determined by correlated single nucleotide polymorphism (SNP) in the ADCY9 gene. However, the underlying mechanisms whereby CETP inhibitors interact with the genotype are not yet elucidated, which could potentially be related to the genotype-dependent cholesterol efflux capacity of HDL particles. In the present review, we summarize the current understanding of the functions of CETP and the outcomes of the phase III randomized controlled trials of CETP inhibitors. In addition, we also put forward the implications from results of the trials which potentially suggest that the CETP inhibitors could be a promising precise therapeutic medicine for CVD based on genetic background.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Guiyang Li
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yingjian Deng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Dong Chang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
17
|
Guo Y, Yan B, Gui Y, Tang Z, Tai S, Zhou S, Zheng XL. Physiology and role of PCSK9 in vascular disease: Potential impact of localized PCSK9 in vascular wall. J Cell Physiol 2020; 236:2333-2351. [PMID: 32875580 DOI: 10.1002/jcp.30025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Binjie Yan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Zhihan Tang
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Ouyang S, Jia B, Xie W, Yang J, Lv Y. Mechanism underlying the regulation of sortilin expression and its trafficking function. J Cell Physiol 2020; 235:8958-8971. [PMID: 32474917 DOI: 10.1002/jcp.29818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
This review summarizes and analyzes the updated information on the regulation of sortilin expression and its trafficking function. Evidence indicates that the expression and function of sortilin are closely regulated at four levels: DNA, messenger RNA (mRNA), protein, and trafficking function. DNA methylation, several mutations, and minor single-nucleotide polymorphisms within DNA fragments affect the expression of SORT1 gene. A few transcription factors and microRNAs modulate its transcription as well as the splicing or stability of the mRNA. Moreover, several translation factors control the synthesis of sortilin protein, and posttranslational modifications affect its degradation processes. Multiple adaptor molecules modulate the sortilin trafficking function in the anterograde or retrograde pathway. Recent advances in the regulation of sortilin expression and function, and its related mechanisms will help the ongoing research related to sortilin and promote future clinical application via sortilin intervention.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Bo Jia
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Xie
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Jing Yang
- Department of Endocrinology of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuncheng Lv
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
19
|
Proprotein Convertase Subtilisin/Kexin Type 9, Angiopoietin-Like Protein 8, Sortilin, and Cholesteryl Ester Transfer Protein-Friends of Foes for Psoriatic Patients at the Risk of Developing Cardiometabolic Syndrome? Int J Mol Sci 2020; 21:ijms21103682. [PMID: 32456228 PMCID: PMC7279158 DOI: 10.3390/ijms21103682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic, immune-metabolic disease with strong genetic predispositions and autoimmune pathogenic traits. During psoriasis progression, a wide spectrum of comorbidities comes into play with the leading role of the cardio-metabolic syndrome (CMS) that occurs with the frequency of 30–50% amongst the psoriatic patients. Both conditions—psoriasis and CMS—have numerous common pathways, mainly related to proinflammatory pathways and cytokine profiles. Surprisingly, despite the years of research, the exact pathways linking the occurrence of CMS in the psoriasis population are still not fully understood. Recently published papers, both clinical and based on the basic science, shed new light into this relationship providing an insight into novel key-players proteins with plausible effects on above-mentioned interplay. Taking into account recent advances in this important medical matter, this review aims to discuss comprehensively the role of four proteins: proprotein convertase subtilisin/kexin type-9 (PSCK9), angiopoietin-like protein 8 (ANGPLT8), sortilin (SORT1), and cholesteryl ester transfer proteins (CEPT) as plausible links between psoriasis and CMS.
Collapse
|