1
|
Zhou L, Wu J, Wei Z, Zheng Y. Legumain in cardiovascular diseases. Exp Biol Med (Maywood) 2024; 249:10121. [PMID: 39104790 PMCID: PMC11298360 DOI: 10.3389/ebm.2024.10121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, having become a global public health problem, so the pathophysiological mechanisms and therapeutic strategies of CVDs need further study. Legumain is a powerful enzyme that is widely distributed in mammals and plays an important role in a variety of biological processes. Recent research suggests that legumain is associated with the occurrence and progression of CVDs. In this review, we provide a comprehensive overview of legumain in the pathogenesis of CVDs. The role of legumain in CVDs, such as carotid atherosclerosis, pulmonary hypertension, coronary artery disease, peripheral arterial disease, aortic aneurysms and dissection, is discussed. The potential applications of legumain as a biomarker of these diseases are also explored. By understanding the role of legumain in the pathogenesis of CVDs, we aim to support new therapeutic strategies to prevent or treat these diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Kawaguchi Y, Ohshio Y, Watanabe A, Shiratori T, Okamoto K, Ueda K, Kataoka Y, Suzuki T, Hanaoka J. Depletion of tumor-associated macrophages inhibits lung cancer growth and enhances the antitumor effect of cisplatin. Cancer Sci 2023; 114:750-763. [PMID: 36411518 PMCID: PMC9986097 DOI: 10.1111/cas.15671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
In lung cancer, tumor-associated macrophages (TAMs), especially M2-like TAMs, represent the main tumor progression components in the tumor microenvironment (TME). Therefore, M2-like TAMs may serve as a therapeutic target. The purpose of this study was to investigate the effect of M2-like TAM depletion in the TME on tumor growth and chemotherapy response in lung cancer. The levels of secreted monocyte chemoattractant protein (MCP-1) and prostaglandin E2 (PGE2) in the supernatants of lung cancer cell lines A549 and LLC were evaluated via ELISA. Cell migration assays were performed to assess the recruitment ability of macrophage cell lines THP-1 and J774-1 cells. Differentiation of macrophages was assessed via flow cytometry. Immunohistochemical staining was performed to visualize M2-like TAMs in transplanted lung cancer in mouse. We used the COX-2 inhibitor nimesulide to inhibit the secretion of MCP-1 and PGE2, which promotes macrophage migration and M2-like differentiation. Nimesulide treatment decreased the secretion of MCP-1 and PGE2 from lung cancer cells. Nimesulide treatment suppressed the migration of macrophages by blocking MCP-1. Lung cancer supernatant induced the differentiation of macrophages toward the M2-like phenotype, and nimesulide treatment inhibited M2-like differentiation by blocking MCP-1 and PGE2. In the lung cancer mouse model, treatment with nimesulide depleted M2-like TAMs in the TME and enhanced the tumor inhibitory effect of cisplatin. Our results indicated that blocking the secretion of MCP-1 and PGE2 from tumor cells depleted M2-like TAMs in the TME and the combination therapy with cisplatin considerably suppressed tumor growth in the LLC mouse model.
Collapse
Affiliation(s)
- Yo Kawaguchi
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Yasuhiko Ohshio
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Atsuko Watanabe
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Takuya Shiratori
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Keigo Okamoto
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Keiko Ueda
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Yoko Kataoka
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Tomoaki Suzuki
- Division of Cardiovascular Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Jun Hanaoka
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
3
|
Antitumor Therapy Targeting the Tumor Microenvironment. JOURNAL OF ONCOLOGY 2023; 2023:6886135. [PMID: 36908706 PMCID: PMC10005879 DOI: 10.1155/2023/6886135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The development and progression of tumors in human tissues extensively rely on its surrounding environment, that is, tumor microenvironment which includes a variety of cells, molecules, and blood vessels. These components are modified, organized, and integrated to support and facilitate the growth, invasion, and metabolism of tumor cells, suggesting them as potential therapeutic targets in anticancer treatment. An increasing number of pharmacological agents have been developed and clinically applied to target the oncogenic components in the tumor microenvironment, and in this review, we will summarize these pharmacological agents that directly or indirectly target the cellular or molecular components in the tumor microenvironment. However, difficulties and challenges still exist in this field, which will also be reported in this literature.
Collapse
|
4
|
Anti-Inflammatory Mechanisms of Dietary Flavones: Tapping into Nature to Control Chronic Inflammation in Obesity and Cancer. Int J Mol Sci 2022; 23:ijms232415753. [PMID: 36555392 PMCID: PMC9779861 DOI: 10.3390/ijms232415753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Flavones are natural phytochemicals broadly distributed in our diet. Their anti-inflammatory properties provide unique opportunities to control the innate immune system and inflammation. Here, we review the role of flavones in chronic inflammation with an emphasis on their impact on the molecular mechanisms underlying inflammatory diseases including obesity and cancer. Flavones can influence the innate immune cell repertoire restoring the immune landscape. Flavones impinge on NF-κB, STAT, COX-2, or NLRP3 inflammasome pathways reestablishing immune homeostasis. Devoid of adverse side effects, flavones could present alternative opportunities for the treatment and prevention of chronic inflammation that contributes to obesity and cancer.
Collapse
|
5
|
Fu JL, Hao HF, Wang S, Jiao YN, Li PP, Han SY. Marsdenia tenacissima extract disturbs the interaction between tumor-associated macrophages and non-small cell lung cancer cells by targeting HDGF. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115607. [PMID: 35973634 DOI: 10.1016/j.jep.2022.115607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima (Roxb.) Wight et Arn. is a traditional Chinese herbal medicine, and its water-soluble ingredient Marsdenia tenacissima extract (MTE), was widely used for cancer treatment. The multi-pharmacological efficacies and mechanisms of MTE in directly inhibiting tumor cells have been extensively studied. However, the anti-tumor effects of MTE in the tumor-associated macrophages (TAMs) microenvironment remain unclear. AIM OF THE STUDY To uncover the role of hepatoma-derived growth factor (HDGF) in the interaction between TAMs and non-small cell lung cancer (NSCLC) cells. To evaluate the anti-tumor effects of MTE on the vicious crosstalk between TAMs and NSCLC by targeting HDGF. MATERIALS AND METHODS HDGF-overexpression PC-9 and H292 NSCLC cell lines were constructed and verified. RNA-sequencing (RNA-seq) was performed in HDGF-overexpression PC-9 cells to probe the differential expression of genes. THP-1-derived macrophages were characterized using specific markers after stimulation with phorbol-12-myristate 13-acetate (PMA) and rhIL-4 or rhHDGF. The role of HDGF both in NSCLC cells and TAMs was determined using approaches like Western blot, qRT-PCR, ELISA, and flow cytometry. The interaction between tumor cells and TAMs were assessed by indirect co-culture H1975, PC-9 cells with M2 type macrophages. The effects of MTE on anti-tumor and macrophage polarization were evaluated in vitro and in vivo. RESULTS RNA-seq results identified IL-4 as a critical response to HDGF in NSCLC. HDGF induced macrophages polarizing toward M2 type, and promoted NSCLC cells proliferation, migration and invasion in vitro. On the one hand, HDGF dose-dependently promoted IL-4 expression in NSCLC cells. On the other hand, HDGF induced M2 macrophage polarization through the IL-4/JAK1/STAT3 signaling pathway. MTE treatment significantly decreased the expression and secretion of HDGF in NSCLC cells. Meanwhile, MTE treatment led to M2 macrophage repolarization, as evidenced by decreased expression of M2 markers and increased levels of M1 markers. Importantly, MTE treatment significantly suppressed tumor development in C57BL/6 mice bearing Lewis lung cancer (LLC) cells in vivo, accompanied by decreased plasma HDGF levels, reduced M2 macrophages infiltration and increased M1 macrophages proportion in mice tumor tissues. CONCLUSIONS HDGF upregulated IL-4 expression in NSCLC cells, and promoted M2 polarization by the IL-4/JAK1/STAT3 signaling pathway in macrophages. MTE disturbed the interaction between NSCLC and TAMs in vitro, and inhibited tumor growth in vivo, at least in part, by suppressing HDGF. Therefore, our present study revealed a novel anti-tumor mechanism of MTE through inhibiting HDGF expression and enhancing macrophage polarization from M2 to M1 phenotype.
Collapse
Affiliation(s)
- Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
6
|
He Y, Huang J, Li Q, Xia W, Zhang C, Liu Z, Xiao J, Yi Z, Deng H, Xiao Z, Hu J, Li H, Zu X, Quan C, Chen J. Gut Microbiota and Tumor Immune Escape: A New Perspective for Improving Tumor Immunotherapy. Cancers (Basel) 2022; 14:5317. [PMID: 36358736 PMCID: PMC9656981 DOI: 10.3390/cancers14215317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
The gut microbiota is a large symbiotic community of anaerobic and facultative aerobic bacteria inhabiting the human intestinal tract, and its activities significantly affect human health. Increasing evidence has suggested that the gut microbiome plays an important role in tumor-related immune regulation. In the tumor microenvironment (TME), the gut microbiome and its metabolites affect the differentiation and function of immune cells regulating the immune evasion of tumors. The gut microbiome can indirectly influence individual responses to various classical tumor immunotherapies, including immune checkpoint inhibitor therapy and adoptive immunotherapy. Microbial regulation through antibiotics, prebiotics, and fecal microbiota transplantation (FMT) optimize the composition of the gut microbiome, improving the efficacy of immunotherapy and bringing a new perspective and hope for tumor treatment.
Collapse
Affiliation(s)
- Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiaorong Li
- Department of Ultrasound, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Weiping Xia
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hao Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
7
|
Barth ND, Van Dalen FJ, Karmakar U, Bertolini M, Mendive‐Tapia L, Kitamura T, Verdoes M, Vendrell M. Enzyme-Activatable Chemokine Conjugates for In Vivo Targeting of Tumor-Associated Macrophages. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207508. [PMID: 38505293 PMCID: PMC10946784 DOI: 10.1002/ange.202207508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 03/21/2024]
Abstract
Increased levels of tumor-associated macrophages (TAMs) are indicators of poor prognosis in most cancers. Although antibodies and small molecules blocking the recruitment of macrophages to tumors are under evaluation as anticancer therapies, these strategies are not specific for macrophage subpopulations. Herein we report the first enzyme-activatable chemokine conjugates for effective targeting of defined macrophage subsets in live tumors. Our constructs exploit the high expression of chemokine receptors (e.g., CCR2) and the activity of cysteine cathepsins in TAMs to target these cells selectively over other macrophages and immune cells (e.g., neutrophils, T cells, B cells). Furthermore, we demonstrate that cathepsin-activatable chemokines are compatible with both fluorescent and therapeutic cargos, opening new avenues in the design of targeted theranostic probes for immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchUniversity of EdinburghUK
- Cancer Research UK Edinburgh CentreUniversity of EdinburghUK
| | - Floris J. Van Dalen
- Dept. Tumor Immunology and Institute for Chemical ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterThe Netherlands
| | - Utsa Karmakar
- Centre for Inflammation ResearchUniversity of EdinburghUK
| | | | | | | | - Martijn Verdoes
- Dept. Tumor Immunology and Institute for Chemical ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterThe Netherlands
| | - Marc Vendrell
- Centre for Inflammation ResearchUniversity of EdinburghUK
| |
Collapse
|
8
|
Barth ND, Van Dalen FJ, Karmakar U, Bertolini M, Mendive‐Tapia L, Kitamura T, Verdoes M, Vendrell M. Enzyme-Activatable Chemokine Conjugates for In Vivo Targeting of Tumor-Associated Macrophages. Angew Chem Int Ed Engl 2022; 61:e202207508. [PMID: 35993914 PMCID: PMC9826351 DOI: 10.1002/anie.202207508] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 01/11/2023]
Abstract
Increased levels of tumor-associated macrophages (TAMs) are indicators of poor prognosis in most cancers. Although antibodies and small molecules blocking the recruitment of macrophages to tumors are under evaluation as anticancer therapies, these strategies are not specific for macrophage subpopulations. Herein we report the first enzyme-activatable chemokine conjugates for effective targeting of defined macrophage subsets in live tumors. Our constructs exploit the high expression of chemokine receptors (e.g., CCR2) and the activity of cysteine cathepsins in TAMs to target these cells selectively over other macrophages and immune cells (e.g., neutrophils, T cells, B cells). Furthermore, we demonstrate that cathepsin-activatable chemokines are compatible with both fluorescent and therapeutic cargos, opening new avenues in the design of targeted theranostic probes for immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchUniversity of EdinburghUK
- Cancer Research UK Edinburgh CentreUniversity of EdinburghUK
| | - Floris J. Van Dalen
- Dept. Tumor Immunology and Institute for Chemical ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterThe Netherlands
| | - Utsa Karmakar
- Centre for Inflammation ResearchUniversity of EdinburghUK
| | | | | | | | - Martijn Verdoes
- Dept. Tumor Immunology and Institute for Chemical ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterThe Netherlands
| | - Marc Vendrell
- Centre for Inflammation ResearchUniversity of EdinburghUK
| |
Collapse
|
9
|
Liu C, Wang J, Zheng Y, Zhu Y, Zhou Z, Liu Z, Lin C, Wan Y, Wen Y, Liu C, Yuan M, Zeng YA, Yan Z, Ge G, Chen J. Autocrine pro-legumain promotes breast cancer metastasis via binding to integrin αvβ3. Oncogene 2022; 41:4091-4103. [PMID: 35854065 DOI: 10.1038/s41388-022-02409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Abstract
Tumor metastasis is the leading cause of cancer-associated mortality. Unfortunately, the underlying mechanism of metastasis is poorly understood. Expression of legumain (LGMN), an endo-lysosomal cysteine protease, positively correlates with breast cancer metastatic progression and poor prognosis. Here, we report that LGMN is secreted in the zymogen form by motile breast cancer cells. Through binding to cell surface integrin αvβ3 via an RGD motif, the autocrine pro-LGMN activates FAK-Src-RhoA signaling in cancer cells and promotes cancer cell migration and invasion independent of LGMN protease activity. Either silencing LGMN expression or mutationally abolishing pro-LGMN‒αvβ3 interaction significantly inhibits cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Finally, we developed a monoclonal antibody against LGMN RGD motif, which blocks pro-LGMN‒αvβ3 binding, and effectively suppresses cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Thus, disruption of pro-LGMN‒integrin αvβ3 interaction may be a potentially promising strategy for treating breast cancer metastasis.
Collapse
Affiliation(s)
- Cui Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - JunLei Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ZhengHang Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - ZhaoYuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ChangDong Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - YaoYing Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - YaTing Wen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ChunYe Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - MengYa Yuan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - ZhanJun Yan
- Department of Orthopedics, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215000, China.
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
10
|
Dutta G, Manickam S, Sugumaran A. Stimuli-Responsive Hybrid Metal Nanocomposite - A Promising Technology for Effective Anticancer Therapy. Int J Pharm 2022; 624:121966. [PMID: 35764265 DOI: 10.1016/j.ijpharm.2022.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
Abstract
Cancer is one of the most challenging, life-threatening illnesses to cure, with over 10 million new cases diagnosed each year globally. Improved diagnostic cum treatment with common side-effects are warranting for successful therapy. Nanomaterials are recognized to improve early diagnosis, imaging, and treatment. Recently, multifunctional nanocomposites attracted considerable interest due to their low-cost production, and ideal thermal and chemical stability, and will be beneficial in future diagnostics and customized treatment capacity. Stimuli-Responsive Hybrid Metal Nanocomposites (SRHMNs) based nanocomposite materials pose the on/off delivery of bioactive compounds such as medications, genes, RNA, and DNA to specific tissue or organs and reduce toxicity. They simultaneously serve as sophisticated imaging and diagnostic tools when certain stimuli (e.g., temperature, pH, redox, ultrasound, or enzymes) activate the nanocomposite, resulting in the imaging-guided transport of the payload at defined sites. This review in detail addresses the recent advancements in the design and mechanism of internal breakdown processes of the functional moiety from stimuli-responsive systems in response to a range of stimuli coupled with metal nanoparticles. Also, it provides a thorough understanding of SRHMNs, enabling non-invasive interventional therapy by resolving several difficulties in cancer theranostics.
Collapse
Affiliation(s)
- Gouranga Dutta
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
11
|
Calugi L, Lenci E, Bianchini F, Contini A, Trabocchi A. Modular synthesis of 2,4-diaminoanilines as CNS drug-like non-covalent inhibitors of asparagine endopeptidase. Bioorg Med Chem 2022; 63:116746. [PMID: 35430537 DOI: 10.1016/j.bmc.2022.116746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
Asparagine endopeptidase (AEP), also called legumain, is a pH-dependent endolysosomal cysteine protease that cleaves its substrates after asparagine residues. Recent studies showed that it possesses δ-secretase activity and that it is implicated in numerous neurological diseases such as Alzheimer's disease (AD). Following evidence of aryl-morpholines as useful asparagine endopeptidase inhibitors, a series of morpholinoanilines with diverse substituents at ortho position were synthesized in view of improving the potency and scope of this molecular scaffold, allowing to identify ethyl 2-isonipecotate-4-morpholinoaniline possessing inhibition potency in the nanomolar range. CNS MPO (CNS MultiParameter Optimization) calculations revealed that most of the compounds developed in this work show physicochemical parameters in the desirable range for CNS drug candidates.
Collapse
Affiliation(s)
- Lorenzo Calugi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Bianchini
- Department of Biomedical, Experimental and Clinical Sciences ''Mario Serio", University of Florence, Viale 8 Morgagni 50, I-50134 Florence, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, I-20133 Milan, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
12
|
Glass EB, Hoover AA, Bullock KK, Madden MZ, Reinfeld BI, Harris W, Parker D, Hufnagel DH, Crispens MA, Khabele D, Rathmell WK, Rathmell JC, Wilson AJ, Giorgio TD, Yull FE. Stimulating TAM-mediated anti-tumor immunity with mannose-decorated nanoparticles in ovarian cancer. BMC Cancer 2022; 22:497. [PMID: 35513776 PMCID: PMC9074180 DOI: 10.1186/s12885-022-09612-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Current cancer immunotherapies have made tremendous impacts but generally lack high response rates, especially in ovarian cancer. New therapies are needed to provide increased benefits. One understudied approach is to target the large population of immunosuppressive tumor-associated macrophages (TAMs). Using inducible transgenic mice, we recently reported that upregulating nuclear factor-kappaB (NF-κB) signaling in TAMs promotes the M1, anti-tumor phenotype and limits ovarian cancer progression. We also developed a mannose-decorated polymeric nanoparticle system (MnNPs) to preferentially deliver siRNA payloads to M2, pro-tumor macrophages in vitro. In this study, we tested a translational strategy to repolarize ovarian TAMs via MnNPs loaded with siRNA targeting the inhibitor of NF-κB alpha (IκBα) using mouse models of ovarian cancer. METHODS We evaluated treatment with MnNPs loaded with IκBα siRNA (IκBα-MnNPs) or scrambled siRNA in syngeneic ovarian cancer models. ID8 tumors in C57Bl/6 mice were used to evaluate consecutive-day treatment of late-stage disease while TBR5 tumors in FVB mice were used to evaluate repetitive treatments in a faster-developing disease model. MnNPs were evaluated for biodistribution and therapeutic efficacy in both models. RESULTS Stimulation of NF-κB activity and repolarization to an M1 phenotype via IκBα-MnNP treatment was confirmed using cultured luciferase-reporter macrophages. Delivery of MnNPs with fluorescent payloads (Cy5-MnNPs) to macrophages in the solid tumors and ascites was confirmed in both tumor models. A three consecutive-day treatment of IκBα-MnNPs in the ID8 model validated a shift towards M1 macrophage polarization in vivo. A clear therapeutic effect was observed with biweekly treatments over 2-3 weeks in the TBR5 model where significantly reduced tumor burden was accompanied by changes in immune cell composition, indicative of reduced immunosuppressive tumor microenvironment. No evidence of toxicity associated with MnNP treatment was observed in either model. CONCLUSIONS In mouse models of ovarian cancer, MnNPs were preferentially associated with macrophages in ascites fluid and solid tumors. Evidence of macrophage repolarization, increased inflammatory cues, and reduced tumor burden in IκBα-MnNP-treated mice indicate beneficial outcomes in models of established disease. We have provided evidence of a targeted, TAM-directed approach to increase anti-tumor immunity in ovarian cancer with strong translational potential for future clinical studies.
Collapse
Affiliation(s)
- Evan B Glass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alyssa A Hoover
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kennady K Bullock
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Matthew Z Madden
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bradley I Reinfeld
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Whitney Harris
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Dominique Parker
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Marta A Crispens
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Yull
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Lee NK, Kim SN, Park CG. Immune cell targeting nanoparticles: a review. Biomater Res 2021; 25:44. [PMID: 34930494 PMCID: PMC8690904 DOI: 10.1186/s40824-021-00246-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Immune cells are attractive targets for therapy as they are direct participants in a variety of diseases. Delivering a therapeutic agent only to cells that act on a disease by distinguishing them from other cells has the advantage of concentrating the therapeutic effect and lowering systemic side effects. Distinguishing each immune cell from other immune cells to deliver substances, including drugs and genes, can be achieved using nanotechnology. And also nanoparticles can ensure in vivo stability and sustained drug release. In addition, there is an ease of surface modification, which is an important characteristic that can be utilized in targeted drug delivery systems. This characteristic allows us to utilize various properties that are specifically expressed in each immune cell. A number of studies have delivered various substances specifically to immune cells through surface engineering with active target ligands that can target each immune cell and enzyme-responsive coating, and demonstrated high therapeutic effects compared to conventional treatments. Progress in research on target delivery has been suggested to be a breakthrough for the treatments of various diseases, including cancer treatment.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
14
|
Gao S, Liu Y, Liu M, Yang D, Zhang M, Shi K. Biodegradable mesoporous nanocomposites with dual-targeting function for enhanced anti-tumor therapy. J Control Release 2021; 341:383-398. [PMID: 34863841 DOI: 10.1016/j.jconrel.2021.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 01/11/2023]
Abstract
Tumor-associated macrophages (TAMs), the main components of infiltrating leukocytes in tumors, often play a key role in promoting cancer development and progression. The tumor-specific microenvironment forces the phenotype of tumor-infiltrating to evolve in a direction favorable to tumor development, that is, the generation of M2-like TAMs. Consequently, the dual intervention of cancer cells and tumor microenvironment has become a research hotspot in the field of tumor immunotherapy. In this contribution, we developed pH-sensitive mesoporous calcium silicate nanocomposites (MCNs) encapsulated with indocyanine green (ICG) to enable the effective combination of photothermal therapy (PTT) and photodynamic therapy (PDT) triggered by the 808 nm near-infrared (NIR) light. The mannose and hyaluronic acid-grafted MCNs specifically targeted TAMs and tumor cells and promoted cell apoptosis both in vitro and in vivo. This paper revealed that irradiation of ICG loaded MCNs with NIR can produce a potent hyperthermia and induce abundant intracellular singlet oxygen generation in the target cells. These results suggest that the novel nanoplatform is believed to facilitate the delivery of chemotherapeutic agents to the tumor microenvironment (TME) to enhance the effects of tumor treatment.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, PR China; Departament of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuli Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Meng Liu
- Departament of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Dongjuan Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
15
|
Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5871-5896. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are always some components in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), that help tumor cells escape the body's immune surveillance. Therefore, this situation can lead to tumor growth, progression, and metastasis, resulting in low response rates for cancer therapy. Macrophages play an important role with strong plasticity and functional diversity. Facing different microenvironmental stimulations, macrophages undergo a dynamic change in phenotype and function into two major macrophage subpopulations, namely classical activation/inflammation (M1) and alternative activation/regeneration (M2) type. Through various signaling pathways, macrophages polarize into complex groups, which can perform different immune functions. In this review, we emphasize the use of nanopreparations for macrophage related immunotherapy based on the pathological knowledge of TAMs phenotype. These macrophages targeted nanoparticles re-edit and re-educate macrophages by attenuating M2 macrophages and reducing aggregation to the TME, thereby relieving or alleviating immunosuppression. Among them, we describe in detail the cellular mechanisms and regulators of several major signaling pathways involved in the plasticity and polarization functions of macrophages. The advantages and challenges of those nanotherapeutics for these pathways have been elucidated, providing the basis and insights for the diagnosis and treatment strategies of various diseases centered on macrophages.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350 Tianjin, China
| |
Collapse
|
16
|
Tong N, He Z, Ma Y, Wang Z, Huang Z, Cao H, Xu L, Zou Y, Wang W, Yi C, Yin Z, Wang Q. Tumor Associated Macrophages, as the Dominant Immune Cells, Are an Indispensable Target for Immunologically Cold Tumor-Glioma Therapy? Front Cell Dev Biol 2021; 9:706286. [PMID: 34368156 PMCID: PMC8337013 DOI: 10.3389/fcell.2021.706286] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) is the cornerstone of the occurrence, development, invasion and diffusion of the malignant central nerve system (CNS) tumor, glioma. As the largest number of inflammatory cells in glioma TME, tumor associated macrophages (TAMs) and their secreted factors are indispensable to the progression of glioma, which is a well-known immunologically “cold” tumor, including the growth of tumor cells, invasion, migration, angiogenesis, cancer immunosuppression and metabolism. TAMs intimately interface with the treatment failure and poor prognosis of glioma patients, and their density increases with increasing glioma grade. Recently, great progress has been made in TAM-targeting for anti-tumor therapy. According to TAMs’ function in tumorigenesis and progression, the major anti-tumor treatment strategies targeting TAMs are to hinder macrophage recruitment in TME, reduce TAMs viability or remodel TAMs phenotype from M2 to M1. Different approaches offer unique and effective anti-tumor effect by regulating the phagocytosis, polarization and pro-tumor behaviors of macrophages in the therapy of glioma. The present review summarizes the significant characteristics and related mechanisms of TAMs and addresses the related research progress on targeting TAMs in glioma.
Collapse
Affiliation(s)
- Ni Tong
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhenqiang He
- State Key Laboratory of Oncology in South China, Department of Neurosurgery/Neuro-Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujie Ma
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zheng Wang
- Breast Surgery Department, Nanyang Central Hospital, Nanyang, China
| | - Ziming Huang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haihong Cao
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lanyang Xu
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuheng Zou
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanyu Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chenpeng Yi
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhixin Yin
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Qirui Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Zhang W, Lin Y. The Mechanism of Asparagine Endopeptidase in the Progression of Malignant Tumors: A Review. Cells 2021; 10:cells10051153. [PMID: 34068767 PMCID: PMC8151911 DOI: 10.3390/cells10051153] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Asparagine endopeptidase (AEP), also called legumain, is currently the only known cysteine protease that specifically cleaves peptide bonds in asparaginyl residue in the mammalian genome. Since 2003, AEP has been reported to be widely expressed in a variety of carcinomas and is considered a potential therapeutic target. In the following years, researchers intensively investigated the substrates of AEP and the mechanism of AEP in partial tumors. With the identification of substrate proteins such as P53, integrin αvβ3, MMP-2, and MMP-9, the biochemical mechanism of AEP in carcinomas is also more precise. This review will clarify the probable mechanisms of AEP in the progression of breast carcinoma, glioblastoma, gastric carcinoma, and epithelial ovarian carcinoma. This review will also discuss the feasibility of targeted therapy with AEP inhibitor (AEPI) in these carcinomas.
Collapse
|
18
|
Qi C, Wang D, Gong X, Zhou Q, Yue X, Li C, Li Z, Tian G, Zhang B, Wang Q, Wei X, Wu J. Co-Delivery of Curcumin and Capsaicin by Dual-Targeting Liposomes for Inhibition of aHSC-Induced Drug Resistance and Metastasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16019-16035. [PMID: 33819006 DOI: 10.1021/acsami.0c23137] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent research studies have shown that the low survival rate of liver cancer is due to drug resistance and metastasis. In the tumor microenvironment (TME), activated hepatic stellate cells (aHSCs) have been proven to favor the development of liver cancer. Hence, the combination therapy dual-targeting aHSCs and tumor cells might be an effective strategy for treatment of liver cancer. In this study, the novel multifunctional liposomes (CAPS-CUR/GA&Gal-Lip) were prepared for co-delivery of curcumin (CUR) and capsaicin (CAPS), in which glycyrrhetinic acid (GA) and galactose (Gal) were chosen as targeting ligands to modify the liposomes (Lip) for dual-targeting liver cancer. To mimic TME, a novel HSCs+HepG2 (human hepatoma cell line) cocultured model was established for the antitumor effect in vitro. The results showed that, compared to HepG2 cells alone, the cocultured model promoted drug resistance and migration by upregulating the expression of P-glycoprotein (P-gp) and Vimentin, which were effectively inhibited by CAPS-CUR/GA&Gal-Lip. The efficacy of the in vivo antitumor was evaluated by three mice models: subcutaneous H22 (mouse hepatoma cell line) tumor-bearing mice, H22+m-HSC (mouse hepatic stellate cell) tumor-bearing mice, and orthotopic H22 cells-bearing mice. The results showed that CAPS-CUR/GA&Gal-Lip exhibited lesser extracellular matrix (ECM) deposition, lesser tumor angiogenesis, and superior antitumor effect compared with the no- and/or Gal-modified Lip, which was attributed to the simultaneous blocking of the activation of HSCs and inhibition of the metastasis of tumor cells. The dual-targeting method using Lip is thus a potential strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Cuiping Qi
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Di Wang
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Xue Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| | - Qiyang Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Xinxin Yue
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Zhipeng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| | - Guixiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Qing Wang
- School of Basic Medicine, Weifang Medical University, Weifang 261053, P. R. China
| | - Xiuhong Wei
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| |
Collapse
|
19
|
Liang DS, Wen ZJ, Wang JH, Zhu FF, Guo F, Zhou JL, Xu JJ, Zhong HJ. Legumain protease-sheddable PEGylated, tuftsin-modified nanoparticles for selective targeting to tumor-associated macrophages. J Drug Target 2021; 30:82-93. [PMID: 33775195 DOI: 10.1080/1061186x.2021.1906886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tumor-associated macrophages (TAMs) represent an attractive cell target for anticancer therapy. However, selective and efficient targeting of TAMs remains difficult. Here, we constructed a novel dually functionalized nanoparticle platform (s-Tpep-NPs) by surface co-modification of nanoparticles (NPs) with tuftsin (Tpep) and legumain protease-sheddable polyethylene glycol 5k (PEG5k) to achieve selective targeted delivery to TAMs. The fluorescence resonance energy transfer experiment and in vitro cellular uptake assay confirmed that s-Tpep-NPs can responsively shed PEG5k and transform into active Tpep-NPs upon the cleavage of legumain that is overexpressed on TAM surfaces, which then promotes TAM phagocytosis through Fc receptor-mediated pathways. Owing to the shielding effect by legumain-sheddable PEG5k, s-Tpep-NPs can effectively decrease the Tpep-induced non-specific accumulation in mononuclear phagocyte system (MPS) organs during systemic circulation. Moreover, s-Tpep-NPs can significantly enhance the tumoral accumulation and improve the specificity and efficiency of targeting to TAMs, as compared with both controls of Tpep-NPs and non-sheddable ns-Tpep-NPs. Overall, this study provides a robust nanoplatform with a novel avenue for improved selectivity of targeted delivery to TAMs.
Collapse
Affiliation(s)
- De-Sheng Liang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, PR China
| | - Zu-Jun Wen
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, PR China
| | - Jia-Hui Wang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, PR China
| | - Fang-Fang Zhu
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, PR China
| | - Feng Guo
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, PR China
| | - Jian-Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, PR China
| | - Jian-Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, PR China
| | - Hai-Jun Zhong
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang 330006, PR China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, PR China
| |
Collapse
|
20
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
21
|
Peng H, Wang JH, Guo F, Zhu FF, Wen ZJ, Zhong HJ, Liang DS. Legumain protease-activated tuftsin-functionalized nanoparticles for dual-targeting TAMs and cancer chemotherapy. Colloids Surf B Biointerfaces 2020; 197:111442. [PMID: 33166937 DOI: 10.1016/j.colsurfb.2020.111442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
M2 tumor-associated macrophages (TAMs) play a pivotal role in cancer progression and therapy resistance. Inhibition of TAMs is of great significance to reshape the protumor environment to benefit therapeutic outcomes. In this work, we developed a novel TAMs and tumor cells dual-targeting nanoparticle (ATpep-NPs) system for cancer chemotherapy by integrating a docetaxel (DTX)-loaded nanocarrier and a multi-function peptide ATpep, which is composed of a phagocytosis-stimulating peptide-tuftsin (Tpep) fused with a substrate peptide-alanine-alanine-asparagine (AAN) of endoprotease legumain. In vitro protelytic and cellular uptake assays confirmed ATpep-NPs can be responsively activated into Tpep-NPs by cleavage of legumain that is overexpressed in both tumor cells and TAMs, which then promoted tumor cells internalization and TAMs phagocytosis through neuropilin-1/Fc receptor pathways. Due to AAN deactivation effect, ATpep-NPs can effectively decrease the Tpep-induced non-specific uptake by M1-polarized and normal macrophage during systemic circulation. Our results of in vivo experiments demonstrated ATpep-NPs outperformed Tpep-NPs in tumor and TAMs dual-targeting delivery efficiency with markedly enhanced efficacy against both tumor growth inhibition and TAMs depletion. Overall, this study offers a novel approach for development of multitargeted delivery vehicle for improved cancer chemotherapy.
Collapse
Affiliation(s)
- Hui Peng
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Jia-Hui Wang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Feng Guo
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Fang-Fang Zhu
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Zu-Jun Wen
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - Hai-Jun Zhong
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China
| | - De-Sheng Liang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Donghu District, Nanchang, 330006, PR China.
| |
Collapse
|
22
|
Chen C, Zhang S, Zhang R, Sun P, Shi C, Abdalla M, Li A, Xu J, Du W, Zhang J, Liu Y, Tang C, Yang Z, Jiang X. In situ tuning proangiogenic factor-mediated immunotolerance synergizes the tumoricidal immunity via a hypoxia-triggerable liposomal bio-nanoreactor. Am J Cancer Res 2020; 10:11998-12010. [PMID: 33204325 PMCID: PMC7667679 DOI: 10.7150/thno.50806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: Vascular abnormality stemming from the hypoxia-driven elevation of proangiogenic factors is a hallmark for many solid malignant tumors, including colorectal cancer (CRC) and its liver metastasis. We report a hypoxia-triggered liposome-supported metal-polyphenol-gene bio-nanoreactor to tune the proangiogenic factor-mediated immunotolerance and synergize the elicited tumoricidal immunity for CRC treatment. Methods: With the aid of polyphenol gallic acid, Cu2+ ion-based intracellular bio-nanoreactor was synthesized for the delivery of small interfering RNA targeting vascular endothelial growth factor and then cloaked with a hybrid liposomal membrane that harbored a hypoxia-responsive azobenzene derivative. In hypoxic tumor, the liposomal shell disintegrated, and a shrunk-size bio-nanoreactor was burst released. Intracellularly, Cu2+ from the bio-nanoreactor catalyzed a Fenton-like reaction with glutathione, which efficiently converted H2O2 to •OH and enabled a chemodynamic therapy (CDT) in tumor sites. With the alleviation of proangiogenic factor-mediated immunotolerance and high production of CDT-induced tumor-associated antigens, robust tumoricidal immunity was co-stimulated. Results: With colorectal tumor and its liver metastasis models, we determined the underlying mechanism of proangiogenic factor-mediated immunotolerance and highlighted that the liposomal bio-nanoreactor could create positive feedback among the critical players in the vascular endothelium and synergize the elicited tumoricidal immunity. Conclusion: Our work provides an alternative strategy for exerting efficient tumoricidal immunity in the proangiogenic factor-upregulated subpopulation of CRC patients and may have a wide-ranging impact on cancer immune-anti-angiogenic complementary therapy in clinics.
Collapse
|
23
|
Crezee T, Rabold K, de Jong L, Jaeger M, Netea-Maier RT. Metabolic programming of tumor associated macrophages in the context of cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1028. [PMID: 32953828 PMCID: PMC7475452 DOI: 10.21037/atm-20-1114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor associated macrophages (TAMs) are important components of the tumor microenvironment (TME). They are characterized by a remarkable functional plasticity, thereby mostly promoting cancer progression. Changes in immune cell metabolism are paramount for this functional adaptation. Here, we review the functional consequences of the metabolic programming of TAMs and the influence of local and systemic targeted therapies on the metabolic characteristics of the TME that shape the functional phenotype of the TAMs. Understanding these metabolic changes within the context of the cross-talk between the different components of the TME including the TAMs and the tumor cells is an essential step that can pave the way towards identifications of ways to improve responses to different treatments, to overcome resistance to treatments, tumor progression and reduce treatment-specific toxicity.
Collapse
Affiliation(s)
- Thomas Crezee
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Katrin Rabold
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Lisanne de Jong
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Kähkönen TE, Halleen JM, Bernoulli J. Immunotherapies and Metastatic Cancers: Understanding Utility and Predictivity of Human Immune Cell Engrafted Mice in Preclinical Drug Development. Cancers (Basel) 2020; 12:cancers12061615. [PMID: 32570871 PMCID: PMC7352707 DOI: 10.3390/cancers12061615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Metastases cause high mortality in several cancers and immunotherapies are expected to be effective in the prevention and treatment of metastatic disease. However, only a minority of patients benefit from immunotherapies. This creates a need for novel therapies that are efficacious regardless of the cancer types and metastatic environments they are growing in. Preclinical immuno-oncology models for studying metastases have long been limited to syngeneic or carcinogenesis-inducible models that have murine cancer and immune cells. However, the translational power of these models has been questioned. Interactions between tumor and immune cells are often species-specific and regulated by different cytokines in mice and humans. For increased translational power, mice engrafted with functional parts of human immune system have been developed. These humanized mice are utilized to advance understanding the role of immune cells in the metastatic process, but increasingly also to study the efficacy and safety of novel immunotherapies. From these aspects, this review will discuss the role of immune cells in the metastatic process and the utility of humanized mouse models in immuno-oncology research for metastatic cancers, covering several models from the perspective of efficacy and safety of immunotherapies.
Collapse
Affiliation(s)
- Tiina E. Kähkönen
- OncoBone Ltd., Kalimenojankuja 3 C 4, FI-90810 Kiviniemi, Finland;
- Correspondence:
| | - Jussi M. Halleen
- OncoBone Ltd., Kalimenojankuja 3 C 4, FI-90810 Kiviniemi, Finland;
| | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
| |
Collapse
|
25
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
26
|
Poreba M. Recent advances in the development of legumain-selective chemical probes and peptide prodrugs. Biol Chem 2020; 400:1529-1550. [PMID: 31021817 DOI: 10.1515/hsz-2019-0135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Legumain, which is also known as vacuolar processing enzyme (VPE) or asparaginyl endopeptidase (AEP), is a cysteine protease that was first discovered and characterized in the leguminous seeds of the moth bean in the early 1990s. Later, this enzyme was also detected in higher organisms, including eukaryotes. This pH-dependent protease displays the highest activity in acidic endolysosomal compartments; however, legumain also displays nuclear, cytosolic and extracellular activity when stabilized by other proteins or intramolecular complexes. Based on the results from over 25 years of research, this protease is involved in multiple cellular events, including protein degradation and antigen presentation. Moreover, when dysregulated, this protease contributes to the progression of several diseases, with cancer being the well-studied example. Research on legumain biology was undoubtedly facilitated by the use of small molecule chemical tools. Therefore, in this review, I present the historical perspectives and most current strategies for the development of small molecule substrates, inhibitors and activity-based probes for legumain. These tools are of paramount importance in elucidating the roles of legumain in multiple biological processes. Finally, as this enzyme appears to be a promising molecular target for anticancer therapies, the development of legumain-activated prodrugs is also described.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
27
|
The exosomal integrin α5β1/AEP complex derived from epithelial ovarian cancer cells promotes peritoneal metastasis through regulating mesothelial cell proliferation and migration. Cell Oncol (Dordr) 2020; 43:263-277. [PMID: 32080801 DOI: 10.1007/s13402-019-00486-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is one of the most malignant cancers in the gynecologic system. Many patients are diagnosed at an advanced stage with disseminated intra-peritoneal metastases. EOC spreads via both direct extension and trans-coelomic spread. However, the interplay between human peritoneal mesothelial cells (HPMCs) and EOC cells is still ambiguous. We hypothesize that integrins (ITG) in HPMCs may play important roles in EOC metastasis. METHODS The expression of different integrin subtypes from HPMCs was assessed using Western blotting. The expression of integrin α5β1 (ITGA5B1) and its co-localization with asparaginyl endopeptidase (AEP) in HPMCs derived from EOC patients (EOC-HPMCs) were assessed using immunofluorescence. The role and mechanism of the exosomal ITGA5B1/AEP complex in HPMCs was assessed using both in vitro and in vivo assays. A retrospective study involving 234 cases was carried out to assess ITGA5B1 and AEP levels in circulating sera and ascites of EOC patients, as well as associations between ITGA5B1/AEP expression and overall survival. RESULTS We found that ITGA5B1was highly expressed and co-localized with AEP in EOC cells, and that the exosomal ITGA5B1/AEP complex secreted by EOC cells played an important role in the proliferation and migration of HPMCs. High levels of exosomal ITGA5B1/AEP were also found in circulating sera and ascites of EOC patients, and the expression of ITGA5B1/AEP in EOC tissues was found to be negatively associated with overall survival. CONCLUSIONS Our data indicate that EOCs may regulate the function of HPMCs through exosomal ITGA5B1/AEP, which may be crucial for peritoneal metastasis.
Collapse
|
28
|
Zhao T, Zhou H, Lei L, Guo C, Yang Q, Gong T, Sun X, Song X, Gong T, Zhang Z. A new tandem peptide modified liposomal doxorubicin for tumor "ecological therapy". NANOSCALE 2020; 12:3359-3369. [PMID: 31984408 DOI: 10.1039/c9nr09585c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tumor microenvironment (TME) acts as an ecosystem that includes not only tumor cells, but also stromal cells such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). In addition, the abnormal extracellular environment (ECM), of which the mechanical forces are regulated by fibronectin (Fn) and collagen I, orchestrates tumorigenesis and progression by directly promoting invasion and cellular transformation of the ecosystem. Herein, we develop a novel peptide-modified liposome incorporated into doxorubicin (FnBPA5-AAN-Dox) as an ecological therapy system, which targets not only the cellular compartment but also non-cellular components of breast cancer. FnBPA5 is a Fn-binding peptide showing high affinity with relaxed Fn and collagen I in the ECM as well as α-SMA-expressing CAFs. However, the fast clearance by Fn-excreting organs such as the liver and spleen limits the accumulation of FnBPA5-Dox in the TME. The AAN peptide, which targets legumain overexpressed in the TAMs, could extend the circulation time and improve the therapeutic response as well as modulate the tumor immune microenvironment (TMIE). Given twice at an equivalent dose of 5 mg kg-1 intravenously, the multi-in-one 'ecological therapy' applied AAN-FnBPA5-Dox showed excellent antitumor efficacy in 4T1 breast cancer mice, and the tumor growth inhibition (TGI) is up to 98.20% compared with saline. Immunofluorescence, flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) results revealed that the dramatic improvement in antitumor efficacy can be attributed to the multifunctional targets of the drug delivery system.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Hongli Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lei Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Chenqi Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. and Department of Clinical Pharmacy, School of Pharmacy, North Sichuan Medical college, Nanchong, 637100, P. R. China
| | - Ting Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xu Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. and Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
29
|
Fuchigami T, Itagaki K, Ishikawa N, Yoshida S, Nakayama M. Synthesis and evaluation of radioactive/fluorescent peptide probes for imaging of legumain activity. Bioorg Med Chem Lett 2019; 29:126629. [PMID: 31445852 DOI: 10.1016/j.bmcl.2019.126629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 08/17/2019] [Indexed: 11/29/2022]
Abstract
Legumain or asparaginyl endopeptidase is an enzyme overexpressed in some cancers and involved in cancer migration, invasion, and metastasis. We have developed radioiodine- ([125I]I-LCP) or fluorescein-labeled peptides (FL-LCP) with a cell-permeable d-Arg nonamer fused to an anionic d-Glu nonamer via a legumain-cleavable linker, to function as peptide probes that measure and monitor legumain activity. Non-cleavable probes of FL-NCP and [125I]I-NCP were similarly prepared and evaluated as negative control probes by altering their non-cleavable sequence. Model peptides with the legumain-cleavable or non-cleavable sequence (LCP and NCP, respectively) reacted with recombinant human legumain, and only LCP was digested by this enzyme. [125I]I-LCP uptake in legumain-positive HCT116 cells was significantly higher than that of [125I]I-NCP (11.2 ± 0.44% vs 1.75 ± 0.06% dose/mg). The accumulation of FL-LCP in the HCT116 cells was rather low (4.75 ± 0.29% dose/mg protein), but not significantly different from the levels of FL-NCP. It is possible that low concentrations of [125I]I-LCP (40 pM) can be effectively internalized after legumain cleavage. On the other hand, the cellular uptake of much higher concentrations of the FL-LCP derivative (1 mM) may be restricted by high concentrations of polyanions. The in vivo biodistribution studies in tumor-bearing mice demonstrated that the tumor uptake of [125I]I-LCP was 1.34% injected dose per gram (% ID/g) at 30 min. The tumor/blood and tumor/muscle ratios at 30 min were 0.63 and 1.77, respectively, indicating that the [125I]I-LCP accumulation in tumors was inadequate for in vivo imaging. Although further structural modifications are necessary to improve pharmacokinetic properties, [125I]I-LCP has been demonstrated to be an effective scaffold for the development of nuclear medicine imaging probes to monitor legumain activity in living subjects.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Kohnosuke Itagaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Natsumi Ishikawa
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
30
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
31
|
Salmaninejad A, Valilou SF, Soltani A, Ahmadi S, Abarghan YJ, Rosengren RJ, Sahebkar A. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol (Dordr) 2019; 42:591-608. [PMID: 31144271 DOI: 10.1007/s13402-019-00453-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are known to play important roles in the initiation and progression of human cancers, as well as in angiogenesis. TAMs are considered as main components of the tumor microenvironment. Targeting TAMs may serve as a therapeutic strategy for the treatment of cancer. In this review, the signaling pathways, origin, function, polarization and clinical application of TAMs are discussed. The role of TAMs in tumor initiation, progression, angiogenesis, invasion and metastasis are also emphasized. In addition, a variety of clinical and pre-clinical approaches to target TAMs are discussed. CONCLUSIONS Clinical therapeutic approaches that show most promise include blocking the extravasation of TAMs along with using TAMs as diagnostic biomarkers for cancer progression. The targeting of TAMs in a variety of clinical settings appears to be a promising strategy for decreasing metastasis formation and for improving patient outcome.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Farajzadeh Valilou
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Soltani
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Jafari Abarghan
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
32
|
Cogo F, Williams R, Burden RE, Scott CJ. Application of nanotechnology to target and exploit tumour associated proteases. Biochimie 2019; 166:112-131. [PMID: 31029743 DOI: 10.1016/j.biochi.2019.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Proteases are hydrolytic enzymes fundamental for a variety of physiological processes, but the loss of their regulation leads to aberrant functions that promote onset and progression of many diseases including cancer. Proteases have been implicated in almost every hallmark of cancer and whilst widely investigated for tumour therapy, clinical adoption of protease inhibitors as drugs remains a challenge due to issues such as off-target toxicity and inability to achieve therapeutic doses at the disease site. Now, nanotechnology-based solutions and strategies are emerging to circumvent these issues. In this review, preclinical advances in approaches to enhance the delivery of protease drugs and the exploitation of tumour-derived protease activities to promote targeting of nanomedicine formulations is examined. Whilst this field is still in its infancy, innovations to date suggest that nanomedicine approaches to protease targeting or inhibition may hold much therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Francesco Cogo
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Rich Williams
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Roberta E Burden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | | |
Collapse
|
33
|
Bosnjak T, Solberg R, Hemati PD, Jafari A, Kassem M, Johansen HT. Lansoprazole inhibits the cysteine protease legumain by binding to the active site. Basic Clin Pharmacol Toxicol 2019; 125:89-99. [PMID: 30916878 DOI: 10.1111/bcpt.13230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Proton pump inhibitors (PPIs) are prodrugs used in the treatment of peptic ulcer diseases. Once activated by acidic pH, the PPIs subsequently inhibit the secretion of gastric acid by covalently forming disulphide bonds with the SH groups of the parietal proton pump, that is the H+ /K+ -ATPase. Long-term use of PPIs has been associated with numerous adverse effects, including bone fractures. Considering the mechanism of activation, PPIs could also be active in acidic micro-environments such as in lysosomes, tumours and bone resorption sites. We suggested that the SH group in the active site of cysteine proteases could be susceptible for inhibition by PPIs. In this study, the inhibition by lansoprazole was shown on the cysteine proteases legumain and cathepsin B by incubating purified proteases or cell lysates with lansoprazole at different concentrations and pH conditions. The mechanism of legumain inhibition was shown to be a direct interaction of lansoprazole with the SH group in the active site, and thus blocking binding of the legumain-selective activity-based probe MP-L01. Lansoprazole was also shown to inhibit both legumain and cathepsin B in various cell models like HEK293, monoclonal legumain over-expressing HEK293 cells (M38L) and RAW264.7 macrophages, but not in human bone marrow-derived skeletal (mesenchymal) stem cells (hBMSC-TERT). During hBMSC-TERT differentiation to osteoblasts, lansoprazole inhibited legumain secretion, alkaline phosphatase activity, but had no effects on in vitro mineralization capacity. In conclusion, lansoprazole acts as a direct covalent inhibitor of cysteine proteases via disulphide bonds with the SH group in the protease active site. Such inhibition of cysteine proteases could explain some of the off-target effects of PPIs.
Collapse
Affiliation(s)
- Tatjana Bosnjak
- Section for Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Paya Diana Hemati
- Section for Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Harald Thidemann Johansen
- Section for Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Huang W, Wei X, Wei Y, Feng R. Biology of Tumor Associated Macrophages in Diffuse Large B Cell Lymphoma. DNA Cell Biol 2018; 37:947-952. [PMID: 30403536 DOI: 10.1089/dna.2018.4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tumor associated microenvironment is known to play a vital role during the development and progression of different malignant tumors. As a part of tumor microenvironment, tumor associated macrophages (TAMs) are crucial for the genesis, proliferation, metastasis, and survival of tumor cells. Recently, more and more studies showed that TAMs were related with poor clinical status and survival in patients with diffuse large B cell lymphoma (DLBCL). Considering the complex roles which TAMs play in the tumor microenvironment of DLBCL, the aim of this study was to review the biological mechanisms between TAMs and DLBCL cells, including extracellular matrix remodeling and angiogenesis promotion, tumor promotion, immune suppression, and phagocytosis inhibition. This review will help us to further understand the comprehensive impact of TAMs on DLBCL and explore possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yongqiang Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
35
|
Tumor associated macrophages and angiogenesis dual-recognizable nanoparticles for enhanced cancer chemotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:651-659. [DOI: 10.1016/j.nano.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022]
|
36
|
Sun W, Lin Y, Chen L, Ma R, Cao J, Yao J, Chen K, Wan J. Legumain suppresses OxLDL-induced macrophage apoptosis through enhancement of the autophagy pathway. Gene 2018; 652:16-24. [PMID: 29414692 DOI: 10.1016/j.gene.2018.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/04/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autophagy plays a prominent role in the pathogenesis of plaques formation and progression of atherosclerosis (AS). The cysteine protease legumain is known to participate in atherogenesis, but its function and underlying mechanism in AS macrophages remain unclear. METHODS The expressions of legumain in plaques isolated from AS patients and in macrophages stimulated with oxLDL were examined. Moreover, we effectively altered legumain expression in macrophages to characterize the effect of legumain on oxLDL-induced macrophage apoptosis. The expression of apoptotic and autophagic factors was analysed. RESULTS Legumain was present in plaques, and its expression was upregulated in macrophages treated with oxLDL. Suppressing legumain significantly increased oxLDL-induced macrophage apoptosis and the expression of caspase 3, caspase 9 and Bax. However, legumain overexpression decreased macrophage apoptosis upon oxLDL exposure and the levels of caspase 3, caspase 9 and Bax. In addition, recombinant legumain protein suppressed macrophage apoptosis. Biochemical experiments revealed that legumain deficiency decreased the levels of Beclin1 and LC3, whereas increased legumain expression increased the levels of Beclin1 and LC3 significantly. CONCLUSION Legumain regulates oxLDL-induced macrophage apoptosis by enhancing the autophagy pathway, which may also influence the vulnerability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Wenhua Sun
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yingying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Liling Chen
- Department of Cardiology, Longyan First Hospital affiliated to Fujian Medical University, Fujian 364000, People's Republic of China
| | - Rong Ma
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jiayu Cao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jing Yao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Hospital affiliated to Fujian Medical University, Fujian 364000, People's Republic of China
| | - Jieqing Wan
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
37
|
Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget 2018; 7:34356-70. [PMID: 27102302 PMCID: PMC5085161 DOI: 10.18632/oncotarget.8879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Asparaginyl endopeptidase (AEP) is a lysosomal protease often overexpressed in gastric cancer. AEP was expressed higher in peritoneal metastatic loci than in primary gastric cancer. Then we overexpressed AEP or knocked it down with a lentiviral vector in gastric cancer cell lines and detected the cell cycle arrest and the changes of the invasive and metastatic ability in vitro and in vivo. When AEP was knocked-down, the proliferative, invasive and metastatic capacity of gastric cancer cells were inhibited, and the population of sub-G1 cells increased. AEP knockdown led to significant decrease of expression of transcription factor Twist and the mesenchymal markers N-cadherin, ß-catenin and Vimentin and to increased expression of epithelial marker E-cadherin. These results showed that AEP could promote invasion and metastasis by modulating EMT. We used phosphorylation-specific antibody microarrays to investigate the mechanism how AEP promotes gastric cancer invasion and metastasis, and found that the phosphorylation level of AKT and MAPK signaling pathways was decreased significantly if AEP was knocked-down. Therefore, AKT and MAPK signaling pathways took part in the modulation.
Collapse
|
38
|
Grigore A, Albulescu A, Albulescu R. Current methods for tumor-associated macrophages investigation. J Immunoassay Immunochem 2018; 39:119-135. [PMID: 29944457 DOI: 10.1080/15321819.2018.1488727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oncoimmunology is a rapidly growing field, focusing both on studying of the interaction of immune factors with tumor cells and also on the development of new therapies. In this regard, immunotherapy is increasingly used clinically. Although tumorigenesis is generally seen as an autonomous process involving genetically transformed cancer cells, it is increasingly recognized that tumor environment is an essential factor that modulates both tumor progression and resistance to therapy. Tumor-associated immune cells, and in particular macrophages, are of particular importance in all stages of the tumorigenesis process and are also a clinical prognostic marker. From quantification of a single analyte in a given sample to complex platforms comprising multiple techniques, several methods for investigation of the dynamic balance and interaction between tumor-associated macrophages (TAMs) and tumor cells are available. This review presents the techniques carried out currently for investigation of TAMs functions, interactions, and modulation both at translational and transcriptional levels - ELISA and Multiplex assays, flow-cytometry, immunohistochemistry, DNA microarray - as essential steps not only for research purposes but also for predicting the therapeutic efficiency and patient survival.
Collapse
Affiliation(s)
- Alice Grigore
- a Pharmacology Department , National Institute of Chemical-Pharmaceutical R&D , Bucharest , Romania
| | - Adrian Albulescu
- a Pharmacology Department , National Institute of Chemical-Pharmaceutical R&D , Bucharest , Romania
- b Cellular and Molecular Pathology Department , "Stefan S. Nicolau" Institute of Virology of the Romanian Academy , Bucharest , Romania
| | - Radu Albulescu
- a Pharmacology Department , National Institute of Chemical-Pharmaceutical R&D , Bucharest , Romania
- c Biochemistry Laboratory , "Victor Babes" National Institute of Pathology , Bucharest , Romania
- d Faculty of Medicine , "Titu Maiorescu" University , Bucharest , Romania
| |
Collapse
|
39
|
Chen IJ, Chuang CH, Hsieh YC, Lu YC, Lin WW, Huang CC, Cheng TC, Cheng YA, Cheng KW, Wang YT, Chen FM, Cheng TL, Tzou SC. Selective antibody activation through protease-activated pro-antibodies that mask binding sites with inhibitory domains. Sci Rep 2017; 7:11587. [PMID: 28912497 PMCID: PMC5599682 DOI: 10.1038/s41598-017-11886-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Systemic injection of therapeutic antibodies may cause serious adverse effects due to on-target toxicity to the antigens expressed in normal tissues. To improve the targeting selectivity to the region of disease sites, we developed protease-activated pro-antibodies by masking the binding sites of antibodies with inhibitory domains that can be removed by proteases that are highly expressed at the disease sites. The latency-associated peptide (LAP), C2b or CBa of complement factor 2/B were linked, through a substrate peptide of matrix metalloproteinase-2 (MMP-2), to an anti-epidermal growth factor receptor (EGFR) antibody and an anti-tumor necrosis factor-α (TNF-α) antibody. Results showed that all the inhibitory domains could be removed by MMP-2 to restore the binding activities of the antibodies. LAP substantially reduced (53.8%) the binding activity of the anti-EGFR antibody on EGFR-expressing cells, whereas C2b and CBa were ineffective (21% and 9.3% reduction, respectively). Similarly, LAP also blocked 53.9% of the binding activity of the anti-TNF-α antibody. Finally, molecular dynamic simulation showed that the masking efficiency of LAP, C2b and CBa was 33.7%, 10.3% and −5.4%, respectively, over the binding sites of the antibodies. This strategy may aid in designing new protease-activated pro-antibodies that attain high therapeutic potency yet reduced systemic on-target toxicity.
Collapse
Affiliation(s)
- I-Ju Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chin Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Chiao Huang
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chun Cheng
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Wen Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Shey-Cherng Tzou
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.
| |
Collapse
|
40
|
Qi Q, Obianyo O, Du Y, Fu H, Li S, Ye K. Blockade of Asparagine Endopeptidase Inhibits Cancer Metastasis. J Med Chem 2017; 60:7244-7255. [PMID: 28820254 DOI: 10.1021/acs.jmedchem.7b00228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Asparagine endopeptidase (AEP), also called legumain, is highly expressed in various solid tumors, promoting cancer cell invasion, migration, and metastasis. It has been proposed to be a prognostic marker and therapeutic target for cancer treatment. However, an effective nonpeptide, small-molecule inhibitor against this protease has not yet been identified. Here we show that a family of xanthine derivatives selectively inhibit AEP and suppress matrix metalloproteinase (MMP) cleavage, leading to the inhibition of cancer metastasis. Through structure-activity relationship (SAR) analysis, we obtained an optimized lead compound (38u) that represses breast cancer invasion and migration. Chronic treatment of nude mice, which had been inoculated with MDA-MB-231 cells, with inhibitor 38u via oral administration robustly inhibits breast cancer lung metastasis in a dose-dependent manner, associated with blockade of MMP-2 by AEP. Therefore, our study supports that 38u might act as a potent and specific AEP inhibitor useful for cancer treatment.
Collapse
Affiliation(s)
- Qi Qi
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Obiamaka Obianyo
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Yuhong Du
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Haian Fu
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Shiyong Li
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine ‡Department of Pharmacology, Emory Chemical Biology Discovery Center Emory University School of Medicine Atlanta, Georgia 30322, United States
| |
Collapse
|
41
|
Li J, Zhang B, Yue C, Wu J, Zhao L, Sun D, Wang R. Strategies to release doxorubicin from doxorubicin delivery vehicles. J Drug Target 2017; 26:9-26. [PMID: 28805085 DOI: 10.1080/1061186x.2017.1363209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juan Li
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Bin Zhang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Chunwen Yue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Lanxia Zhao
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Rongmei Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
42
|
Bhaskaran N, Ghosh SK, Yu X, Qin S, Weinberg A, Pandiyan P, Ye F. Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 2017; 16:1611-1621. [PMID: 28750175 DOI: 10.1080/15384101.2017.1356509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAMs) promote angiogenesis, tumor invasion and metastasis, and suppression of anti-tumor immunity. These myeloid cells originate from monocytes, which differentiate into TAMs upon exposure to the local tumor microenvironment. We previously reported that Kaposi's sarcoma-associated herpes virus (KSHV) infection of endothelial cells induces the cytokine angiopoietin-2 (Ang-2) to promote migration of monocytes into tumors. Here we report that KSHV infection of endothelial cells induces additional cytokines including interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-13 (IL-13) that drive monocytes to differentiate and polarize into TAMs. The KSHV-induced TAMs not only express TAM-specific markers such as CD-163 and legumain (LGMN) but also display a gene expression profile with characteristic features of viral infection. More importantly, KSHV-induced TAMs enhance tumor growth in nude mice. These results are consistent with the strong presence of TAMs in Kaposi's sarcoma (KS) tumors. Therefore, KSHV infection of endothelial cells generates a local microenvironment that not only promotes the recruitment of monocytes but also induces their differentiation and polarization into TAMs. These findings reveal a new mechanism of KSHV contribution to KS tumor development.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Santosh K Ghosh
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Xiaolan Yu
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA.,b Hubei Collaborative Innovation Center for Green Transformation of Bio-resource , College of Life Sciences, Hubei University , Wuhan , Hubei , China
| | - Sanhai Qin
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Aaron Weinberg
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Pushpa Pandiyan
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Fengchun Ye
- a Department of Biological Sciences , School of Dental Medicine, Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
43
|
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017; 114:206-221. [PMID: 28449873 DOI: 10.1016/j.addr.2017.04.010] [Citation(s) in RCA: 513] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
As an essential innate immune population for maintaining body homeostasis and warding off foreign pathogens, macrophages display high plasticity and perform diverse supportive functions specialized to different tissue compartments. Consequently, aberrance in macrophage functions contributes substantially to progression of several diseases including cancer, fibrosis, and diabetes. In the context of cancer, tumor-associated macrophages (TAMs) in tumor microenvironment (TME) typically promote cancer cell proliferation, immunosuppression, and angiogenesis in support of tumor growth and metastasis. Oftentimes, the abundance of TAMs in tumor is correlated with poor disease prognosis. Hence, significant attention has been drawn towards development of cancer immunotherapies targeting these TAMs; either depleting them from tumor, blocking their pro-tumoral functions, or restoring their immunostimulatory/tumoricidal properties. This review aims to introduce readers to various aspects in development and evaluation of TAM-targeted therapeutics in pre-clinical and clinical stages.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Heather H Gustafson
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
44
|
Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 2017; 254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
45
|
Zhou H, Sun H, Lv S, Zhang D, Zhang X, Tang Z, Chen X. Legumain-cleavable 4-arm poly(ethylene glycol)-doxorubicin conjugate for tumor specific delivery and release. Acta Biomater 2017; 54:227-238. [PMID: 28315495 DOI: 10.1016/j.actbio.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
Abstract
Traditional chemotherapy strategy exists undesirable toxic side-effects to normal tissues due to the low selectively to cancer cells of micromolecule cytotoxic drugs. One considered method to realizing the targeted delivery and increasing the specificity to tumor tissues of the cytotoxic drug is to transporting and discharging it through an environment-sensitive mechanism. In this study, a novel enzyme-sensitive polymer-doxorubicin conjugate was designed to delivery chemotherapeutic drug in a tumor-specific behavior and selectively activated in tumor tissue. Briefly, doxorubicin (DOX) was conjugated to carboxyl-terminated 4-arm poly(ethylene glycol) through a tetrapeptide linker, alanine-alanine-asparagine-leucine (AANL), which was one of the substrates of legumain, an asparaginyl endopeptidase that was found presented in plants, mammals and also highly expressed in human tumor tissues. Hereinafter, the polymer-DOX conjugate was termed as 4-arm PEG-AANL-DOX. Dynamic laser scattering (DLS) and transmission electron microscopy (TEM) measurements indicated that the 4-arm PEG-AANL-DOX could self-assemble into micelles in aqueous solution. Drug release and in vitro cytotoxicity studies revealed that the 4-arm PEG-AANL-DOX could be cleaved by legumain. Ex vivo DOX fluorescence imaging measurements demonstrated that the 4-arm PEG-AANL-DOX had an improved tumor-targeting delivery as compared with the free DOX·HCl. In vivo studies on nude mice bearing MDA-MB-435 tumors revealed that the 4-arm PEG-AANL-DOX had a comparable anticancer efficacy with the free DOX·HCl but without DOX-related toxicities to normal tissues as measured by body weight change and histological assessments, indicating that the 4-arm PEG-AANL-DOX had an improved therapeutic index for cancer therapy. STATEMENT OF SIGNIFICANCE Herein we describe the construction of a novel tumor environment-sensitive delivery system through the instruction of a legumain-cleavable linkage to a polymer-DOX conjugate (4-arm PEG-AANL-DOX). This particular design strategy allows for polymer-DOX conjugates to be delivered in a tumor-specific manner and selectively activable in tumor microenvironment so that it can combine the advantages of tumor-specific delivery and tumor intracellular microenvironment-triggered release systems.
Collapse
|
46
|
Zarif JC, Yang W, Hernandez JR, Zhang H, Pienta KJ. The Identification of Macrophage-enriched Glycoproteins Using Glycoproteomics. Mol Cell Proteomics 2017; 16:1029-1037. [PMID: 28348171 DOI: 10.1074/mcp.m116.064444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/24/2017] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer is a leading cause of cancer-related deaths of men in the United States. Whereas the localized disease is highly treatable by surgical resection and radiation, cancer that has metastasized remains incurable. Immune cells that primarily scavenge debris and promote prostate cancer angiogenesis and wound repair are M2 macrophages. They are phenotypically similar to M2 tumor-associated macrophages (M2-TAMs) and have been reported to associate with solid tumors and aide in proliferation, metastasis, and resistance to therapy. As an invasive species within the tumor microenvironment, this makes M2-TAMs an ideal therapeutic target in prostate cancer. To identify novel surface glycoproteins expressed on M2 macrophages, we developed a novel method of creating homogeneous populations of human macrophages from human CD14+ monocytes in vitro These homogeneous M1 macrophages secrete pro-inflammatory cytokines, and our M2 macrophages secrete anti-inflammatory cytokines as well as vascular endothelial growth factor (VEGF). To identify enriched surface glycoproteins, we then performed solid-phase extraction of N-linked glycopeptides followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on our homogeneous macrophage populations. We discovered five novel peptides that are enriched exclusively on human M2 macrophages relative to human M1 macrophages and human CD14+ monocytes. Finally, we determined whether these surface glycoproteins, found enriched on M2 macrophages, were also expressed in human metastatic castrate-resistant prostate cancer (mCRPC) tissues. Using mCRPC tissues from rapid autopsies, we were able to determine M2 macrophage infiltration by using immunohistochemistry and flow cytometry. These findings highlight the presence of macrophage infiltration in human mCRPC but also surface glycoproteins that could be used for prognosis of localized disease and for targeting strategies.
Collapse
Affiliation(s)
- Jelani C Zarif
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287;
| | - Weiming Yang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - James R Hernandez
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Hui Zhang
- the §Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21231
| | - Kenneth J Pienta
- From ‡The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.,the ¶Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, and.,‖Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
47
|
Zhu Q, Tang M, Wang X. The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer. Cancer Biol Ther 2017; 18:222-228. [PMID: 28278071 DOI: 10.1080/15384047.2017.1294290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common and lethal cancer-related death among females in the world. Asparaginyl endopeptidase (AEP) is a member of C13 family peptidases and expressed in the extracellular matrix and tumor cells. The aim of this article is to explore the function of asparaginyl endopeptidase in epithelial ovarian cancer. The expression of AEP was examined in 20 EOC samples, 3 EOC metastasis samples, 6 fallopian tube metastasis samples, 4 peritoneum metastasis samples and 20 benign ovarian tumor samples by immunohistochemistry. The expression of AEP was also evaluated in serum and ascites of EOC patients by elisa. And we used a lentiviral vector to overexpress AEP in human epithelial ovarian cancer cell lines SKOV3ip and detected the function of AEP-SKOV3ip cells both in vitro and in vivo. The growth of AEP-SKOV3ip cells was observed by MTT, migration and tube formation assays in vitro. Additionally, the subcutaneous mice model was used to identify the tumor growth and metastasis in vivo. Mice tumors were stained for CD31 to determine the microvessel density (MVD). We demonstrated that AEP was highly expressed in the EOC patient tissues and ascites. The AEP transfected SKOV3ip cells could both promote tumor growth in vitro and in vivo. The MVD in AEP-SKOV3ip group was higher than that in NC-SKOV3ip group. Therefore, our results demonstrated that AEP could induce EOC growth and progressionboth in vitro and in vivo.
Collapse
Affiliation(s)
- Qinyi Zhu
- a Department of Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Meiling Tang
- a Department of Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Xipeng Wang
- a Department of Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| |
Collapse
|
48
|
Cui Y, Li Q, Li H, Wang Y, Wang H, Chen W, Zhang S, Cao J, Liu T. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway. Onco Targets Ther 2017; 10:627-643. [PMID: 28223821 PMCID: PMC5304996 DOI: 10.2147/ott.s125579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE In recent years, understanding of the role of asparaginyl endopeptidase (AEP) in tumorigenesis has steadily increased. In this study, we investigated whether AEP expression correlates with sensitivity to chemotherapeutic drugs in gastric cancer and explored the mechanism. PATIENTS AND METHODS AEP expression in the serum of patients' peripheral blood was measured by enzyme-linked immunosorbent assay. Patient survival time was evaluated using univariate and multivariate analyses. Mass spectrometry and co-immunoprecipitation assays were utilized to discover proteins that interact with AEP. Gastric cancer cell lines were established, in which AEP was overexpressed or knocked out using lentiviral CRISPR. The proliferative abilities of these cell lines in response to chemotherapy agents were evaluated using the Cell Counting Kit-8 method. Gene expression changes in these lines were assessed by real-time polymerase chain reaction and Western blot. RESULTS Patients with low expression of AEP were significantly more likely to have a good prognosis and experience complete response or partial response after treatment with docetaxel/S-1 regimen. Mass spectrum analysis showed that several proteins in the focal adhesion and mitogen-activated protein kinase signaling pathways interacted with AEP. IQGAP1 was confirmed to be one of the proteins interacting with AEP, and its protein level increased when AEP was knocked out. AEP knockout decreased resistance to microtubule inhibitors, including paclitaxel, docetaxel, and T-DM1. The expression levels of MDR1, p-EGFR, p-JNK, p-ERK, and p-Rac1/cdc42 were decreased in AEP knockout gastric cancer cell lines, and inhibitors of both JNK and ERK could block AEP-induced expression of MDR1. CONCLUSION AEP was not only a prognostic factor but also a predictive marker. AEP knockout could inhibit the activity of the EGFR/JNK/ERK signaling pathway and improve sensitivity to microtubule inhibitors through interacting with IQGAP1.
Collapse
Affiliation(s)
| | | | | | | | - Hongshan Wang
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weidong Chen
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shangmin Zhang
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | - Jian Cao
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
49
|
Hetland G, Eide DM, Tangen JM, Haugen MH, Mirlashari MR, Paulsen JE. The Agaricus blazei-Based Mushroom Extract, Andosan™, Protects against Intestinal Tumorigenesis in the A/J Min/+ Mouse. PLoS One 2016; 11:e0167754. [PMID: 28002446 PMCID: PMC5176274 DOI: 10.1371/journal.pone.0167754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The novel A/J Min/+ mouse, which is a model for human Familial Adenomatous Polyposis (FAP), develops spontaneously multiple adenocarcinomas in the colon as well as in the small intestine. Agaricus blazei Murill (AbM) is an edible Basidiomycetes mushroom that has been used in traditional medicine against cancer and other diseases. The mushroom contains immunomodulating β-glucans and is shown to have antitumor effects in murine cancer models. Andosan™ is a water extract based on AbM (82%), but it also contains the medicinal Basidiomycetes mushrooms Hericeum erinaceus and Grifola frondosa. METHODS AND FINDINGS Tap water with 10% Andosan™ was provided as the only drinking water for 15 or 22 weeks to A/J Min/+ mice and A/J wild-type mice (one single-nucleotide polymorphism (SNP) difference), which then were exsanguinated and their intestines preserved in formaldehyde and the serum frozen. The intestines were examined blindly by microscopy and also stained for the tumor-associated protease, legumain. Serum cytokines (pro- and anti-inflammatory, Th1-, Th2 -and Th17 type) were measured by Luminex multiplex analysis. Andosan™ treated A/J Min/+ mice had a significantly lower number of adenocarcinomas in the intestines, as well as a 60% significantly reduced intestinal tumor load (number of tumors x size) compared to control. There was also reduced legumain expression in intestines from Andosan™ treated animals. Moreover, Andosan™ had a significant cytotoxic effect correlating with apoptosis on the human cancer colon cell line, Caco-2, in vitro. When examining serum from both A/J Min/+ and wild type mice, there was a significant increase in anti-tumor Th1 type and pro-inflammatory cytokines in the Andosan™ treated mice. CONCLUSIONS The results from this mouse model for colorectal cancer shows significant protection of orally administered Andosan™ against development of intestinal cancer. This is supported by the finding of less legumain in intestines of Andosan™ treated mice and increased systemic Th1 cytokine response. The mechanism is probably both immuno-modulatory and growth inhibition of tumor cells by induction of apoptosis.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag M. Eide
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon M. Tangen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine & National CBRNE Medical and Advisory Centre–Norway, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital – The Norwegian Radium Hospital, Oslo, Norway
| | | | - Jan E. Paulsen
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Oslo, Norway
| |
Collapse
|
50
|
Szebeni GJ, Vizler C, Nagy LI, Kitajka K, Puskas LG. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets. Int J Mol Sci 2016; 17:ijms17111958. [PMID: 27886105 PMCID: PMC5133952 DOI: 10.3390/ijms17111958] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Abstract
Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.
Collapse
Affiliation(s)
- Gabor J Szebeni
- Avidin Ltd., Also kikoto sor 11/D., H-6726 Szeged, Hungary.
- Synaptogenex Ltd., Őzsuta utca 20995/1, H-1037 Budapest, Hungary.
| | - Csaba Vizler
- Department of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62., H-6726 Szeged, Hungary.
| | - Lajos I Nagy
- Avidin Ltd., Also kikoto sor 11/D., H-6726 Szeged, Hungary.
| | - Klara Kitajka
- Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62., H-6726 Szeged, Hungary.
| | - Laszlo G Puskas
- Avidin Ltd., Also kikoto sor 11/D., H-6726 Szeged, Hungary.
- Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62., H-6726 Szeged, Hungary.
| |
Collapse
|