1
|
Khamrui E, Banerjee S, Mukherjee DD, Biswas K. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. Glycoconj J 2024; 41:343-360. [PMID: 39368037 DOI: 10.1007/s10719-024-10168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Elora Khamrui
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Dipanwita Das Mukherjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
Markotić A, Omerović J, Marijan S, Režić-Mužinić N, Čikeš Čulić V. Biochemical Pathways Delivering Distinct Glycosphingolipid Patterns in MDA-MB-231 and MCF-7 Breast Cancer Cells. Curr Issues Mol Biol 2024; 46:10200-10217. [PMID: 39329960 PMCID: PMC11430773 DOI: 10.3390/cimb46090608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The complex structure of glycosphingolipids (GSLs) supports their important role in cell function as modulators of growth factor receptors and glutamine transporters in plasma membranes. The aberrant composition of clustered GSLs within signaling platforms, so-called lipid rafts, inevitably leads to tumorigenesis due to disturbed growth factor signal transduction and excessive uptake of glutamine and other molecules needed for increased energy and structural molecule cell supply. GSLs are also involved in plasma membrane processes such as cell adhesion, and their transition converts cells from epithelial to mesenchymal with features required for cell migration and metastasis. Glutamine activates the mechanistic target of rapamycin complex 1 (mTORC1), resulting in nucleotide synthesis and proliferation. In addition, glutamine contributes to the cancer stem cell GD2 ganglioside-positive phenotype in the triple-negative breast cancer cell line MDA-MB-231. Thieno[2,3-b]pyridine derivative possesses higher cytotoxicity against MDA-MB-231 than against MCF-7 cells and induces a shift to aerobic metabolism and a decrease in S(6)nLc4Cer GSL-positive cancer stem cells in the MDA-MB-231 cell line. In this review, we discuss findings in MDA-MB-231, MCF-7, and other breast cancer cell lines concerning their differences in growth factor receptors and recent knowledge of the main biochemical pathways delivering distinct glycosphingolipid patterns during tumorigenesis and therapy.
Collapse
Affiliation(s)
- Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Jasminka Omerović
- Department of Immunology, University of Split School of Medicine, 21000 Split, Croatia
| | - Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Nikolina Režić-Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
3
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
4
|
Mao C, Poimenidou M, Craig BT. Current Knowledge and Perspectives of Immunotherapies for Neuroblastoma. Cancers (Basel) 2024; 16:2865. [PMID: 39199637 PMCID: PMC11353182 DOI: 10.3390/cancers16162865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Neuroblastoma (NBL) cells highly express disialoganglioside GD2, which is restricted and weakly expressed in selected healthy cells, making it a desirable target of immunotherapy. Over the past two decades, application of dinutuximab, an anti-GD2 monoclonal antibody (mAb), has been one of the few new therapies to substantially improve outcomes to current levels. Given the persistent challenge of relapse and therapeutic resistance, there is an urgent need for new effective and tolerable treatment options for high-risk NBL. Recent breakthroughs in immune checkpoint inhibitor (ICI) therapeutics have not translated into high-risk NBL, like many other major pediatric solid tumors. Given the suppressed tumor microenvironment (TME), single ICIs like anti-CTLA4 and anti-PD1 have not demonstrated significant antitumor response rates. Meanwhile, emerging studies are reporting novel advancements in GD2-based therapies, targeted therapies, nanomedicines, and other immunotherapies such as adoptive transfer of natural killer (NK) cells and chimeric antigen receptors (CARs), and these hold interesting promise for the future of high-risk NBL patient care. Herein, we summarize the current state of the art in NBL therapeutic options and highlight the unique challenges posed by NBL that have limited the successful adoption of immune-modifying therapies. Through this review, we aim to direct the field's attention to opportunities that may benefit from a combination immunotherapy strategy.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Maria Poimenidou
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian T. Craig
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
5
|
Zhang GL, Porter MJ, Awol AK, Orsburn BC, Canner SW, Gray JJ, O'Meally RN, Cole RN, Schnaar RL. The Human Ganglioside Interactome in Live Cells Revealed Using Clickable Photoaffinity Ganglioside Probes. J Am Chem Soc 2024; 146:17801-17816. [PMID: 38887845 DOI: 10.1021/jacs.4c03196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.
Collapse
Affiliation(s)
- Gao-Lan Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Mitchell J Porter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Abduselam K Awol
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Samuel W Canner
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Robert N O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Ciccone R, Quintarelli C, Camera A, Pezzella M, Caruso S, Manni S, Ottaviani A, Guercio M, Del Bufalo F, Quadraccia MC, Orlando D, Di Cecca S, Sinibaldi M, Aurigemma M, Iaffaldano L, Sarcinelli A, D'Amore ML, Ceccarelli M, Nazio F, Marabitti V, Giorda E, Pezzullo M, De Stefanis C, Carai A, Rossi S, Alaggio R, Del Baldo G, Becilli M, Mastronuzzi A, De Angelis B, Locatelli F. GD2-Targeting CAR T-cell Therapy for Patients with GD2+ Medulloblastoma. Clin Cancer Res 2024; 30:2545-2557. [PMID: 38551501 PMCID: PMC11145172 DOI: 10.1158/1078-0432.ccr-23-1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Medulloblastoma (MB), the most common childhood malignant brain tumor, has a poor prognosis in about 30% of patients. The current standard of care, which includes surgery, radiation, and chemotherapy, is often responsible for cognitive, neurologic, and endocrine side effects. We investigated whether chimeric antigen receptor (CAR) T cells directed toward the disialoganglioside GD2 can represent a potentially more effective treatment with reduced long-term side effects. EXPERIMENTAL DESIGN GD2 expression was evaluated on primary tumor biopsies of MB children by flow cytometry. GD2 expression in MB cells was also evaluated in response to an EZH2 inhibitor (tazemetostat). In in vitro and in vivo models, GD2+ MB cells were targeted by a CAR-GD2.CD28.4-1BBζ (CAR.GD2)-T construct, including the suicide gene inducible caspase-9. RESULTS GD2 was expressed in 82.68% of MB tumors. The SHH and G3-G4 subtypes expressed the highest levels of GD2, whereas the WNT subtype expressed the lowest. In in vitro coculture assays, CAR.GD2 T cells were able to kill GD2+ MB cells. Pretreatment with tazemetostat upregulated GD2 expression, sensitizing GD2dimMB cells to CAR.GD2 T cells cytotoxic activity. In orthotopic mouse models of MB, intravenously injected CAR.GD2 T cells significantly controlled tumor growth, prolonging the overall survival of treated mice. Moreover, the dimerizing drug AP1903 was able to cross the murine blood-brain barrier and to eliminate both blood-circulating and tumor-infiltrating CAR.GD2 T cells. CONCLUSIONS Our experimental data indicate the potential efficacy of CAR.GD2 T-cell therapy. A phase I/II clinical trial is ongoing in our center (NCT05298995) to evaluate the safety and therapeutic efficacy of CAR.GD2 therapy in high-risk MB patients.
Collapse
Affiliation(s)
- Roselia Ciccone
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Antonio Camera
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Pezzella
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Caruso
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Manni
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessio Ottaviani
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cecilia Quadraccia
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Domenico Orlando
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matilde Sinibaldi
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mariasole Aurigemma
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Iaffaldano
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Sarcinelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Luisa D'Amore
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Ceccarelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Nazio
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica Marabitti
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ezio Giorda
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Department of Laboratories, Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Department of Laboratories, Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Becilli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Shi J, Pabon K, Ding R, Scotto KW. ABCG2 and SLC1A5 functionally interact to rewire metabolism and confer a survival advantage to cancer cells under oxidative stress. J Biol Chem 2024; 300:107299. [PMID: 38641063 PMCID: PMC11131071 DOI: 10.1016/j.jbc.2024.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.
Collapse
Affiliation(s)
- Jia Shi
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kirk Pabon
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rui Ding
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Clinical Pharmacology, Translational Medicine, Servier Pharmaceuticals LLC, Boston, Massachusetts, USA
| | - Kathleen W Scotto
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
8
|
Liu F, Miao X, Han L, Song X. Advances in CAR-NK cell therapy for lung cancer: is it a better choice in the future? Front Oncol 2024; 14:1390006. [PMID: 38863635 PMCID: PMC11165017 DOI: 10.3389/fonc.2024.1390006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide necessitating the development of innovative therapeutic strategies. Chimeric antigen receptor (CAR) natural killer (NK) cell therapy represents a promising advancement in the field of oncology offering a novel approach to target and eliminate tumor cells with high specificity and reduced risk of immune-related adverse effects. This paper reviews the mechanism, potential targets, and recent advances in CAR-NK cell therapy for lung cancer, including the design and engineering of CAR-NK cells, preclinical studies, and the outcomes of early-phase clinical trials. We highlight the unique advantages of using NK cells, such as their innate ability to recognize and kill cancer cells and their reduced potential for inducing graft-versus-host disease (GvHD) and cytokine release syndrome (CRS) compared to CAR T-cell therapies. Results from recent studies demonstrate significant antitumor activity in lung cancer models with improved targeting and persistence of CAR-NK cells observed in vitro and in vivo. Finally, we discuss the challenges in optimizing CAR-NK cell therapies, including the potential resistance mechanisms. The paper concludes with an outlook on the future directions of CAR-NK cell research and its implications for lung cancer treatment emphasizing the importance of continued innovation and collaboration in the field.
Collapse
Affiliation(s)
- Fengqin Liu
- The Third Department of Geriatrics, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xia Miao
- Central Supply Service Department (CSSD), Weifang People’s Hospital, Weifang, Shandong, China
| | - Lu Han
- The Third Department of Geriatrics, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xiao Song
- Department of Gastroenterology, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
9
|
Di Matteo S, Bilotta MT, Pelosi A, Haas D, Theinert T, Weber G, Schlegel PG, Berg M, Moretta L, Maggi E, Azzarone B, Vacca P, Tumino N, Caruana I. Transition to a mesenchymal state in neuroblastoma may be characterized by a high expression of GD2 and by the acquisition of immune escape from NK cells. Front Immunol 2024; 15:1382931. [PMID: 38736882 PMCID: PMC11082345 DOI: 10.3389/fimmu.2024.1382931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Background Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Tumour Immunology Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Teresa Bilotta
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Pelosi
- Tumour Immunology Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Dorothee Haas
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Tobias Theinert
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Gerrit Weber
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Matthias Berg
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Lorenzo Moretta
- Tumour Immunology Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Enrico Maggi
- Tumour Immunology Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Bruno Azzarone
- Tumour Immunology Unit, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paola Vacca
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Nicola Tumino
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
11
|
Zheng Z, Liu J, Ma J, Kang R, Liu Z, Yu J. Advances in new targets for immunotherapy of small cell lung cancer. Thorac Cancer 2024; 15:3-14. [PMID: 38093497 PMCID: PMC10761621 DOI: 10.1111/1759-7714.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024] Open
Abstract
Small cell lung cancer (SCLC) is one of the highly aggressive malignancies characterized by rapid growth and early metastasis, but treatment options are limited. For SCLC, carboplatin or cisplatin in combination with etoposide chemotherapy has been considered the only standard of care, but the standard first-line treatment only results in 10-month survival. The majority of patients relapse within a few weeks to months after treatment, despite the relatively sensitive response to chemotherapy. Over the past decade, immunotherapy has made significant progress in the treatment of SCLC patients. However, there have been limited improvements in survival rates for SCLC patients with the current immune checkpoint inhibitors PD-1/PD-L1 and CTLA-4. In the face of high recurrence rates, small beneficiary populations, and low survival benefits, the exploration of new targets for key molecules and signals in SCLC and the development of drugs with novel mechanisms may provide fresh hope for immunotherapy in SCLC. Therefore, the aim of this review was to explore four new targets, DLL3, TIGIT, LAG-3, and GD2, which may play a role in the immunotherapy of SCLC to find useful clues and strategies to improve the outcome for SCLC patients.
Collapse
Affiliation(s)
- Zitong Zheng
- Department of OncologyBinzhou Medical University HospitalBinzhouP.R. China
| | - Juanjuan Liu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Junling Ma
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Runting Kang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| | - Zhen Liu
- Department of Graduate Work OfficeBinzhou Medical University HospitalBinzhouP.R. China
| | - Jiangyong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingP.R. China
| |
Collapse
|
12
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Lodewijk I, Dueñas M, Paramio JM, Rubio C. CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 2023; 14:1272681. [PMID: 37854601 PMCID: PMC10579806 DOI: 10.3389/fimmu.2023.1272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Targeted therapies are the state of the art in oncology today, and every year new Tumor-associated antigens (TAAs) are developed for preclinical research and clinical trials, but few of them really change the therapeutic scenario. Difficulties, either to find antigens that are solely expressed in tumors or the generation of good binders to these antigens, represent a major bottleneck. Specialized cellular mechanisms, such as differential splicing and glycosylation processes, are a good source of neo-antigen expression. Changes in these processes generate surface proteins that, instead of showing decreased or increased antigen expression driven by enhanced mRNA processing, are aberrant in nature and therefore more specific targets to elicit a precise anti-tumor therapy. Here, we present promising TAAs demonstrated to be potential targets for cancer monitoring, targeted therapy and the generation of new immunotherapy tools, such as recombinant antibodies and chimeric antigen receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types. Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2, describing their origin as well as their current and potential use as disease biomarker and therapeutic target in a diversity of tumor types.
Collapse
Affiliation(s)
- Iris Lodewijk
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Jesus M. Paramio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| |
Collapse
|
14
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
15
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
16
|
Mo X, Shen X, Mo X, Yu F, Tan W, Deng Z, He J, Luo Z, Chen Z, Yang J. CEMIP promotes small cell lung cancer proliferation by activation of glutamine metabolism via FBXW7/c-Myc-dependent axis. Biochem Pharmacol 2023; 209:115446. [PMID: 36746261 DOI: 10.1016/j.bcp.2023.115446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Small cell lung cancer (SCLC) is the most malignant lung cancer with rapid growth and early metastasis, but still lacks effective targeted therapies to improve the prognosis. Here, we demonstrated that a novel oncogenic protein, cell migration inducing hyaluronic binding protein (CEMIP), was robustly overexpressed in SCLC tissues than that in noncancerous tissues and high expression of CEMIP predicted poor outcomes in clinical specimens and in large sample size cohorts from public databases (GEPIA 2 and CPTAC). Liquid chromatography mass spectrometry (LC-MS) and in vitro/in vivo functional assays indicated that CEMIP contributed to the proliferation by increasing glutamine consumption and their metabolites (glutamate and glutathione) levels in SCLC cells. Moreover, the addition of a GLS1 inhibitor CB-839 dramatically reduced CEMIP-induced SCLC cell proliferation. Mechanistically, beyond as a scaffold protein, CEMIP facilitates glutamine-dependent cell proliferation through inhibiting c-Myc ubiquitination and increasing c-Myc stabilization and nuclear accumulation via hindering the interaction between FBXW7 (a E3 ubiquitin ligase) and its target substrate c-Myc. Taken together, our findings reveal a novel oncogenic role of CEMIP in sustaining SCLC growth via FBXW7/c-Myc-dependent axis, and provide new evidence that inhibition of CEMIP might be a potential therapeutic strategy for the treatment of SCLC.
Collapse
Affiliation(s)
- Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China; Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Xiaoju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaocheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Fei Yu
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Weidan Tan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhihua Deng
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000 Guangxi, China
| | - Jingchuan He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
17
|
Cao S, Hu X, Ren S, Wang Y, Shao Y, Wu K, Yang Z, Yang W, He G, Li X. The biological role and immunotherapy of gangliosides and GD3 synthase in cancers. Front Cell Dev Biol 2023; 11:1076862. [PMID: 36824365 PMCID: PMC9941352 DOI: 10.3389/fcell.2023.1076862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Gangliosides are a large subfamily of glycosphingolipids that broadly exist in the nervous system and interact with signaling molecules in the lipid rafts. GD3 and GD2 are two types of disialogangliosides (GDs) that include two sialic acid residues. The expression of GD3 and GD2 in various cancers is mostly upregulated and is involved in tumor proliferation, invasion, metastasis, and immune responses. GD3 synthase (GD3S, ST8SiaI), a subclass of sialyltransferases, regulates the biosynthesis of GD3 and GD2. GD3S is also upregulated in most tumors and plays an important role in the development and progression of tumors. Many clinical trials targeting GD2 are ongoing and various immunotherapy studies targeting gangliosides and GD3S are gradually attracting much interest and attention. This review summarizes the function, molecular mechanisms, and ongoing clinical applications of GD3, GD2, and GD3S in abundant types of tumors, which aims to provide novel targets for future cancer therapy.
Collapse
Affiliation(s)
- Shangqi Cao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xu Hu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shangqing Ren
- 2Robotic Minimally Invasive Surgery Center, Sichuan Academy of Medical Sciences and Sichuan Provincial Peoples Hospital, Chengdu, China
| | - Yaohui Wang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanxiang Shao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kan Wu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhen Yang
- 3Department of Urology, Chengdu Second People’s Hospital, Chengdu, China
| | - Weixiao Yang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Gu He
- 4State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China,*Correspondence: Gu He, ; Xiang Li,
| | - Xiang Li
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China,*Correspondence: Gu He, ; Xiang Li,
| |
Collapse
|
18
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
19
|
Saleh HA, Mitwasi N, Ullrich M, Kubeil M, Toussaint M, Deuther-Conrad W, Neuber C, Arndt C, R. Loureiro L, Kegler A, González Soto KE, Belter B, Rössig C, Pietzsch J, Frenz M, Bachmann M, Feldmann A. Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells. Front Immunol 2023; 14:1166169. [PMID: 37122703 PMCID: PMC10145173 DOI: 10.3389/fimmu.2023.1166169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, Technische Universität Dresden, Dresden, Germany
| | - Liliana R. Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Birgit Belter
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Münster, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, Frankfurt, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
- *Correspondence: Michael Bachmann,
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
| |
Collapse
|
20
|
Kotani N, Araki T, Miyagawa-Yamaguchi A, Amimoto T, Nakano M, Honke K. Proximity Labeling and Proteomics: Get to Know Neighbors. Methods Enzymol 2022; 679:131-162. [PMID: 36682860 DOI: 10.1016/bs.mie.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein-protein interactions are essential in biological reactions and fundamental to cell-cell communication (e.g., the binding of secreted proteins, such as hormones, to cell membrane receptors) and the subsequent intracellular signal transduction cascade. Several studies have been extensively carried out on protein-protein interactions because they have the potential to resolve various problems in molecular biology. Biochemical methods, such as chemical cross-linking and immunoprecipitation, have long been used to analyze which proteins interact with each other. However, there are some problems, such as unphysiological states and non-specific binding, that require the development of more useful experimental methods. This chapter discusses the "proximity labeling (Proteomics)" analysis technique, which has been attracting attention in protein-protein interaction analysis in recent years and is used in many biological studies. "Membrane proximity labeling (proteomics)," which analyzes the interaction of cell membrane proteins, and "intracellular proximity labeling (proteomics)" will be explained in-depth.
Collapse
Affiliation(s)
- Norihiro Kotani
- Medical Research Center, Saitama Medical University, Saitama, Japan; Department of Biochemistry, Saitama Medical University, Saitama, Japan.
| | - Tomoyuki Araki
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | | | - Tomoko Amimoto
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Nankoku, Japan
| |
Collapse
|
21
|
CAR-T Cells for the Treatment of Lung Cancer. Life (Basel) 2022; 12:life12040561. [PMID: 35455052 PMCID: PMC9028981 DOI: 10.3390/life12040561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell therapy with genetically modified T lymphocytes that express chimeric antigen receptors (CAR-T) is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in hematological malignancies. However, the efficacy of CAR-T cells in solid tumors is still very unsatisfactory, because of the strong immunosuppressive tumor microenvironment that hinders immune responses. The development of next-generation personalized CAR-T cells against solid tumors is a clinical necessity. The identification of therapeutic targets for new CAR-T therapies to increase the efficacy, survival, persistence, and safety in solid tumors remains a critical frontier in cancer immunotherapy. Here, we summarize basic, translational, and clinical results of CAR-T cell immunotherapies in lung cancer, from their molecular engineering and mechanistic studies to preclinical and clinical development.
Collapse
|
22
|
Furukawa K, Ohmi Y, Hamamura K, Kondo Y, Ohkawa Y, Kaneko K, Hashimoto N, Yesmin F, Bhuiyan RH, Tajima O, Furukawa K. Signaling domains of cancer-associated glycolipids. Glycoconj J 2022; 39:145-155. [PMID: 35315508 DOI: 10.1007/s10719-022-10051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
Abstract
Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To construct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. The most reasonable strategy to define tumor-specific antigens might be "autologous typing" performed by Old's group, proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, individual antigens that is present only in the patient's sample analyzed; class 2, shared antigens that can be found only in some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel carbohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids were summarized.
Collapse
Affiliation(s)
- Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan. .,Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, Aichi Gakuin University School of Dentistry, Nisshin, Japan
| | - Yuji Kondo
- Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Institute, Osaka, Japan
| | - Kei Kaneko
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Tokushima University Graduate School Institute of Biomedical Sciences, Tokushima, Japan
| | - Farhana Yesmin
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
23
|
Jaggupilli A, Ly S, Nguyen K, Anand V, Yuan B, El-Dana F, Yan Y, Arvanitis Z, Piyarathna DWB, Putluri N, Piwnica-Worms H, Manning HC, Andreeff M, Battula VL. Metabolic stress induces GD2 + cancer stem cell-like phenotype in triple-negative breast cancer. Br J Cancer 2022; 126:615-627. [PMID: 34811508 PMCID: PMC8854435 DOI: 10.1038/s41416-021-01636-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Metabolic stress resulting from nutrient deficiency is one of the hallmarks of a growing tumour. Here, we tested the hypothesis that metabolic stress induces breast cancer stem-like cell (BCSC) phenotype in triple-negative breast cancer (TNBC). METHODS Flow cytometry for GD2 expression, mass spectrometry and Ingenuity Pathway Analysis for metabolomics, bioinformatics, in vitro tumorigenesis and in vivo models were used. RESULTS Serum/glucose deprivation not only increased stress markers but also enhanced GD2+ BCSC phenotype and function in TNBC cells. Global metabolomics profiling identified upregulation of glutathione biosynthesis in GD2high cells, suggesting a role of glutamine in the BCSC phenotype. Cueing from the upregulation of the glutamine transporters in primary breast tumours, inhibition of glutamine uptake using small-molecule inhibitor V9302 reduced GD2+ cells by 70-80% and BCSC characteristics in TNBC cells. Mechanistic studies revealed inhibition of the mTOR pathway and induction of ferroptosis by V9302 in TNBC cells. Finally, inhibition of glutamine uptake significantly reduced in vivo tumour growth in a TNBC patient-derived xenograft model using NSG (non-obese diabetic/severe combined immunodeficiency with a complete null allele of the IL-2 receptor common gamma chain) mice. CONCLUSION Here, we show metabolic stress results in GD2+ BCSC phenotype in TNBC and glutamine contributes to GD2+ phenotype, and targeting the glutamine transporters could complement conventional chemotherapy in TNBC.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stanley Ly
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Khoa Nguyen
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivek Anand
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Bin Yuan
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Fouad El-Dana
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yuanqing Yan
- grid.468222.8Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, Houston, TX USA
| | - Zoe Arvanitis
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Nagireddy Putluri
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX USA
| | - Helen Piwnica-Worms
- grid.240145.60000 0001 2291 4776Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Henry Charles Manning
- grid.152326.10000 0001 2264 7217Center for Molecular Probes, Vanderbilt University Institute of Imaging Science, Nashville, TN USA
| | - Michael Andreeff
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - V. Lokesh Battula
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
24
|
Randomized Phase 3 Study of the Anti-disialoganglioside Antibody Dinutuximab and Irinotecan vs Irinotecan or Topotecan for Second-Line Treatment of Small Cell Lung Cancer. Lung Cancer 2022; 166:135-142. [DOI: 10.1016/j.lungcan.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/22/2023]
|
25
|
Tang E, Liu S, Zhang Z, Zhang R, Huang D, Gao T, Zhang T, Xu G. Therapeutic Potential of Glutamine Pathway in Lung Cancer. Front Oncol 2022; 11:835141. [PMID: 35223460 PMCID: PMC8873175 DOI: 10.3389/fonc.2021.835141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer cells tend to obtain the substances needed for their development depending on altering metabolic characteristics. Among the reorganized metabolic pathways, Glutamine pathway, reprogrammed to be involved in the physiological process including energy supply, biosynthesis and redox homeostasis, occupies an irreplaceable role in tumor cells and has become a hot topic in recent years. Lung cancer currently maintains a high morbidity and mortality rate among all types of tumors and has been a health challenge that researchers have longed to overcome. Therefore, this study aimed to clarify the essential role of glutamine pathway played in the metabolism of lung cancer and its potential therapeutic value in the interventions of lung cancer.
Collapse
|
26
|
Yesmin F, Bhuiyan RH, Ohmi Y, Yamamoto S, Kaneko K, Ohkawa Y, Zhang P, Hamamura K, Cheung NKV, Kotani N, Honke K, Okajima T, Kambe M, Tajima O, Furukawa K, Furukawa K. Ganglioside GD2 Enhances the Malignant Phenotypes of Melanoma Cells by Cooperating with Integrins. Int J Mol Sci 2021; 23:ijms23010423. [PMID: 35008849 PMCID: PMC8745508 DOI: 10.3390/ijms23010423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/12/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Gangliosides have been considered to modulate cell signals in the microdomain of the cell membrane, lipid/rafts, or glycolipid-enriched microdomain/rafts (GEM/rafts). In particular, cancer-associated gangliosides were reported to enhance the malignant properties of cancer cells. In fact, GD2-positive (GD2+) cells showed increased proliferation, invasion, and adhesion, compared with GD2-negative (GD2-) cells. However, the precise mechanisms by which gangliosides regulate cell signaling in GEM/rafts are not well understood. In order to analyze the roles of ganglioside GD2 in the malignant properties of melanoma cells, we searched for GD2-associating molecules on the cell membrane using the enzyme-mediated activation of radical sources combined with mass spectrometry, and integrin β1 was identified as a representative GD2-associating molecule. Then, we showed the physical association of GD2 and integrin β1 by immunoprecipitation/immunoblotting. Close localization was also shown by immuno-cytostaining and the proximity ligation assay. During cell adhesion, GD2+ cells showed multiple phospho-tyrosine bands, i.e., the epithelial growth factor receptor and focal adhesion kinase. The knockdown of integrin β1 revealed that the increased malignant phenotypes in GD2+ cells were clearly cancelled. Furthermore, the phosphor-tyrosine bands detected during the adhesion of GD2+ cells almost completely disappeared after the knockdown of integrin β1. Finally, immunoblotting to examine the intracellular distribution of integrins during cell adhesion revealed that large amounts of integrin β1 were localized in GEM/raft fractions in GD2+ cells before and just after cell adhesion, with the majority being localized in the non-raft fractions in GD2- cells. All these results suggest that GD2 and integrin β1 cooperate in GEM/rafts, leading to enhanced malignant phenotypes of melanomas.
Collapse
Affiliation(s)
- Farhana Yesmin
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
| | - Robiul H. Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Yuhsuke Ohmi
- Department of Medical Technology, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan;
| | - Satoko Yamamoto
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Kei Kaneko
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
| | - Kazunori Hamamura
- Department of Pharmacology, Aichi Gakuin University School of Dentistry, Nagoya 464-8650, Japan;
| | | | - Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, Saitama 350-0495, Japan;
| | - Koichi Honke
- Department of Biochemistry, Kochi University School of Medicine, Nangoku 783-8505, Japan;
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
| | - Mariko Kambe
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
- Correspondence: ; Tel.: +81-568-51-9512
| |
Collapse
|
27
|
Zhang P, Ohkawa Y, Yamamoto S, Momota H, Kato A, Kaneko K, Natsume A, Farhana Y, Ohmi Y, Okajima T, Bhuiyan RH, Wakabayashi T, Furukawa K, Furukawa K. St8sia1-deficiency in mice alters tumor environments of gliomas, leading to reduced disease severity. NAGOYA JOURNAL OF MEDICAL SCIENCE 2021; 83:535-549. [PMID: 34552288 PMCID: PMC8438004 DOI: 10.18999/nagjms.83.3.535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
Ganglioside GD3/GD2 are over-expressed in various neuroectoderm-derived tumors. Previous studies indicated that GD3 is involved in the enhancement of cancer properties such as rapid growth and increased invasiveness. However, little is known about the functions of GD3/GD2 in glioma cells and glioma microenvironments. To clarify the functions of GD3/GD2 in gliomas, we used a mouse glioma model based on the RCAS/Gtv-a system. At first, we compared the gliomas size between wild-type (WT) and GD3 synthase (GD3S) knockout (KO) mice, showing a less malignant histology and slower tumor growth in GD3S-KO mice than in WT mice. Immunohistochemistry of glioma sections from WT and GD3S-KO mice revealed that reactive microglia/macrophages showed different localization patterns between the two genetic types of mice. CD68+ cells were more frequently stained inside glioma tissues of GD3S-KO mice, while they were stained mainly around glioma tissues in WT mice. The number of CD68+ cells markedly increased in tumor tissues of GD3S-KO mice at 2 weeks after injection of transfectant DF-1 cells. Furthermore, CD68+ cells in GD3S(-/-) glioma tissues expressed higher levels of inducible nitric oxide synthase. We observed higher expression levels of pro-inflammatory cytokine genes in primary-cultured glioma cells of WT mice than in GD3S-KO mice. DNA microarray data also revealed differential expression levels of various cytokines and chemokines in glioma tissues between WT and GD3S-KO mice. These results suggest that expression of GD3S allows glioma cells to promote polarization of microglia/macrophages towards M2-like phenotypes by modulating the expression levels of chemokines and cytokines.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute
| | - Satoko Yamamoto
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Hiroyuki Momota
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Kaneko
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yesmin Farhana
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Tetsuya Okajima
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Sarbu M, Petrica L, Clemmer DE, Vukelić Ž, Zamfir AD. Gangliosides of Human Glioblastoma Multiforme: A Comprehensive Mapping and Structural Analysis by Ion Mobility Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1249-1257. [PMID: 33900081 DOI: 10.1021/jasms.1c00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glioblastoma multiforme (GBM), a malignant, highly aggressive, grade IV brain tumor, which rapidly infiltrates into the nearby tissue, has drawn a significant amount of attention because of its poor prognosis and the limited treatment options available. In GBM, nearly all tumor cells exhibit aberrant cell-surface glycosylation patterns due to the alteration of their biosynthesis or postsynthesis modification process. Since gangliosides (GGs) are acknowledged as tumor-associated antigens, we have carried out here a comprehensive profiling of native ganglioside mixtures extracted and purified from GBM specimens. For this purpose, high performance ion mobility separation mass spectrometry (IMS MS) was thoroughly optimized to allow the discovery of GBM-specific structures and the assessment of their roles as tumor markers or possible associated antigens. GG separation by IMS according to the charge state, carbohydrate chain length, degree of sialylation, and ceramide composition led to the identification of no less than 160 distinct components, which represents 3-fold the number of structures identified before. The detected GGs and asialo-GGs were found characterized by a high heterogeneity in their ceramide and glycan compositions, encompassing up five Neu5Ac residues. The tumor was found dominated in equal and high proportions by GD3 and GT1 forms, with a particular incidence of C24:1 fatty acids in the ceramide. By the occurrence of only one mobility feature and the diagnostic fragment ions, the IMS tandem MS conducted using collision-induced dissociation (CID) disclosed for the first time the presence of GT1c(d18:1/24:1) newly proposed here as a potential GBM marker.
Collapse
Affiliation(s)
- Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, 300223, Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II - Division of Nephrology, County Emergency Hospital Timisoara and Centers for Molecular Research in Nephrology and Vascular Diseases, Translational Research and Systems and Cognitive Research in Neuropsychiatric Pathology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041, Timisoara, Romania
| | - David E Clemmer
- Department of Chemistry, The College of Arts and Science, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Alina D Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224, Timisoara, Romania
- Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, 310130, Arad, Romania
| |
Collapse
|
29
|
Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front Oncol 2020; 10:1000. [PMID: 32733795 PMCID: PMC7358363 DOI: 10.3389/fonc.2020.01000] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gangliosides are carbohydrate-containing sphingolipids that are widely expressed in normal tissues, making most subtypes unsuitable as targets for cancer therapy. However, the disialoganglioside GD2 subtype has limited expression in normal tissues but is overexpressed across a wide range of tumors. Disialoganglioside GD2 can be considered a tumor-associated antigen and well-suited as a target for cancer therapy. Disialoganglioside GD2 is implicated in tumor development and malignant phenotypes through enhanced cell proliferation, motility, migration, adhesion, and invasion, depending on the tumor type. This provides a rationale for targeting disialoganglioside GD2 in cancer therapy with the development of anti-GD2 monoclonal antibodies and other therapeutic approaches. Anti-GD2 monoclonal antibodies target GD2-expressing tumor cells, leading to phagocytosis and destruction by means of antibody-dependent cell-mediated cytotoxicity, lysis by complement-dependent cytotoxicity, and apoptosis and necrosis through direct induction of cell death. Anti-GD2 monoclonal antibodies may also prevent homing and adhesion of circulating malignant cells to the extracellular matrix. Disialoganglioside GD2 is highly expressed by almost all neuroblastomas, by most melanomas and retinoblastomas, and by many Ewing sarcomas and, to a more variable degree, by small cell lung cancer, gliomas, osteosarcomas, and soft tissue sarcomas. Successful treatment of disialoganglioside GD2-expressing tumors with anti-GD2 monoclonal antibodies is hindered by pharmacologic factors such as insufficient antibody affinity to mediate antibody-dependent cell-mediated cytotoxicity, inadequate penetration of antibody into the tumor microenvironment, and toxicity related to disialoganglioside GD2 expression by normal tissues such as peripheral sensory nerve fibers. Nonetheless, anti-GD2 monoclonal antibody dinutuximab (ch14.18) has been approved by the U.S. Food and Drug Administration and dinutuximab beta (ch14.18/CHO) has been approved by the European Medicines Agency for the treatment of high-risk neuroblastoma in pediatric patients. Clinical trials of anti-GD2 therapy are currently ongoing in patients with other types of disialoganglioside GD2-expressing tumors as well as neuroblastoma. In addition to anti-GD2 monoclonal antibodies, anti-GD2 therapeutic approaches include chimeric antigen receptor T-cell therapy, disialoganglioside GD2 vaccines, immunocytokines, immunotoxins, antibody-drug conjugates, radiolabeled antibodies, targeted nanoparticles, and T-cell engaging bispecific antibodies. Clinical trials should clarify further the potential of anti-GD2 therapy for disialoganglioside GD2-expressing malignant tumors.
Collapse
Affiliation(s)
- Bassel Nazha
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Cengiz Inal
- Salem Veterans Affairs Medical Center, Salem, VA, United States
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Schömel N, Geisslinger G, Wegner MS. Influence of glycosphingolipids on cancer cell energy metabolism. Prog Lipid Res 2020; 79:101050. [PMID: 32592726 DOI: 10.1016/j.plipres.2020.101050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.
Collapse
Affiliation(s)
- Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
31
|
Luo Y, Li W, Ling Z, Hu Q, Fan Z, Cheng B, Tao X. ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells. Cancer Med 2020; 9:3489-3499. [PMID: 32162845 PMCID: PMC7221297 DOI: 10.1002/cam4.2965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 02/02/2023] Open
Abstract
Background Alanine‐serine‐cysteine transporter 2 (ASCT2), a major glutamine transporter, is essential for cell growth and tumor development in a variety of cancers. However, the clinicopathological significance and pathological role of ASCT2 in OSCC (oral squamous cell carcinoma) lesions remain unclear. Methods Sections from 89 OSCC patients and 10 paracancerous tissue controls were stained by immunohistochemistry (IHC) to detect the expression of ASCT2, glutaminase, and Ki‐67. Survival analysis was carried out to determine the predictive value of ASCT2 expression using the log‐rank test. Moreover, the critical role of ASCT2 in tumor growth was determined by a series of in vitro and in vivo assays. Cell Counting Kit‐8 (CCK8), Western Blotting (WB), Reactive Oxygen Species (ROS), and Glutathione (GSH) detection were applied to explore the molecular mechanism of ASCT2 involvement in tumor development. Results In OSCC lesions, ASCT2 expression was significantly increased and associated with cell proliferation index (Ki‐67) and GLS expression. Moreover, survival analysis showed that OSCC patients with high ASCT2 expression had lower overall survival (P = 0.0365). In OSCC cell lines, the high level of ASCT2 was inherent and related to the glutamine addiction of tumor cells. In vitro and in vivo functional experiments revealed that targeted silencing of ASCT2 can effectively inhibit OSCC cell proliferation and tumor growth. Mechanistically, targeting ASCT2 knockdown reduced glutamine uptake and intracellular GSH levels, which contribute to the accumulation of ROS and induce apoptosis in OSCC cells. Conclusion ASCT2 is a significant factor for predicting overall survival in patients with OSCC, and targeting ASCT2 to inhibit glutamine metabolism may be a promising strategy for OSCC treatment.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zihang Ling
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qinchao Hu
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaoan Tao
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
32
|
Scalise M, Console L, Galluccio M, Pochini L, Indiveri C. Chemical Targeting of Membrane Transporters: Insights into Structure/Function Relationships. ACS OMEGA 2020; 5:2069-2080. [PMID: 32064367 PMCID: PMC7016923 DOI: 10.1021/acsomega.9b04078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/16/2020] [Indexed: 05/09/2023]
Abstract
Chemical modification of proteins is a vintage strategy that is still fashionable due to the information that can be obtained from this approach. An interesting application of chemical modification is linked with membrane transporters. These proteins have peculiar features such as the presence of hydrophobic and hydrophilic domains, which show different degree of accessibility to chemicals. The presence of reactive residues in the membrane transporters is at the basis of the chemical targeting strategy devoted to investigating structure/function relationships; in particular, information on the substrate binding site, regulatory domains, dimerization domains, and the interface between hydrophilic loops and transmembrane domains has been obtained over the years by chemical targeting. Given the difficulty in handling membrane transporters, their study experienced a great delay, particularly concerning structural information. Chemical targeting has been applied with reasonable success to some membrane transporters belonging to the families SLC1, SLC6, SLC7, and SLC22. Furthermore, some data on the potential application of chemical targeting in pharmacology are also discussed.
Collapse
|
33
|
Furukawa K, Ohmi Y, Ohkawa Y, Bhuiyan RH, Zhang P, Tajima O, Hashimoto N, Hamamura K, Furukawa K. New era of research on cancer-associated glycosphingolipids. Cancer Sci 2019; 110:1544-1551. [PMID: 30895683 PMCID: PMC6501054 DOI: 10.1111/cas.14005] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer‐associated glycosphingolipids have been used as markers for diagnosis and targets for immunotherapy of malignant tumors. Recent progress in the analysis of their implications in the malignant properties of cancer cells revealed that cancer‐associated glycosphingolipids are not only tumor markers, but also functional molecules regulating various signals introduced by membrane microdomains, lipid rafts. In particular, a novel approach, enzyme‐mediated activation of radical sources combined with mass spectrometry, has enabled us to clarify the mechanisms by which cancer‐associated glycosphingolipids regulate cell signals based on the interaction with membrane molecules and formation of molecular complexes on the cell surface. Novel findings obtained from these approaches are now providing us with insights into the development of new anticancer therapies targeting membrane molecular complexes consisting of cancer‐associated glycolipids and their associated membrane molecules. Thus, a new era of cancer‐associated glycosphingolipids has now begun.
Collapse
Affiliation(s)
- Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Ohmi
- Department of Medical Technology, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Noboru Hashimoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Anatomy, Faculty of Medical and Dental Sciences, Tokushima University, Tokushima, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
34
|
Lemos H, Huang L, Prendergast GC, Mellor AL. Immune control by amino acid catabolism during tumorigenesis and therapy. Nat Rev Cancer 2019; 19:162-175. [PMID: 30696923 DOI: 10.1038/s41568-019-0106-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immune checkpoints arise from physiological changes during tumorigenesis that reprogramme inflammatory, immunological and metabolic processes in malignant lesions and local lymphoid tissues, which constitute the immunological tumour microenvironment (TME). Improving clinical responses to immune checkpoint blockade will require deeper understanding of factors that impact local immune balance in the TME. Elevated catabolism of the amino acids tryptophan (Trp) and arginine (Arg) is a common TME hallmark at clinical presentation of cancer. Cells catabolizing Trp and Arg suppress effector T cells and stabilize regulatory T cells to suppress immunity in chronic inflammatory diseases of clinical importance, including cancers. Processes that induce Trp and Arg catabolism in the TME remain incompletely defined. Indoleamine 2,3 dioxygenase (IDO) and arginase 1 (ARG1), which catabolize Trp and Arg, respectively, respond to inflammatory cues including interferons and transforming growth factor-β (TGFβ) cytokines. Dying cells generate inflammatory signals including DNA, which is sensed to stimulate the production of type I interferons via the stimulator of interferon genes (STING) adaptor. Thus, dying cells help establish local conditions that suppress antitumour immunity to promote tumorigenesis. Here, we review evidence that Trp and Arg catabolism contributes to inflammatory processes that promote tumorigenesis, impede immune responses to therapy and might promote neurological comorbidities associated with cancer.
Collapse
Affiliation(s)
- Henrique Lemos
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Andrew L Mellor
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
35
|
Corti A, Dominici S, Piaggi S, Belcastro E, Chiu M, Taurino G, Pacini S, Bussolati O, Pompella A. γ-Glutamyltransferase enzyme activity of cancer cells modulates L-γ-glutamyl-p-nitroanilide (GPNA) cytotoxicity. Sci Rep 2019; 9:891. [PMID: 30696905 PMCID: PMC6351548 DOI: 10.1038/s41598-018-37385-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022] Open
Abstract
L-γ-Glutamyl-p-nitroanilide (GPNA) is widely used to inhibit the glutamine (Gln) transporter ASCT2, but recent studies have demonstrated that it is also able to inhibit other sodium-dependent and independent amino acid transporters. Moreover, GPNA is a well known substrate of the enzyme γ-glutamyltransferase (GGT). Our aim was to evaluate the effect of GGT-mediated GPNA catabolism on cell viability and Gln transport. The GGT-catalyzed hydrolysis of GPNA produced cytotoxic effects in lung cancer A549 cells, resulting from the release of metabolite p-nitroaniline (PNA) rather than from the inhibition of Gln uptake. Interestingly, compounds like valproic acid, verapamil and reversan were able to increase the cytotoxicity of GPNA and PNA, suggesting a key role of intracellular detoxification mechanisms. Our data indicate that the mechanism of action of GPNA is more complex than believed, and further confirm the poor specificity of GPNA as an inhibitor of Gln transport. Different factors may modulate the final effects of GPNA, ranging from GGT and ASCT2 expression to intracellular defenses against xenobiotics. Thus, other strategies - such as a genetic suppression of ASCT2 or the identification of new specific inhibitors - should be preferred when inhibition of ASCT2 function is required.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Silvia Dominici
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Simona Piaggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Eugenia Belcastro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RMN), FMTS, 67000, Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, 67000, Strasbourg, France
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
36
|
Ohmi Y, Kambe M, Ohkawa Y, Hamamura K, Tajima O, Takeuchi R, Furukawa K, Furukawa K. Differential roles of gangliosides in malignant properties of melanomas. PLoS One 2018; 13:e0206881. [PMID: 30462668 PMCID: PMC6248923 DOI: 10.1371/journal.pone.0206881] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ganglioside GD3 is widely expressed in human malignant melanomas, and has been reported to be involved in the increased cell proliferation and invasion. In this study, we established GM3-, GM2-, GM1-, GD3-, or GD2-expressing melanoma cell lines by transfecting cDNAs of glyscosyltransferases, and effects of individual gangliosides on the cell phenotypes and signals were examined. The phenotypes of established ganglioside-expressing cells were quite different, i.e. cell growth increased as following order; GD2+, GD3+ > GM1+, GM2+, GM3+ cells. Cell invasion activity increased as GD3+ ≧ GM2+ > GM1+, GM3+, GD2+ cells. Intensity of cell adhesion to collagen I (CL-I) and spreading increased as GD2+ >> GD3+, GM1+ > GM2+, GM3+ cells. In particular, cell adhesion of GD2+ cells was markedly strong. As for cell migration velocity, GD2+ cells were slower than all other cells. The immunocytostaining revealed close localization of gangliosides and F-actin in lamellipodia. Immunoblotting of phosphorylated p130Cas and paxillin by serum treatment reveled that these phosphorylations were more increased in GD3+ cells than in GD2+ or GM3+ cells, while phosphorylation of Akt underwent similarly increased phosphorylation between GD3+ and GD2+ cells compared with GM3+ cells. While GD2 and GD3 enhanced cell growth, GD3 might also contribute in cell invasion. On the other hand, GD2 might contribute in the solid fixation of melanoma cells at metastasized sites. These results suggested that individual gangliosides exert distinct roles in the different aspects of melanomas by differentially regulating cytoskeletons and signaling molecules.
Collapse
Affiliation(s)
- Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Mariko Kambe
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichigakuin University, Nagoya, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Rika Takeuchi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
37
|
Esaki N, Ohkawa Y, Hashimoto N, Tsuda Y, Ohmi Y, Bhuiyan RH, Kotani N, Honke K, Enomoto A, Takahashi M, Furukawa K, Furukawa K. ASC amino acid transporter 2, defined by enzyme-mediated activation of radical sources, enhances malignancy of GD2-positive small-cell lung cancer. Cancer Sci 2018; 109:141-153. [PMID: 29151270 PMCID: PMC5765286 DOI: 10.1111/cas.13448] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Ganglioside GD2 is specifically expressed in small‐cell lung cancer (SCLC) cells, leading to enhancement of malignant phenotypes, such as cell proliferation and migration. However, how GD2 promotes malignant phenotypes in SCLC cells is not well known. In this study, to reveal the mechanisms by which GD2 increases malignant phenotypes in SCLC cells, we used enzyme‐mediated activation of radical sources combined with mass spectrometry in GD2+SCLC cells. Consequently, we identified ASC amino acid transporter 2 (ASCT2), a major glutamine transporter, which coordinately works with GD2. We showed that ASCT2 was highly expressed in glycolipid‐enriched microdomain/rafts in GD2+SCLC cells, and colocalized with GD2 in both proximity ligation assay and immunocytostaining, and bound with GD2 in immunoprecipitation/TLC immunostaining. Malignant phenotypes of GD2+SCLC cells were enhanced by glutamine uptake, and were suppressed by L‐γ‐glutamyl‐p‐nitroanilide, a specific inhibitor of ASCT2, through reduced phosphorylation of p70 S6K1 and S6. These results suggested that ASCT2 enhances glutamine uptake in glycolipid‐enriched microdomain/rafts in GD2+SCLC cells, leading to the enhancement of cell proliferation and migration through increased phosphorylation of the mTOR complex 1 signaling axis.
Collapse
Affiliation(s)
- Nobutoshi Esaki
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Departments of Biochemistry 2, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Noboru Hashimoto
- Departments of Biochemistry 2, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Tsuda
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Departments of Biochemistry 2, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, Moroyama, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University School of Medicine, Kochi, Japan
| | - Atsushi Enomoto
- Departments of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Departments of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|