1
|
Shang B, Qiao H, Wang L, Wang J. In-depth study of pyroptosis-related genes and immune infiltration in colon cancer. PeerJ 2024; 12:e18374. [PMID: 39494275 PMCID: PMC11529595 DOI: 10.7717/peerj.18374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Pyroptosis is a form of regulated necrosis that occurs in many cell and tissue types and plays a critical role in tumor progression. The diagnostic value of pyroptosis-related genes (PRGs) in colon cancer has been widely investigated. In the present study, we explored the relationship between PRG expression and colon cancer. Methods We retrieved genomic and clinical data pertaining to The Cancer Genome Atlas-Colon Adenocarcinoma from the UCSC Xena database, along with the corresponding genome annotation information from the GENCODE data portal. Utilising these data and a list of 33 pyrogenic genes, we performed principal component analysis and unsupervised clustering analysis to assess the pyroptosis subtypes. We analysed the differential expression between these subtypes to obtain PRGs, ultimately selecting 10 PRGs. We conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set variation analysis, protein-protein interaction, and immune infiltration analyses of these PRGs. We validated the expression of TNNC1 via immunohistochemistry (IHC) and real-time quantitative PCR. Results After rigorous screening, excluding patients with incomplete survival data and unmatched transcriptomes, we refined our study cohort to 431 patients. We performed differential mRNA analysis and identified 445 PRGs, 10 of which were selected as hub genes. These genes were associated with various immune cell types. Specifically, TNNC1 expression was positively associated with immature dendritic cells and NK CD56+ cells. IHC staining indicated higher TNNC1 expression levels in tumor samples. Notably, TNNC1 expression levels were high in all the colon cancer cell lines, particularly in SW480 cells. Conclusion In this study, we explored the characteristics of PRGs in colon cancer and identified novel biological targets for early individualised treatment and accurate diagnosis of colon cancer, thus contributing to the advancement of clinical oncology.
Collapse
Affiliation(s)
- Bingbing Shang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haiyan Qiao
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Yuan SM, Chen X, Qu YQ, Zhang MY. C6 and KLRG2 are pyroptosis subtype-related prognostic biomarkers and correlated with tumor-infiltrating lymphocytes in lung adenocarcinoma. Sci Rep 2024; 14:24861. [PMID: 39438534 PMCID: PMC11496652 DOI: 10.1038/s41598-024-75650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Pyroptosis plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the pyroptosis-related gene (PRG) expression pattern and to identify promising pyroptosis-related biomarkers to improve the prognosis of LUAD. The gene expression profiles and clinical information of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA), and validation cohort information was extracted from the Gene Expression Omnibus database. Gene expression data were analyzed using the limma package and visualized using the ggplot2 package as well as the pheatmap package in R software. Functional enrichment analysis was also performed for the 44 differentially expressed PRGs (DEPRGs). Then, consensus clustering revealed pyroptosis-related tumor subtypes, and differentially expressed genes (DEGs) were screened according to the subtypes. Next, univariate Cox and multivariate Cox regression analyses were used to identify independent prognostic PRGs. After overlapping DEGs and the Lasso regression analysis-based prognostic genes, the predictive risk model was established and validated. Correlation analysis between PRGs and clinicopathological variables was also explored. Finally, the TIMER and TISIDB databases were used to further explore the correlation analysis between immune cell infiltration levels, the risk score, and clinicopathological variables in the predictive risk model. A total of 52 genes from the PubMed were identified as PRGs, and 44 of the 52 genes were pooled as DEPRGs. The most significant GO term was "collagen trimer" (P = 2.46E-13), and KEGG analysis results indicated that 44 DEPRGs were significantly enriched in Salmonella infection (P < 0.001). Then, consensus clustering analysis divided LUAD patients into two clusters, and a total of 79 DEGs were identified according to these cluster subtypes. Subsequently, univariate and multivariate Cox regression analyses were used to identify 12 genes that could serve as independent prognostic indicators and we also performed Lasso regression analysis and screened 23 DEGs. After overlapping 23 DEGs and 12 genes, only 4 (KLRG2, MAPK4, C6 and SFRP5) of 12 genes were selected for the further exploration of the prognostic pattern. Survival analysis results indicated that this risk model effectively predicted the prognosis (P < 0.001). Combined with the correlation analysis results between the 4 genes and clinicopathological variables, C6 and KLRG2 were screened as prognostic genes. In this study, we constructed a predictive risk model and identified two pyroptosis subtype-related gene expression patterns to improve the prognosis of LUAD. Understanding the subtypes of LUAD is helpful for accurately characterizing the LUAD and developing personalized treatment.
Collapse
Affiliation(s)
- Shu-Min Yuan
- Department of Medical Oncology, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Chen
- Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Cheng F, He L, Wang J, Lai L, Ma L, Qu K, Yang Z, Wang X, Zhao R, Weng L, Wang L. Synergistic immunotherapy with a calcium-based nanoinducer: evoking pyroptosis and remodeling tumor-associated macrophages for enhanced antitumor immune response. NANOSCALE 2024; 16:18570-18583. [PMID: 39291343 DOI: 10.1039/d4nr01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The challenges posed by low immunogenicity and the immunosuppressive tumor microenvironment (TME) significantly hinder the efficacy of cancer immunotherapy. Pyroptosis, characterized as a pro-inflammatory cell death pathway, emerges as a promising approach to augment immunotherapy by promoting immunogenic cell death (ICD). The predominance of M2 phenotype tumor-associated macrophages (TAMs) in the TME underscores the critical need for TAM reprogramming to mitigate this immunosuppression. Herein, we introduce a calcium-based, intelligent-responsive nanoinducer (CaZCH NPs), designed to concurrently initiate pyroptosis and remodel TAMs, thereby amplifying antitumor immunotherapy effects. Modified with hyaluronic acid, CaZCH NPs can target tumor cells. Once internalized, CaZCH NPs respond to the acidic environment, releasing Ca2+, curcumin and H2O2 to induce mitochondrial Ca2+ overload and oxidation stress, leading to caspase-3/GSDME-mediated cell pyroptosis. Concurrently, O2 produced by CaZCH and pro-inflammatory cytokines from pyroptotic cells work together to shift TAM polarization towards the M1 phenotype, effectively countering TME's immunosuppressive effect. Notably, the synergistic effect of Ca2+-mediated pyroptosis and TAM remodeling demonstrates superior antitumor efficiency in colorectal cancer models. The induced ICD, coupled with M1-type TAMs, effectively enhances immunogenicity and mitigates immunosuppression, promoting dendritic cell maturation and activating CD8+ T cell-dependent systemic antitumor immunity. Our study presents a promising synergistic strategy for achieving highly efficient immunotherapy using a simple calcium-based nanoinducer.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lei He
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Jiaqi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lunhui Lai
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Li Ma
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Kuiming Qu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Zicheng Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Xinyue Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Ruyu Zhao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| |
Collapse
|
4
|
Yang J, Ma Y, Yu J, Liu Y, Xia J, Kong X, Jin X, Li J, Lin S, Ruan Y, Yang F, Pi J. Advancing Roles and Therapeutic Potentials of Pyroptosis in Host Immune Defenses against Tuberculosis. Biomolecules 2024; 14:1255. [PMID: 39456188 PMCID: PMC11505957 DOI: 10.3390/biom14101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, remains a deadly global public health burden. The use of recommended drug combinations in clinic has seen an increasing prevalence of drug-resistant TB, adding to the impediments to global control of TB. Therefore, control of TB and drug-resistant TB has become one of the most pressing issues in global public health, which urges the exploration of potential therapeutic targets in TB and drug-resistant TB. Pyroptosis, a form of programmed cell death characterized by cell swelling and rupture, release of cellular contents and inflammatory responses, has been found to promote pathogen clearance and adopt crucial roles in the control of bacterial infections. It has been demonstrated that Mtb can cause host cell pyroptosis, and these host cells, which are infected by Mtb, can kill Mtb accompanied by pyroptosis, while, at the same time, pyroptosis can also release intracellular Mtb, which may potentially worsen the infection by exacerbating the inflammation. Here, we describe the main pathways of pyroptosis during Mtb infection and summarize the identified effectors of Mtb that regulate pyroptosis to achieve immune evasion. Moreover, we also discuss the potentials of pyroptosis to serve as an anti-TB therapeutic target, with the aim of providing new ideas for the development of TB treatments.
Collapse
Affiliation(s)
- Jiayi Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yuhe Ma
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaqi Yu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yilin Liu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China;
| | - Xinen Kong
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Xiaoying Jin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaxiang Li
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Siqi Lin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yongdui Ruan
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Fen Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiang Pi
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| |
Collapse
|
5
|
Xiao Y, Wang Z, Xin Y, Wang X, Dong Z. Characteristics of two different immune infiltrating pyroptosis subtypes in ischemic stroke. Heliyon 2024; 10:e36349. [PMID: 39263102 PMCID: PMC11388774 DOI: 10.1016/j.heliyon.2024.e36349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background Ischemic stroke (IS) is a serious health hazard and identified as the second leading cause of mortality around the world. However, the role of pyroptosis in the immune microenvironment regulation in IS is still unclear. Here, our study aims to elucidate the effect of pyroptosis on immune microenvironment in IS. Methods The regulation mode of pyroptosis in IS was systematically evaluated, and its effects on immune microenvironment were explored, including infiltration of immune cells, immune response gene sets, and human leukocyte antigen (HLA) gene. The genes and drugs related to pyroptosis phenotype were also identified. An MCAO rat model was constructed, and the mRNA expression levels in the classifier model were validated by qRT-PCR. Results The separator is composed of 11 pyroptosis genes, out of which 10 genes could distinguish between ischemic stroke and control samples. CHMP2A, CHMP4A, and NAIP genes are significantly related to immune infiltrating cells, immune response gene sets, and HLA. However, two different pyroptosis subtypes mediated by 10 pyroptosis genes were identified, which were different in immune cell abundance, HLA genes, and immune response gene sets. Furthermore, 199 genes associated with pyroptosis phenotype was identified along with the analysis of biological functions. Conclusion These findings reveal the potential mechanism of pyroptosis in the immune microenvironment of IS, indicating that pyroptosis functions as a vital component in the complexity and diversity of the immune microenvironment in patients with IS.
Collapse
Affiliation(s)
- Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, 252000, Shangdong, China
| | - Zhen Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yexin Xin
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, 252000, Shangdong, China
| | - Xingbang Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
6
|
Wang JY, Lu YH, Li F, Huang ML. Pyroptosis: A promising biomarker for predicting colorectal cancer prognosis and enhancing immunotherapy efficacy. World J Clin Oncol 2024; 15:968-974. [PMID: 39193165 PMCID: PMC11346071 DOI: 10.5306/wjco.v15.i8.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
In this editorial, we comment on the article by Zhu et al published in the recent issue of the World Journal of Clinical Oncology. We focus specifically on the characteristics and mechanisms of pyroptosis and the impact of changes in the tumor immune microenvironment (TIME) on cancer prognosis. Pyroptosis is a distinct form of programmed cell death; its occurrence can change the TIME and regulate the growth and spread of tumors and therefore is significantly correlated with cancer prognosis. Previous research has demonstrated that pyroptosis-related genes can be used in prognostic models for various types of cancer. These models enhance the mechanistic understanding of tumor evolution and serve as valuable guides for clinical treatment decision-making. Nevertheless, further studies are required to thoroughly understand the function of pyroptosis within the TIME and to assess its mode of action. Such studies should reveal new tumor therapeutic targets and more successful tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Jia-Yi Wang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu-Hao Lu
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Fang Li
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Mo-Li Huang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
7
|
Wang J, Su H, Wang M, Ward R, An S, Xu TR. Pyroptosis and the fight against lung cancer. Med Res Rev 2024. [PMID: 39132876 DOI: 10.1002/med.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Pyroptosis, a newly characterized type of inflammatory programmed cell death (PCD), is usually triggered by multiple inflammasomes which can recognize different danger or damage-associated molecular patterns (DAMPs), leading to the activation of caspase-1 and the cleavage of gasdermin D (GSDMD). Gasdermin family pore-forming proteins are the executers of pyroptosis and are normally maintained in an inactive state through auto-inhibition. Upon caspases mediated cleavage of gasdermins, the pro-pyroptotic N-terminal fragment is released from the auto-inhibition of C-terminal fragment and oligomerizes, forming pores in the plasma membrane. This results in the secretion of interleukin (IL)-1β, IL-18, and high-mobility group box 1 (HMGB1), generating osmotic swelling and lysis. Current therapeutic approaches including chemotherapy, radiotherapy, molecularly targeted therapy and immunotherapy for lung cancer treatment efficiently force the cancer cells to undergo pyroptosis, which then generates local and systemic antitumor immunity. Thus, pyroptosis is recognized as a new therapeutic regimen for the treatment of lung cancer. In this review, we briefly describe the signaling pathways involved in pyroptosis, and endeavor to discuss the antitumor effects of pyroptosis and its potential application in lung cancer therapy, focusing on the contribution of pyroptosis to microenvironmental reprogramming and evocation of antitumor immune response.
Collapse
Affiliation(s)
- Jiwei Wang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huiling Su
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Min Wang
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, College of Medical, University of Glasgow, Glasgow, UK
| | - Su An
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian-Rui Xu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Center for Pharmaceutical Sciences and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
8
|
Yang J, Ding X, Fang Z, Wu S, Yuan M, Chen R, Xu Q, Gao X, Wu H, Chen L, Zheng X, Jiang J. Association of CD8 +TILs co-expressing granzyme A and interferon-γ with colon cancer cells in the tumor microenvironment. BMC Cancer 2024; 24:869. [PMID: 39030523 PMCID: PMC11265531 DOI: 10.1186/s12885-024-12605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
CD8+T cells secreting granzyme A (GZMA) can induce pyroptosis in tumor cells by effectively cleaving gasdermin B (GSDMB), which is stimulated by interferon-γ (IFN-γ). However, the interaction between GZMA-expressing CD8+T cells and GSDMB-expressing tumor cells in colon cancer remains poorly understood. Our research employed multi-color immunohistochemistry (mIHC) staining and integrated clinical data to explore the spatial distribution and clinical relevance of GZMA- and IFN-γ-expressing CD8+ tumor-infiltrating lymphocytes (TILs), as well as GSDMB-expressing CK+ cells, within the tumor microenvironment (TME) of human colon cancer samples. Additionally, we utilizing single-cell RNA sequencing (scRNA-seq) data to examine the functional dynamics and interactions among these cell populations. scRNA-seq analysis of colorectal cancer (CRC) tissues revealed that CD8+TILs co-expressed GZMA and IFN-γ, but not other cell types. Our mIHC staining results indicated that a significant reduction in the infiltration of GZMA+IFN-γ+CD8+TILs in colon cancer patients (P < 0.01). Functional analysis results indicated that GZMA+IFN-γ+CD8+TILs demonstrated enhanced activation and effector functions compared to other CD8+TIL subsets. Furthermore, GSDMB-expressing CK+ cells exhibited augmented immunogenicity. Correlation analysis highlighted a positive association between GSDMB+CK+ cells and GZMA+IFN-γ+CD8+TILs (r = 0.221, P = 0.033). Analysis of cell-cell interactions further showed that these interactions were mediated by IFN-γ and transforming growth factor-β (TGF-β), the co-stimulatory molecule ICOS, and immune checkpoint molecules TIGIT and TIM-3. These findings suggested that GZMA+IFN-γ+CD8+TILs modulating GSDMB-expressing tumor cells, significantly impacted the immune microenvironment and patients' prognosis in colon cancer. By elucidating these mechanisms, our present study aims to provide novel insights for the advancement of immunotherapeutic strategies in colon cancer.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Xinyi Ding
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Maoling Yuan
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Qinlan Xu
- Department of Gastroenterology, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Xinran Gao
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Haoyu Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
9
|
Xu Y, Ren Y, Zou W, Ji S, Shen W. Neutrophil extracellular traps promote erectile dysfunction in rats with diabetes mellitus by enhancing NLRP3-mediated pyroptosis. Sci Rep 2024; 14:16457. [PMID: 39014129 PMCID: PMC11252272 DOI: 10.1038/s41598-024-67281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Erectile dysfunction (ED) is the most prevalent consequences in men with diabetes mellitus (DM). Recent studies demonstrates that neutrophil extracellular traps (NETs) play important roles in DM and its complications. Nevertheless, whether NETs are involved in ED remains unknown. This work intended to explore the role and mechanisms of NETs in ED in the context of DM. Here, we observed that NET generation and pyroptosis were promoted in DM rats with ED compared with controls. Mechanistically, NETs facilitated NLRP3 inflammasome activation and subsequently triggered pyroptosis under high glucose stress, ultimately leading to ED. Intriguingly, DNase I (a NET degrading agent) alleviated ED and corpus cavernosum injury in DM rats. Overall, NETs might induce ED in DM by promoting NLRP3-mediated pyroptosis in the corpus cavernosum.
Collapse
Affiliation(s)
- Ying Xu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Ren
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wenli Zou
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Shuiyu Ji
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wei Shen
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
10
|
Hu M, Deng F, Song X, Zhao H, Yan F. The crosstalk between immune cells and tumor pyroptosis: advancing cancer immunotherapy strategies. J Exp Clin Cancer Res 2024; 43:190. [PMID: 38987821 PMCID: PMC11234789 DOI: 10.1186/s13046-024-03115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Pyroptosis is a cell death process characterized by cell swelling until membrane rupture and release of intracellular contents. As an effective tumor treatment strategy, inducing tumor cell pyroptosis has received widespread attention. In this process, the immune components within the tumor microenvironment play a key regulatory role. By regulating and altering the functions of immune cells such as cytotoxic T lymphocytes, natural killer cells, tumor-associated macrophages, and neutrophils, tumor cell pyroptosis can be induced. This article provides a comprehensive review of the molecular mechanisms of cell pyroptosis, the impact of the tumor immune microenvironment on tumor cell pyroptosis, and its mechanisms. It aims to gain an in-depth understanding of the communication between the tumor immune microenvironment and tumor cells, and to provide theoretical support for the development of new tumor immunotherapies.
Collapse
Affiliation(s)
- Mengyuan Hu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Fengying Deng
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Xinlei Song
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650031, Yunnan, China.
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China.
| |
Collapse
|
11
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Yin Q, Song SY, Bian Y, Wang Y, Deng A, Lv J, Wang Y. Unlocking the potential of pyroptosis in tumor immunotherapy: a new horizon in cancer treatment. Front Immunol 2024; 15:1381778. [PMID: 38947336 PMCID: PMC11211258 DOI: 10.3389/fimmu.2024.1381778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background The interaction between pyroptosis-a form of programmed cell death-and tumor immunity represents a burgeoning field of interest. Pyroptosis exhibits a dual role in cancer: it can both promote tumor development and counteract it by activating immune responses that inhibit tumor evasion and encourage cell death. Current tumor immunotherapy strategies, notably CAR-T cell therapy and immune checkpoint inhibitors (ICIs), alongside the potential of certain traditional Chinese medicinal compounds, highlight the intricate relationship between pyroptosis and cancer immunity. As research delves deeper into pyroptosis mechanisms within tumor therapy, its application in enhancing tumor immune responses emerges as a novel research avenue. Purpose This review aims to elucidate the mechanisms underlying pyroptosis, its impact on tumor biology, and the advancements in tumor immunotherapy research. Methods A comprehensive literature review was conducted across PubMed, Embase, CNKI, and Wanfang Database from the inception of the study until August 22, 2023. The search employed keywords such as "pyroptosis", "cancer", "tumor", "mechanism", "immunity", "gasdermin", "ICB", "CAR-T", "PD-1", "PD-L1", "herbal medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "immunotherapy", linked by AND/OR, to capture the latest findings in pyroptosis and tumor immunotherapy. Results Pyroptosis is governed by a complex mechanism, with the Gasdermin family playing a pivotal role. While promising for tumor immunotherapy application, research into pyroptosis's effect on tumor immunity is still evolving. Notably, certain traditional Chinese medicine ingredients have been identified as potential pyroptosis inducers, meriting further exploration. Conclusion This review consolidates current knowledge on pyroptosis's role in tumor immunotherapy. It reveals pyroptosis as a beneficial factor in the immunotherapeutic landscape, suggesting that leveraging pyroptosis for developing novel cancer treatment strategies, including those involving traditional Chinese medicine, represents a forward-looking approach in oncology.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anchen Deng
- Department of Neuroscience, Chengdu Shishi School, Chengdu, China
| | - Jianzhen Lv
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Shi C, Wang Y, Guo J, Zhang D, Zhang Y, Gong Z. Deacetylated MDH1 and IDH1 aggravates PANoptosis in acute liver failure through endoplasmic reticulum stress signaling. Cell Death Discov 2024; 10:275. [PMID: 38851781 PMCID: PMC11162427 DOI: 10.1038/s41420-024-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Acute liver failure (ALF) is a disease with a high mortality rate and poor prognosis, whose pathogenesis is not fully understood. PANoptosis is a recently proposed mode of cell death characterized by pyroptosis, apoptosis, and necroptosis, but it cannot be explained by any of them alone. This study aims to explore the role of PANoptosis in ALF and the impact and mechanism of deacetylated malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) on PANoptosis. Our results found that, compared with the control group, the cell viability in the lipopolysaccharide (LPS)/D-galactosamine (D-Gal) group decreased, lactate dehydrogenase (LDH) release increased, cell death increased, and the levels of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, IL-1β increased, indicating that PANoptosis increased during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 increased the expression of PANoptosis-related molecules RIPK1, GSDMD, caspase-3, MLKL, IL-18, and IL-1β in vivo and in vitro. The deacetylation weakened the inhibitory effect of histone deacetylase (HDAC) inhibitor ACY1215 on PANoptosis-related molecules, suggesting that deacetylated MDH1 at K118 and IDH1 at K93 aggravated PANoptosis during ALF. Deacetylated MDH1 at K118 and IDH1 at K93 also promoted the expression of endoplasmic reticulum stress-related molecules BIP, ATF6, XBP1, and CHOP in vivo and in vitro. The use of endoplasmic reticulum stress inhibitor 4-PBA weakened the promotion effect of deacetylated MDH1 K118 and IDH1 K93 on PANoptosis. The results suggested that deacetylated MDH1 at K118 and IDH1 at K93 may aggravate PANoptosis in ALF through endoplasmic reticulum stress signaling. In conclusion, deacetylated MDH1 and IDH1 may aggravate PANoptosis in ALF, and the mechanism may act through endoplasmic reticulum stress signaling.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Wang J, Nuray U, Yan H, Xu Y, Fang L, Li R, Zhou X, Zhang H. Pyroptosis is involved in the immune microenvironment regulation of unexplained recurrent miscarriage. Mamm Genome 2024; 35:256-279. [PMID: 38538990 DOI: 10.1007/s00335-024-10038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/11/2024] [Indexed: 05/29/2024]
Abstract
Unexplained recurrent miscarriage (URM) is a common pregnancy complication with few effective therapies. Moreover, little is known regarding the role of pyroptosis in the regulation of the URM immune microenvironment. To address this issue, gene expression profiles of publicly available placental datasets GSE22490 and GSE76862 were downloaded from the Gene Expression Omnibus database. Pyroptosis-related differentially expressed genes were identified and a total of 16 differentially expressed genes associated with pyroptosis were detected, among which 1 was upregulated and 15 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the functionally enriched modules and pathways of these genes are closely related to immune and inflammatory responses. Four hub genes were identified: BTK, TLR8, NLRC4, and TNFSF13B. BTK, TLR8, and TNFSF13B were highly connected with immune cells, according to the correlation analysis of four hub genes and 20 different types of immune cells (p < 0.05). The four hub genes were used as research objects to construct the interaction networks. Chorionic villus tissue was used for quantitative real-time polymerase chain reaction and western blot to confirm the expression levels of hub genes, and the results showed that the expression of the four hub genes was significantly decreased in the chorionic villus tissue in the URM group. Collectively, the present study indicates that perhaps pyroptosis is essential to the diversity and complexity of the URM immune microenvironment, and provides a theoretical basis and research ideas for subsequent target gene verification and mechanism research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Hongchao Yan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lisha Fang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ranran Li
- First clinical medical college of Xuzhou Medical University, Xuzhou, China
| | - Xin Zhou
- First clinical medical college of Xuzhou Medical University, Xuzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Huang Q, Tian R, Yu J, Du W. Identification of PSMD11 as a novel cuproptosis- and immune-related prognostic biomarker promoting lung adenocarcinoma progression. Cancer Med 2024; 13:e7379. [PMID: 38859698 PMCID: PMC11165170 DOI: 10.1002/cam4.7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Due to the unfavorable prognosis associated with lung adenocarcinoma (LUAD), the development of targeted therapies and immunotherapies is essential. Cuproptosis, an emerging form of regulated cell death, is implicated in mitochondrial metabolism and is induced by copper ions. This study aimed to explore the prognostic value of cuproptosis- and immune-related genes (CIRGs) in LUAD. METHODS We used The Cancer Genome Atlas database to develop a prognostic prediction model for LUAD patients based on eight CIRGs. Using Cox regression analysis, we determined that the CIRG signature is a reliable, independent prognostic factor. We further identified PSMD11 as a critical CIRG and performed immunohistochemistry to study the protein expression levels of PSMD11 in LUAD tissues. We also investigated the impact of PSMD11 on the biological behavior of lung cancer cell lines. RESULTS We found that patients with low PSMD11 expression levels displayed an improved prognosis compared with those with high PSMD11 expression levels. Overexpression of PSMD11 enhanced proliferation, migration, invasion, and tumor growth of lung carcinoma cell line A549, while PSMD11 knockdown diminished proliferation, migration, invasion, and tumor growth of lung carcinoma cell line PC9. Additionally, we discovered that PSMD11 expression was positively correlated with the infiltration of myeloid-derived suppressor cells and the increased expression of immunosuppressive molecules. CONCLUSION These findings suggest that PSMD11 may serve as a valuable prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Qiumin Huang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
- Department of Laboratory and Diagnosis, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jinxi Yu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Wei Du
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Lin QC, Wang J, Wang XL, Pan C, Jin SW, Char S, Tao YX, Cao H, Li J. Hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167137. [PMID: 38527593 DOI: 10.1016/j.bbadis.2024.167137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1β were detected by western blotting. Serum IL-1β, IL-6 and S100β were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1β were detected by western blotting and the content of IL-1β in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1β due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.
Collapse
Affiliation(s)
- Qi-Cheng Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiao Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin-Lin Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chi Pan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shao-Wu Jin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Steven Char
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hong Cao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jun Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Li Y, Cui Q, Zhou B, Zhang J, Guo R, Wang Y, Xu X. RSAD2, a pyroptosis-related gene, predicts the prognosis and immunotherapy response for colorectal cancer. Am J Cancer Res 2024; 14:2507-2522. [PMID: 38859852 PMCID: PMC11162672 DOI: 10.62347/rgjo6884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent malignant tumors, known for its high heterogeneity. Although many treatments and medications are available, the long-term survival rate of CRC patients is far from satisfactory. Pyroptosis is closely related to tumor progression. This study aimed to identify pyroptosis-related genes (PRGs) and candidate biomarkers to predict the prognosis of CRC patients. Used bioinformatics, we identified PRGs and subsequently screened 288 co-expression genes between pyroptosis-related modules and differentially expressed genes in CRC. Among these hub genes, we selected the top 24 for further analysis and found that Radical S-Adenosyl Methionine Domain Containing 2 (RSAD2) was a novel biomarker associated with the progression of CRC. We developed a risk model for RSAD2, which proved to be an independent prognostic indicator. The receiver operator characteristic analysis showed that the model had an acceptable prognostic value for patients with CRC. In addition, RSAD2 also affects the tumor immune microenvironment and prognosis of CRC. We further validated RSAD2 expression in CRC patients using RT-qPCR and the role of RSAD2 in pyroptosis. Taken together, this study comprehensively assessed the expression and prognostic value of RSAD2 in patients with CRC. These findings may offer a new direction for early CRC screening and development of future immunotherapy strategies.
Collapse
Affiliation(s)
- Yunxiao Li
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Qianqian Cui
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Bin Zhou
- Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430000, Hubei, China
| | - Jiayu Zhang
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Rong Guo
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Yanyan Wang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Xinhua Xu
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| |
Collapse
|
18
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
19
|
Ge J, Zhang Z, Zhao S, Chen Y, Min X, Cai Y, Zhao H, Wu X, Zhao F, Chen B. Nanomedicine-induced cell pyroptosis to enhance antitumor immunotherapy. J Mater Chem B 2024; 12:3857-3880. [PMID: 38563315 DOI: 10.1039/d3tb03017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunotherapy is a therapeutic modality designed to elicit or augment an immune response against malignancies. Despite the immune system's ability to detect and eradicate neoplastic cells, certain neoplastic cells can elude immune surveillance and elimination through diverse mechanisms. Therefore, antitumor immunotherapy has emerged as a propitious strategy. Pyroptosis, a type of programmed cell death (PCD) regulated by Gasdermin (GSDM), is associated with cytomembrane rupture due to continuous cell expansion, which results in the release of cellular contents that can trigger robust inflammatory and immune responses. The field of nanomedicine has made promising progress, enabling the application of nanotechnology to enhance the effectiveness and specificity of cancer therapy by potentiating, enabling, or augmenting pyroptosis. In this review, we comprehensively examine the paradigms underlying antitumor immunity, particularly paradigms related to nanotherapeutics combined with pyroptosis; these treatments include chemotherapy (CT), hyperthermia therapy, photodynamic therapy (PDT), chemodynamic therapy (CDT), ion-interference therapy (IIT), biomimetic therapy, and combination therapy. Furthermore, we thoroughly discuss the coordinated mechanisms that regulate these paradigms. This review is expected to enhance the understanding of the interplay between pyroptosis and antitumor immunotherapy, broaden the utilization of diverse nanomaterials in pyroptosis-based antitumor immunotherapy, and facilitate advancements in clinical tumor therapy.
Collapse
Affiliation(s)
- Jingwen Ge
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Zheng Zhang
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Shuangshuang Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yanwei Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xin Min
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Yun Cai
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Huajiao Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Xincai Wu
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Feng Zhao
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| | - Baoding Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, P. R. China.
| |
Collapse
|
20
|
Xu Y, Chau CV, Lee J, Sedgwick AC, Yu L, Li M, Peng X, Kim JS, Sessler JL. Lutetium texaphyrin: A photocatalyst that triggers pyroptosis via biomolecular photoredox catalysis. Proc Natl Acad Sci U S A 2024; 121:e2314620121. [PMID: 38381784 PMCID: PMC10907263 DOI: 10.1073/pnas.2314620121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Photon-controlled pyroptosis activation (PhotoPyro) is a promising technique for cancer immunotherapy due to its noninvasive nature, precise control, and ease of operation. Here, we report that biomolecular photoredox catalysis in cells might be an important mechanism underlying PhotoPyro. Our findings reveal that the photocatalyst lutetium texaphyrin (MLu) facilitates rapid and direct photoredox oxidation of nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and various amino acids, thereby triggering pyroptosis through the caspase 3/GSDME pathway. This mechanism is distinct from the well-established role of MLu as a photodynamic therapy sensitizer in cells. Two analogs of MLu, bearing different coordinated central metal cations, were also explored as controls. The first control, gadolinium texaphyrin (MGd), is a weak photocatalyst but generates reactive oxygen species (ROS) efficiently. The second control, manganese texaphyrin (MMn), is ineffective as both a photocatalyst and a ROS generator. Neither MGd nor MMn was found to trigger pyroptosis under the conditions where MLu was active. Even in the presence of a ROS scavenger, treating MDA-MB-231 cells with MLu at concentrations as low as 50 nM still allows for pyroptosis photo-activation. The present findings highlight how biomolecular photoredox catalysis could contribute to pyroptosis activation by mechanisms largely independent of ROS.
Collapse
Affiliation(s)
- Yunjie Xu
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Calvin V. Chau
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Jieun Lee
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Le Yu
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Mingle Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiaojun Peng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul02856, Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| |
Collapse
|
21
|
Zhu LH, Yang J, Zhang YF, Yan L, Lin WR, Liu WQ. Identification and validation of a pyroptosis-related prognostic model for colorectal cancer based on bulk and single-cell RNA sequencing data. World J Clin Oncol 2024; 15:329-355. [PMID: 38455135 PMCID: PMC10915942 DOI: 10.5306/wjco.v15.i2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Pyroptosis impacts the development of malignant tumors, yet its role in colorectal cancer (CRC) prognosis remains uncertain. AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration. METHODS Gene expression data were obtained from The Cancer Genome Atlas (TCGA) and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus (GEO). Pyroptosis-related gene expression in cell clusters was analyzed, and enrichment analysis was conducted. A pyroptosis-related risk model was developed using the LASSO regression algorithm, with prediction accuracy assessed through K-M and receiver operating characteristic analyses. A nomogram predicting survival was created, and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations. Finally, the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database. RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B, SDHB, BST2, UBE2D2, GJA1, AIM2, PDCD6IP, and SEZ6L2 (P < 0.05). Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis (P < 0.05). Patients with higher risk scores demonstrated increased death risk and reduced overall survival (P < 0.05). Significant differences in immune infiltration were observed between low- and high-risk groups, correlating with pyroptosis-related gene expression. CONCLUSION We developed a pyroptosis-related prognostic model for CRC, affirming its correlation with immune infiltration. This model may prove useful for CRC prognostic evaluation.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Yun-Fei Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Li Yan
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Wan-Rong Lin
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Wei-Qing Liu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
22
|
Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, Moghadam D, Rastegar S, Mohsenizadeh M, Jahromi BN, Vafadar A, Zarei R. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol 2024; 194:104249. [PMID: 38145831 DOI: 10.1016/j.critrevonc.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran.
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Rastegar
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | | | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
He Z, Feng D, Zhang C, Chen Z, Wang H, Hou J, Li S, Wei X. Recent strategies for evoking immunogenic Pyroptosis in antitumor immunotherapy. J Control Release 2024; 366:375-394. [PMID: 38142962 DOI: 10.1016/j.jconrel.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Pyroptosis is a specific type of programmed cell death (PCD) characterized by distinct morphological changes, including cell swelling, membrane blebbing, DNA fragmentation, and eventual cell lysis. Pyroptosis is closely associated with human-related diseases, such as inflammation and malignancies. Since the initial observation of pyroptosis in Shigella flexneri-infected macrophages more than 20 years ago, various pyroptosis-inducing agents, including ions, small molecules, and biological nanomaterials, have been developed for tumor treatment. Given that pyroptosis can activate the body's robust immune response against tumor and promote the formation of the body's long-term immune memory in tumor treatment, its status as a type of immunogenic cell death is self-evident. Therefore, pyroptosis should be used as a powerful anti-tumor strategy. However, there still is a lack of a comprehensive summary of the most recent advances in pyroptosis-based cancer therapy. Therefore, it is vital to fill this gap and inspire future drug design to better induce tumor cells to undergo pyroptosis to achieve advanced anti-tumor effects. In this review, we summarize in detail the most recent advances in triggering tumor cell immunogenic pyroptosis for adequate tumor clearance based on various treatment modalities, and highlight material design and therapeutic advantages. Besides, we also provide an outlook on the prospects of this emerging field in the next development.
Collapse
Affiliation(s)
- Zhangxin He
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China
| | - Dexiang Feng
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiqian Chen
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - He Wang
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China.
| | - Jianquan Hou
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China.
| | - Xuedong Wei
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
24
|
Wang P, Wang Z, Lin Y, Castellano L, Stebbing J, Zhu L, Peng L. Development of a Novel Pyroptosis-Associated lncRNA Biomarker Signature in Lung Adenocarcinoma. Mol Biotechnol 2024; 66:332-353. [PMID: 37154865 DOI: 10.1007/s12033-023-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Pyroptosis is a novel type of cell death observed in various diseases. Our study aimed to investigate the relationship between pyroptosis-associated-long non-coding RNAs (lncRNAs), immune infiltration, and expression of immune checkpoints in the setting of lung adenocarcinoma and the prognostic value of pyroptosis-related lncRNAs. RNA-seq transcriptome data and clinical information from The Cancer Genome Atlas (TCGA) were downloaded, and consensus clustering analysis was used to separate the samples into two groups. Least absolute shrinkage and selection operator (LASSO) analyses were conducted to construct a risk signature. The association between pyroptosis-associated lncRNAs, immune infiltration, and expression of immune checkpoints were analysed. The cBioPortal tool was used to discover genomic alterations. Gene set enrichment analysis (GSEA) was utilized to investigate downstream pathways of the two clusters. Drug sensitivity was also examined. A total of 43 DEGs and 3643 differentially expressed lncRNAs were identified between 497 lung adenocarcinoma tissues and 54 normal samples. A signature consisting of 11 pyroptosis-related lncRNAs was established as prognostic for overall survival. Patients in the low-risk group have a significant overall survival advantage over those in the high-risk group in the training group. Immune checkpoints were expressed differently between the two risk groups. Risk scores were validated to develop an independent prognostic model based on multivariate Cox regression analysis. The area under time-dependent receiver operating characteristic curve (AUC of the ROC) at 1-, 3-, and 5-years measured0.778, 0.757, and 0.735, respectively. The high-risk group was more sensitive to chemotherapeutic drugs than the low-risk group. This study demonstrates the association between pyroptosis-associated lncRNAs and prognosis in lung adenocarcinoma and enables a robust predictive signature of 11 lncRNAs to inform overall survival.
Collapse
Affiliation(s)
- Peng Wang
- Department of Medical Oncology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Yanke Lin
- Guangdong TCRCure Biopharma Technology Co., Ltd, Guangzhou, China
| | - Leandro Castellano
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Justin Stebbing
- Department of Biomedical Sciences, Anglia Ruskin University, Cambridge, UK
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China.
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Zhou W, Feng M, Qi F, Qiao J, Fan L, Zhang L, Hu X, Huang C. A pyroptosis-related gene expression signature predicts immune microenvironment and prognosis in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2024; 281:953-963. [PMID: 38063904 DOI: 10.1007/s00405-023-08316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous and aggressive malignancy with a poor prognosis. Pyroptosis triggered by gasdermins family proteins is reported vital for tumor microenvironment and cancer progression. However, pyroptosis-related gene expression and its relationship with immune infiltration and prognosis of HNSCC have not been fully defined. MATERIAL AND METHODS RNA-sequencing data of HNSCC patients were acquired from The Cancer Genome Atlas (TCGA) database. A pyroptosis-related gene expression signature and infiltrated immune cells were analyzed. Univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression and nomogram analyses were used to construct a clinical-molecular risk model for survival prognosis. RESULTS HNSCC was classified into three different molecular subtypes based on the expression information of pyroptosis-related genes. Immune cell infiltration was demonstrated to be distinct between the three subtypes. The segregation of patients into the high-risk group and low-risk group, were carried out using the signature of differential expression genes (DEGs) signature among the three molecular subtypes. The precision of this signature was corroborated by Receiver operating characteristic curve (ROC) analysis with the 3-year area under time-dependent ROC curve (AUC) reaching 0.711. The risk model was validated in another dataset from the Gene Expression Omnibus (GEO) database. Subsequently we established a clinical-molecular nomogram which combined the risk score with age and stage. The calibration plots for predicting the overall survival rate of 1-, 3-, and 5-years indicated that the nomogram performs well. CONCLUSION The expression signature that encompasses pyroptosis-related genes could be used as molecular classification for HNSCC and pyroptosis might be a promising therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mei Feng
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Fei Qi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Fan
- Department of Stomatology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Long Zhang
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China
| | - Xuegang Hu
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| | - Chunyu Huang
- Medical Affairs Department, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
26
|
Yang J, Jiang J. Gasdermins: a dual role in pyroptosis and tumor immunity. Front Immunol 2024; 15:1322468. [PMID: 38304430 PMCID: PMC10830654 DOI: 10.3389/fimmu.2024.1322468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gasdermin (GSDM) protein family plays a pivotal role in pyroptosis, a process critical to the body's immune response, particularly in combatting bacterial infections, impeding tumor invasion, and contributing to the pathogenesis of various inflammatory diseases. These proteins are adept at activating inflammasome signaling pathways, recruiting immune effector cells, creating an inflammatory immune microenvironment, and initiating pyroptosis. This article serves as an introduction to the GSDM protein-mediated pyroptosis signaling pathways, providing an overview of GSDMs' involvement in tumor immunity. Additionally, we explore the potential applications of GSDMs in both innovative and established antitumor strategies.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
27
|
Xu C, Ma H, Chen J, Li X, Wang Z, Hu B, Zhang N, Meng F. Prognostic, immunity, stemness, and anticancer drug sensitivity characterization of pyroptosis related genes in non-small cell lung cancer. Thorac Cancer 2024; 15:215-226. [PMID: 38115677 PMCID: PMC10803221 DOI: 10.1111/1759-7714.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pyroptosis plays a pivotal role in the tumor immune microenvironment (TME) dynamics, particularly in non-small cell lung cancer (NSCLC). The aim of our study was to explore its effects on tumor progression, TME patterns, and the efficacy of therapeutic interventions in NSCLC. METHODS Our investigation encompassed a thorough analysis of pyroptosis-related genes (PRGs), integrating immunohistochemistry (IHC) data, TME characteristics, stemness indices, and anticancer drug sensitivities. We aimed to analyze mRNA expression profiles across various cancers, constructing benchmark datasets to assess the clinical significance of PRGs in NSCLC. This included evaluating their association with clinical responses and efficacy. Notably, both our and HPA IHC data demonstrated significantly elevated GSDMD-N protein levels in lung squamous cell carcinoma (LUSC) tissues. RESULTS The expression of PRGs differed significantly between tumor and normal tissues across various cancers, as validated by IHC data, and was correlated with prognosis (p < 0.05). Moreover, our investigation revealed significant differences (p < 0.05) in the expression of the PRGs among distinct TME subtypes categorized as C1 (wound healing), C3 (inflammatory), C2 (IFN-gamma dominant), C5 (immunological quiet), C4 (lymphocyte deficient), and C6 (TGF-beta dominant). Additionally, our research on anticancer drug sensitivity uncovered compelling connections between specific anticancer medications and the expression of PRGs, including GSDMD, ELANE, IL18, and CHMP4A (p < 0.05). CONCLUSION Our study provided valuable insights into the critical role of PRGs in TME modulation, tumor stemness, and anticancer drug sensitivity across diverse cancers. Our findings illuminate the intricate relationship between pyroptosis and the TME, offering new perspectives for enhancing NSCLC treatment and prognosis.
Collapse
Affiliation(s)
- Cong Xu
- Department of Thoracic SurgeryPeking University Shougang HospitalBeijingChina
| | - Hongming Ma
- Department of Respiratory and Critical CareEmergency General HospitalBeijingChina
| | | | - Xincheng Li
- Department of Thoracic SurgeryBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Zhina Wang
- Department of Respiratory and Critical CareEmergency General HospitalBeijingChina
| | - Bin Hu
- Department of Thoracic SurgeryBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Nan Zhang
- Department of Respiratory and Critical CareEmergency General HospitalBeijingChina
| | - Fanjie Meng
- Department of Thoracic SurgeryBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
28
|
Yu B, Luo J, Yang Y, Zhen K, Shen B. Novel molecular insights into pyroptosis in triple-negative breast cancer prognosis and immunotherapy. J Gene Med 2024; 26:e3645. [PMID: 38041540 DOI: 10.1002/jgm.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Patients with triple-negative breast cancer (TNBC) often have a poor prognostic outcome. Current treatment strategies cannot benefit all TNBC patients. Previous findings suggested pyroptosis as a novel target for suppressing cancer development, although the relationship between TNBC and pyroptosis-related genes (PRGs) was still unclear. METHODS Gene expression data and clinical follow-up of TNBC patients were collected from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). PRGs were screened using weighted gene co-expression network analysis. Cox regression analysis and the least absolute shrinkage and selection operator (i.e. LASSO) technique were applied to construct a pyroptosis-related prognostic risk score (PPRS) model, which was further combined with the clinicopathological characteristics of TNBC patients to develop a survival decision tree and a nomogram. The model was used to calculate the PPRS, and then the overall survival, immune infiltration, immunotherapy response and drug sensitivity of TNBC patients were analyzed based on the PPRS. RESULTS The PPRS model was closely related to clinicopathological features and can independently and accurately predict the prognosis of TNBC. According to normalized PPRS, patients in different cohorts were divided into two groups. Compared with the high-PPRS group, the low-PPRS group had significantly higher ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) score, immune score and stromal score, and it also had overexpressed immune checkpoints and significantly reduced Tumor Immune Dysfunction and Exclusion (TIDE) score, as well as higher sensitivity to paclitaxel, veliparib, olaparib and talazoparib. A decision tree and nomogram based on PPRS and clinical characteristics can improve the prognosis stratification and survival prediction for TNBC patients. CONCLUSIONS A PPRS model was developed to predict TNBC patients' immune characteristics and response to immunotherapy, chemotherapy and targeted therapy, as well as their survival outcomes.
Collapse
Affiliation(s)
- Bin Yu
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Luo
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifei Yang
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Zhen
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binjie Shen
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Ocansey DKW, Qian F, Cai P, Ocansey S, Amoah S, Qian Y, Mao F. Current evidence and therapeutic implication of PANoptosis in cancer. Theranostics 2024; 14:640-661. [PMID: 38169587 PMCID: PMC10758053 DOI: 10.7150/thno.91814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Regulated cell death (RCD) is considered a critical pathway in cancer therapy, contributing to eliminating cancer cells and influencing treatment outcomes. The application of RCD in cancer treatment is marked by its potential in targeted therapy and immunotherapy. As a type of RCD, PANoptosis has emerged as a unique form of programmed cell death (PCD) characterized by features of pyroptosis, apoptosis, and necroptosis but cannot be fully explained by any of these pathways alone. It is regulated by a multi-protein complex called the PANoptosome. As a relatively new concept first described in 2019, PANoptosis has been shown to play a role in many diseases, including cancer, infection, and inflammation. This study reviews the application of PCD in cancer, particularly the emergence and implication of PANoptosis in developing therapeutic strategies for cancer. Studies have shown that the characterization of PANoptosis patterns in cancer can predict survival and response to immunotherapy and chemotherapy, highlighting the potential for PANoptosis to be used as a therapeutic target in cancer treatment. It also plays a role in limiting the spread of cancer cells. PANoptosis allows for the elimination of cancer cells by multiple cell death pathways and has the potential to address various challenges in cancer treatment, including drug resistance and immune evasion. Moreover, active investigation of the mechanisms and potential therapeutic agents that can induce PANoptosis in cancer cells is likely to yield effective cancer treatments and improve patient outcomes. Research on PANoptosis is still ongoing, but it is a rapidly evolving field with the potential to lead to new treatments for various diseases, including cancer.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
- Directorate of University Health Services, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Fei Qian
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, Jiangsu, P.R. China
| | - Peipei Cai
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
| | - Stephen Ocansey
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Samuel Amoah
- Directorate of University Health Services, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Yingchen Qian
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing 211100, Jiangsu, P.R. China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
| |
Collapse
|
30
|
Salmani-Javan E, Farhoudi Sefidan Jadid M, Zarghami N. Recent advances in molecular targeted therapy of lung cancer: Possible application in translation medicine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:122-133. [PMID: 38234663 PMCID: PMC10790298 DOI: 10.22038/ijbms.2023.72407.15749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 01/19/2024]
Abstract
Lung cancer is one of the leading causes of death among all cancer deaths. This cancer is classified into two different histological subtypes: non-small cell lung cancer (NSCLC), which is the most common subtype, and small cell lung cancer (SCLC), which is the most aggressive subtype. Understanding the molecular characteristics of lung cancer has expanded our knowledge of the cellular origins and molecular pathways affected by each of these subtypes and has contributed to the development of new therapies. Traditional treatments for lung cancer include surgery, chemotherapy, and radiotherapy. Advances in understanding the nature and specificity of lung cancer have led to the development of immunotherapy, which is the newest and most specialized treatment in the treatment of lung cancer. Each of these treatments has advantages and disadvantages and causes side effects. Today, combination therapy for lung cancer reduces side effects and increases the speed of recovery. Despite the significant progress that has been made in the treatment of lung cancer in the last decade, further research into new drugs and combination therapies is needed to extend the clinical benefits and improve outcomes in lung cancer. In this review article, we discussed common lung cancer treatments and their combinations from the most advanced to the newest.
Collapse
Affiliation(s)
- Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi Sefidan Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
31
|
Janssens S, Rennen S, Agostinis P. Decoding immunogenic cell death from a dendritic cell perspective. Immunol Rev 2024; 321:350-370. [PMID: 38093416 DOI: 10.1111/imr.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Dendritic cells (DCs) are myeloid cells bridging the innate and adaptive immune system. By cross-presenting tumor-associated antigens (TAAs) liberated upon spontaneous or therapy-induced tumor cell death to T cells, DCs occupy a pivotal position in the cancer immunity cycle. Over the last decades, the mechanisms linking cancer cell death to DC maturation, have been the focus of intense research. Growing evidence supports the concept that the mere transfer of TAAs during the process of cell death is insufficient to drive immunogenic DC maturation unless this process is coupled with the release of immunomodulatory signals by dying cancer cells. Malignant cells succumbing to a regulated cell death variant called immunogenic cell death (ICD), foster a proficient interface with DCs, enabling their immunogenic maturation and engagement of adaptive immunity against cancer. This property relies on the ability of ICD to exhibit pathogen-mimicry hallmarks and orchestrate the emission of a spectrum of constitutively present or de novo-induced danger signals, collectively known as damage-associated molecular patterns (DAMPs). In this review, we discuss how DCs perceive and decode danger signals emanating from malignant cells undergoing ICD and provide an outlook of the major signaling and functional consequences of this interaction for DCs and antitumor immunity.
Collapse
Affiliation(s)
- Sophie Janssens
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Zhang R, Song Q, Lin X, Du B, Geng D, Gao D. GSDMA at the crossroads between pyroptosis and tumor immune evasion in glioma. Biochem Biophys Res Commun 2023; 686:149181. [PMID: 37924669 DOI: 10.1016/j.bbrc.2023.149181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Pyroptosis, an inflammatory and programmed cell death process, has been controversial in its role in tumor immunity. However, as the first molecule in the gasdermin family, the mechanism of GSDMA in glioma growth is not well understood. We identified the differentially expressed gene GSDMA from Treg cells-related genes using the TCGA database. The biological functions of GSDMA and the relationship between GSDMA expression and tumor immune cell infiltration and cancer patient survival were investigated using open-source databases and platforms. Additionally, flow cytometry analysis was used to examine the effect of GSDMA on tumor immune cell infiltration. Our study showed that GSDMA expression played an important role in immune evasion in glioma. Patients with high GSDMA expression had a worse prognosis. In vivo studies demonstrated that GSDMA knockdown could enhance the infiltration level of CD8+ T cells. High GSDMA expression was also positively correlated with poor anti-PD-L1 treatment outcomes in GBM patients, suggesting that GSDMA may be a potential biomarker that should be considered in combination with anti-PD-L1 therapy for glioma patients. In conclusion, our study demonstrates that high GSDMA expression in gliomas is associated with immune-infiltrating cells CD8+ T cells and Treg cells, and indicates a worse prognosis in glioma. Therefore, GSDMA may serve as a therapeutic target for glioma progression and should be applied in immunotherapy for glioma patients.
Collapse
Affiliation(s)
- Ruicheng Zhang
- Nanjing Medical University, Nanjing, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qiuya Song
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoqian Lin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bo Du
- Nanjing Medical University, Nanjing, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Dianshuai Gao
- Nanjing Medical University, Nanjing, China; Department of Human Anatomy and Neurobiology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
33
|
Zhang X, Zeng Z, Liu Y, Liu D. Emerging Relevance of Ghrelin in Programmed Cell Death and Its Application in Diseases. Int J Mol Sci 2023; 24:17254. [PMID: 38139082 PMCID: PMC10743592 DOI: 10.3390/ijms242417254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.
Collapse
Affiliation(s)
- Xue Zhang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Zihan Zeng
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Yaning Liu
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Dan Liu
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
34
|
Bi K, Yang J, Wei X. Alternative splicing variants involved in pyroptosis and cuproptosis contribute to phenotypic remodeling of the tumor microenvironment in cervical cancer. Reprod Sci 2023; 30:3648-3660. [PMID: 37434062 DOI: 10.1007/s43032-023-01284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Cervical cancer (CC) remains a prevalent gynecological malignancy, posing a significant health burden among women worldwide. With the remarkable discoveries of cellular pyroptosis and cuproptosis, there has been a growing focus on exploring the intricate relationship between these two forms of cell death and their impact on tumor progression. In recent years, alternative splicing has emerged as a significant field in cancer research. Thus, the integration of alternative splicing, pyroptosis, and cuproptosis holds immense value in studying their collective impact on the occurrence and progression of cervical cancer. In this study, alternative splicing data of pyroptosis- and cuproptosis-associated genes were integrated with public databases, including TCGA, to establish a prognostic model for cervical cancer based on COX regression modeling. Subsequently, the tumor microenvironment (TME) phenotypes in the high-risk and low-risk patient groups were characterized through a comprehensive bioinformatics analysis. The findings of this study revealed that the low-risk group exhibited a predominant immune-active TME phenotype, while the high-risk group displayed a tumor-favoring metabolic phenotype. These results indicate that the alternative splicing of pyroptosis- and cuproptosis-associated genes plays a pivotal role in remodeling the phenotypic landscape of the cervical cancer TME by modulating immune responses and metabolic pathways. This study provides valuable insights into the interplay between alternative splicing variants involved in pyroptosis and cuproptosis and the TME, contributing to a deeper understanding of cervical cancer pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Kewei Bi
- Department of Physiology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jialin Yang
- Department of Pathology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Xuge Wei
- Department of Bioinformatics, Faculty of Biology, College of Basic Medicine, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
35
|
Chen C, Cheng Y, Lei H, Feng X, Zhang H, Qi L, Wan J, Xu H, Zhao X, Zhang Y, Yang B. SHP2 potentiates anti-PD-1 effectiveness through intervening cell pyroptosis resistance in triple-negative breast cancer. Biomed Pharmacother 2023; 168:115797. [PMID: 37913735 DOI: 10.1016/j.biopha.2023.115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) presents a formidable challenge due to the lack of effective treatment modalities. Immunotherapy stands as a promising therapeutic approach; however, the emergence of drug resistance mechanisms within tumor cells, particularly those targeting apoptosis and pyroptosis, has hampered its clinical efficacy. SHP2 is intricately involved in diverse physiological processes, including immune cell proliferation, infiltration, and tumor progression. Nevertheless, the precise contribution of SHP2 to tumor cell pyroptosis resistance remains inadequately understood. Herein, we demonstrate that SHP2 inhibition hampers the proliferative, migratory, and invasive capabilities of TNBC, accompanied by noticeable alterations in cellular membrane architecture. Mechanistically, we provide evidence that SHP2 depletion triggers the activation of Caspase-1 and GSDMD, resulting in GSDMD-dependent release of LDH, IL-1β, and IL-18. Furthermore, computational analyses and co-localization investigations substantiate the hypothesis that SHP2 may hinder pyroptosis through direct binding to JNK, thereby impeding JNK phosphorylation. Our cellular experiments further corroborate these findings by demonstrating that JNK inhibition rescues pyroptosis induced by SHP2 knockdown. Strikingly, in vivo experiments validate the suppressive impact of SHP2 knockdown on tumor progression via enhanced JNK phosphorylation. Additionally, SHP2 knockdown augments tumor sensitivity to anti-PD-1 therapy, thus reinforcing the pro-pyroptotic effects and inhibiting tumor growth. In summary, our findings elucidate the mechanism by which SHP2 governs TNBC pyroptosis, underscoring the potential of SHP2 inhibition to suppress cell pyroptosis resistance and its utility as an adjunctive agent for tumor immunotherapy.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China
| | - Yuanyuan Cheng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haoqi Lei
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xuefei Feng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Hongxia Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Lingling Qi
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jufeng Wan
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Haiying Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xin Zhao
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Yan Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Rd, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Baofeng Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Ximin street, Chaoyang District, Changchun, Jilin 130021, China.
| |
Collapse
|
36
|
Wang RH, Shang BB, Wu SX, Wang L, Sui SG. Recent updates on pyroptosis in tumors of the digestive tract. J Dig Dis 2023; 24:640-647. [PMID: 38059890 DOI: 10.1111/1751-2980.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Pyroptosis is an inflammasome-dependent form of programmed cell death that is mediated by caspases-1, -4, -5, and -11, and the gasdermin protein family. It is characterized by the rupture of cell membrane and the subsequent release of cell contents and interleukins, leading to inflammatory reaction and activation of the immune system. Recent studies have suggested that pyroptosis plays a role in the development of gastrointestinal tumors, impeding tumor generation and progression as well as providing a favorable microenvironment for tumor growth. In this review we outlined the current knowledge regarding the implications of pyroptosis in gastrointestinal cancers.
Collapse
Affiliation(s)
- Ruo Han Wang
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Bing Bing Shang
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shi Xi Wu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Liang Wang
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shao Guang Sui
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
37
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
38
|
Tao N, Jiao L, Li H, Deng L, Wang W, Zhao S, Chen W, Chen L, Zhu C, Liu YN. A Mild Hyperthermia Hollow Carbon Nanozyme as Pyroptosis Inducer for Boosted Antitumor Immunity. ACS NANO 2023; 17:22844-22858. [PMID: 37942890 DOI: 10.1021/acsnano.3c07601] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The immune checkpoint blockade (ICB) antibody immunotherapy has demonstrated clinical benefits for multiple cancers. However, the efficacy of immunotherapy in tumors is suppressed by deficient tumor immunogenicity and immunosuppressive tumor microenvironments. Pyroptosis, a form of programmed cell death, can release tumor antigens, activate effective tumor immunogenicity, and improve the efficiency of ICB, but efficient pyroptosis for tumor treatment is currently limited. Herein, we show a mild hyperthermia-enhanced pyroptosis-mediated immunotherapy based on hollow carbon nanozyme, which can specifically amplify oxidative stress-triggered pyroptosis and synchronously magnify pyroptosis-mediated anticancer responses in the tumor microenvironment. The hollow carbon sphere modified with iron and copper atoms (HCS-FeCu) with multiple enzyme-mimicking activities has been engineered to induce cell pyroptosis via the radical oxygen species (ROS)-Tom20-Bax-Caspase 3-gasdermin E (GSDME) signaling pathway under light activation. Both in vitro and in vivo antineoplastic results confirm the superiority of HCS-FeCu nanozyme-induced pyroptosis. Moreover, the mild photothermal-activated pyroptosis combining anti-PD-1 can enhance antitumor immunotherapy. Theoretical calculations further indicate that the mild photothermal stimulation generates high-energy electrons and enhances the interaction between the HCS-FeCu surface and adsorbed oxygen, facilitating molecular oxygen activation, which improves the ROS production efficiency. This work presents an approach that effectively transforms immunologically "cold" tumors into "hot" ones, with significant implications for clinical immunotherapy.
Collapse
Affiliation(s)
- Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410083, PR China
| | - Liu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Wei Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Senfeng Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Limiao Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
39
|
Hu ZC, Wang B, Zhou XG, Liang HF, Liang B, Lu HW, Ge YX, Chen Q, Tian QW, Xue FF, Jiang LB, Dong J. Golgi Apparatus-Targeted Photodynamic Therapy for Enhancing Tumor Immunogenicity by Eliciting NLRP3 Protein-Dependent Pyroptosis. ACS NANO 2023; 17:21153-21169. [PMID: 37921421 DOI: 10.1021/acsnano.3c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Innate and adaptive immunity is important for initiating and maintaining immune function. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves as a checkpoint in innate and adaptive immunity, promoting the secretion of pro-inflammatory cytokines and gasdermin D-mediated pyroptosis. As a highly inflammatory form of cell death distinct from apoptosis, pyroptosis can trigger immunogenic cell death and promote systemic immune responses in solid tumors. Previous studies proposed that NLRP3 was activated by translocation to the mitochondria. However, a recent authoritative study has challenged this model and proved that the Golgi apparatus might be a prerequisite for the activation of NLRP3. In this study, we first developed a Golgi apparatus-targeted photodynamic strategy to induce the activation of NLRP3 by precisely locating organelles. We found that Golgi apparatus-targeted photodynamic therapy could significantly upregulate NLRP3 expression to promote the subsequent release of intracellular proinflammatory contents such as IL-1β or IL-18, creating an inflammatory storm to enhance innate immunity. Moreover, this acute NLRP3 upregulation also activated its downstream classical caspase-1-dependent pyroptosis to enhance tumor immunogenicity, triggering adaptive immunity. Pyroptosis eventually led to immunogenic cell death, promoted the maturation of dendritic cells, and effectively activated antitumor immunity and long-lived immune memory. Overall, this Golgi apparatus-targeted strategy provided molecular insights into the occurrence of immunogenic pyroptosis and offered a platform to remodel the tumor microenvironment.
Collapse
Affiliation(s)
- Zhi-Chao Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Gang Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-Wei Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Xiang Ge
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Wei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Feng-Feng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Liu W, Peng J, Xiao M, Cai Y, Peng B, Zhang W, Li J, Kang F, Hong Q, Liang Q, Yan Y, Xu Z. The implication of pyroptosis in cancer immunology: Current advances and prospects. Genes Dis 2023; 10:2339-2350. [PMID: 37554215 PMCID: PMC10404888 DOI: 10.1016/j.gendis.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Pyroptosis is a regulated cell death pathway involved in numerous human diseases, especially malignant tumors. Recent studies have identified multiple pyroptosis-associated signaling molecules, like caspases, gasdermin family and inflammasomes. In addition, increasing in vitro and in vivo studies have shown the significant linkage between pyroptosis and immune regulation of cancers. Pyroptosis-associated biomarkers regulate the infiltration of tumor immune cells, such as CD4+ and CD8+ T cells, thus strengthening the sensitivity to therapeutic strategies. In this review, we explained the relationship between pyroptosis and cancer immunology and focused on the significance of pyroptosis in immune regulation. We also proposed the future application of pyroptosis-associated biomarkers in basic research and clinical practices to address malignant behaviors. Exploration of the underlying mechanisms and biological functions of pyroptosis is critical for immune response and cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan 421001, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
41
|
Lin W, Liu Y, Wang J, Zhao Z, Lu K, Meng H, Luoliu R, He X, Shen J, Mao ZW, Xia W. Engineered Bacteria Labeled with Iridium(III) Photosensitizers for Enhanced Photodynamic Immunotherapy of Solid Tumors. Angew Chem Int Ed Engl 2023; 62:e202310158. [PMID: 37668526 DOI: 10.1002/anie.202310158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Despite metal-based photosensitizers showing great potential in photodynamic therapy for tumor treatment, the application of the photosensitizers is intrinsically limited by their poor cancer-targeting properties. Herein, we reported a metal-based photosensitizer-bacteria hybrid, Ir-HEcN, via covalent labeling of an iridium(III) photosensitizer to the surface of genetically engineered bacteria. Due to its intrinsic self-propelled motility and hypoxia tropism, Ir-HEcN selectively targets and penetrates deeply into tumor tissues. Importantly, Ir-HEcN is capable of inducing pyroptosis and immunogenic cell death of tumor cells under irradiation, thereby remarkably evoking anti-tumor innate and adaptive immune responses in vivo and leading to the regression of solid tumors via combinational photodynamic therapy and immunotherapy. To the best of our knowledge, Ir-HEcN is the first metal complex decorated bacteria for enhanced photodynamic immunotherapy.
Collapse
Affiliation(s)
- Wenkai Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jinhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhennan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kai Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - He Meng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruiqi Luoliu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaojun He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
42
|
Xu JZ, Xia QD, Sun JX, Liu CQ, Lu JL, Xu MY, An Y, Xun Y, Liu Z, Hu J, Li C, Wang SG. Establishment of a novel indicator of pyroptosis regulated gene transcription level and its application in pan-cancer. Sci Rep 2023; 13:17911. [PMID: 37863886 PMCID: PMC10589244 DOI: 10.1038/s41598-023-44700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Pyroptosis is a type of programmed cell death and plays a dual role in distinct cancers. It is elusive to evaluate the activation level of pyroptosis and to appraise the involvement of pyroptosis in the occurrence and development of diverse tumors. Accordingly, we herein established an indicator to evaluate pyroptosis related gene transcription levels based on the expression level of genes involved in pyroptosis and tried to elaborated on the association between pyroptosis and tumors across diverse tumor types. We found that pyroptosis related gene transcription levels could predict the prognosis of patients, which could act as either a favorable or a dreadful factor in diverse cancers. According to signaling pathway analyses we observed that pyroptosis played a significant role in immune regulation and tumorigenesis and had strong links with other forms of cell death. We also performed analysis on the crosstalk between pyroptosis and immune status and further investigated the predictive potential of pyroptosis level for the efficacy of immunotherapy. Lastly, we manifested that pyroptosis status could serve as a biomarker to the efficacy of chemotherapy across various cancers. In summary, this study established a quantitative indicator to evaluate pyroptosis related gene transcription levels, systematically explored the role of pyroptosis in pan-cancer. These results could provide potential research directions targeting pyroptosis, and highlighted that pyroptosis may be used to develop a novel strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Qian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Yao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye An
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Li J, Lin J, Ji Y, Wang X, Fu D, Wang W, Shen B. A novel pyroptosis-associated lncRNA LINC01133 promotes pancreatic adenocarcinoma development via miR-30b-5p/SIRT1 axis. Cell Oncol (Dordr) 2023; 46:1381-1398. [PMID: 37138146 PMCID: PMC10618383 DOI: 10.1007/s13402-023-00818-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/05/2023] Open
Abstract
PURPOSE Pancreatic adenocarcinoma (PAAD) remains a highly aggressive gastrointestinal malignancy with a dismal prognosis. Pyroptosis has a key role in tumor development. Long noncoding RNAs (lncRNAs) are involved in tumorigenesis and pyroptosis regulation. However, the prognostic potential and function of pyroptosis-related lncRNAs (PRLs) in PAAD remain unclear. We aimed to identify PRLs with promising predictive value for PAAD prognosis and investigate the mechanism by which PRLs affect pyroptosis and PAAD development. METHODS Key genes that regulate pyroptosis were determined from previous studies, and PRLs were identified from lncRNAs shown to be co-expressed in The Cancer Genome Atlas. Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression model was used to establish a prognostic PRL signature. The clinical significance and functional mechanisms of LINC01133 were explored in vitro and in vivo. RESULTS A seven-lncRNA signature was established and the high-risk subgroup exhibited a shorter survival time. With lower immune infiltration abundance, poor immune function, and higher tumor mutational burden (TMB), the high-risk subgroup reflected a more immunosuppressive status with a greater scope for benefiting from immunotherapy. After LINC01133 knockdown, PAAD cells showed lower viability and higher pyroptosis-related gene expression. LINC01133 functioned as a competing endogenous RNA to sequester miR-30b-5p from sponging SIRT1 mRNA to inhibit PAAD pyroptosis. CONCLUSION With significant prognostic value, our PRL signature are involved in the biological processes of PAAD cells and associated with the immune environment. LINC01133 suppresses pyroptosis to promote PAAD development and could serve as a potential target for PAAD treatment.
Collapse
Affiliation(s)
- Jingwei Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiewei Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuchen Ji
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelong Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
44
|
Chen L, Ma X, Liu W, Hu Q, Yang H. Targeting Pyroptosis through Lipopolysaccharide-Triggered Noncanonical Pathway for Safe and Efficient Cancer Immunotherapy. NANO LETTERS 2023; 23:8725-8733. [PMID: 37695255 DOI: 10.1021/acs.nanolett.3c02728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inducing pyroptosis in cancer cells holds great potential in cancer immunotherapy. Lipopolysaccharide (LPS)-sensing noncanonical pathways are an important mechanism of pyroptosis to eliminate damaged cells, which has not yet been explored for cancer immunotherapy. Here, we utilize bacterial outer membrane vesicles (OMVs) as a natural LPS carrier to trigger a noncanonical pyroptosis pathway for immunotherapy. To address the concern of systemic toxicity, molecule engineered OMVs were designed by equipping DNA aptamers on the OMVs (Apt-OMVs). In addition to improving capacity to target tumors, Apt-OMVs also took advantage of the spherical nucleic acid structure to shield OMVs against nonspecific immune recognition and evade immunogenicity. The selective pyroptosis enhanced tumor immunogenicity, not only promoting the infiltration of effector T cells but also reducing the amount of immunosuppressive regulatory T cells, which remarkably suppressed tumor growth. This work reports the first pyroptosis inducer by the noncanonical pathway, offering inspiration for safe and efficient pyroptosis-mediated immunotherapy.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xin Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenjun Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qianqian Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
45
|
Yang J, Wang C, Zhang Y, Cheng S, Xu Y, Wang Y. A Novel pyroptosis-related signature for predicting prognosis and evaluating tumor immune microenvironment in ovarian cancer. J Ovarian Res 2023; 16:196. [PMID: 37730669 PMCID: PMC10512632 DOI: 10.1186/s13048-023-01275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/03/2023] [Indexed: 09/22/2023] Open
Abstract
Ovarian cancer (OV) is the most fatal gynecological malignant tumor worldwide, with high recurrence rates and great heterogeneity. Pyroptosis is a newly-acknowledged inflammatory form of cell death with an essential role in cancer progression, though studies focusing on prognostic patterns of pyroptosis in OV are still lacking. Our research filtered 106 potential pyroptosis-related genes (PRGs) among the 6406 differentially expressed genes (DEGs) between the 376 TCGA-OV samples and 180 normal controls. Through the LASSO-Cox analysis, the 6-gene prognostic signature, namely CITED2, EXOC6B, MIA2, NRAS, SETBP1, and TRPV46, was finally distinguished. Then, the K-M survival analysis and time-dependent ROC curves demonstrated the promising prognostic value of the 6-gene signature (p-value < 0.0001). Furthermore, based on the signature and corresponding clinical features, we constructed and validated a nomogram model for 1-year, 2-year, and 3-year OV survival, with reliable prognostic values in TCGA-OV (p-value < 0.001) and ICGC-OV cohort (p-value = 0.040). Pathway analysis enriched several critical pathways in cancer, refer to the pyroptosis-related signature, while the m6A analysis indicated greater m6A level in high-risk group. We assessed tumor immune microenvironment through the CIBERSORT algorithm, which demonstrated the upregulation of M1 Macrophages and activated DCs and high expression of key immune checkpoint molecules (CTLA4, PDCD1LG2, and HAVCR2) in high-risk group. Interestingly, the high-risk group exhibited poor sensitivity towards immunotherapy and better sensitivity towards chemotherapies, including Vinblastine, Docetaxel, and Sorafenib. Briefly, the pyroptosis-related signature was a promising tool to predict prognosis and evaluate immune responses, in order to assist decision-making for OV patients in the realm of precision medicine.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yue Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanna Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
46
|
Yang L, Gao Y, Huang J, Yang H, Zhao P, Li C, Yang Z. LncRNA Gm44206 Promotes Microglial Pyroptosis Through NLRP3/Caspase-1/GSDMD Axis and Aggravate Cerebral Ischemia-Reperfusion Injury. DNA Cell Biol 2023; 42:554-562. [PMID: 37566540 DOI: 10.1089/dna.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an in vitro study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinlong Huang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hantao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puyuan Zhao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine of China, Shanghai, China
| |
Collapse
|
47
|
Liu Y, Wang Y, Li C, Feng H, Liu Y, Ma L. An effective prognostic model in colon adenocarcinoma composed of cuproptosis-related epigenetic regulators. Front Pharmacol 2023; 14:1254918. [PMID: 37701039 PMCID: PMC10494936 DOI: 10.3389/fphar.2023.1254918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Colorectal adenocarcinoma (COAD) is a common malignant tumor with little effective prognostic markers. Cuproptosis is a newly discovered mode of cell death that may be related to epigenetic regulators. This study aimed to explore the association between epigenetic regulators and cuproptosis, and to establish a prognostic prediction model for COAD based on epigenetic regulators associated with cuproptosis (EACs). Methods: RNA sequencing data and clinical data of 524 COAD patients were obtained from the TCGA-COAD database, cuproptosis-related genes were from the FerrDb database, and epigenetic-related genes were from databases such as GO and EpiFactors. LASSO regression analysis and other methods were used to screen out epigenetic regulators associated with cuproptosis and prognosis. The risk score of each patient was calculated and the patients were divided into high-risk group and low-risk group. Next, the survival difference, functional enrichment analyses, tumor mutation burden, chemotherapy drug sensitivity and other indicators between the two groups were compared and analyzed. Results: We found 716 epigenetic regulators closely related to cuproptosis, among which 35 genes were related to prognosis of COAD. We further screened out 7 EACs from the 35 EACs to construct a prognostic prediction model. We calculated the risk score of each patient based on these 7 genes, and divided the patients into high-risk group and low-risk group. We found that the overall survival rate and progression-free survival rate of the high-risk group were significantly lower than those of the low-risk group. This model showed good predictive ability in the training set, test set and overall data set. We also constructed a prognostic prediction model based on risk score and other clinical features, and drew the corresponding Nomogram. In addition, we found significant differences between the high-risk group and the low-risk group in tumor mutation burden, chemotherapy drug sensitivity and other clinical aspects. Conclusion: We established an effective predictive prediction model for COAD based on EACs, revealing the association between epigenetic regulators and cuproptosis in COAD. We hope that this model can not only facilitate the treatment decision of COAD patients, but also promote the research progress in the field of cuproptosis.
Collapse
Affiliation(s)
- Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yizhao Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijin Feng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanqing Liu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Huang H, Weng Y, Tian W, Lin X, Chen J, Luo L. Molecular mechanisms of pyroptosis and its role in anti-tumor immunity. Int J Biol Sci 2023; 19:4166-4180. [PMID: 37705746 PMCID: PMC10496503 DOI: 10.7150/ijbs.86855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Pyroptosis is a form of cell death that is characterized by the destruction of the cell, and it has implications in both the immune system and cancer immunotherapy. The gasdermin family is responsible for the activation of pyroptosis, which involves the formation of pores in the cellular membrane that permit the discharge of inflammatory factors. The inflammasome response is a powerful mechanism that helps to eliminate bacteria and cancer cells when cellular damage occurs. As tumor cells become more resilient to apoptosis, other treatments for cancer are becoming more popular. It is essential to gain a thorough understanding of pyroptosis in order to use it in cancer treatment, considering the intricate association between pyroptosis and the immune system's defensive reaction against tumors. This review offers an overview of the mechanisms of pyroptosis, the relationship between the gasdermin family and pyroptosis, and the interplay between pyroptosis and anti-tumor immunity. In addition, the potential implications of pyroptosis in cancer immunotherapy are discussed. Additionally, we explore future research possibilities and introduce a novel approach to tumor treatment.
Collapse
Affiliation(s)
- Hongyong Huang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanmin Weng
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, Guangdong, 518036, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, Guangdong, 518036, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China
| |
Collapse
|
49
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
50
|
Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou L, Shang R, Zhou P. The role of pyroptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:811-823. [PMID: 36864264 DOI: 10.1007/s13402-023-00787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the main histologic type of liver cancer. It accounts for the majority of all diagnoses and deaths due to liver cancer. The induction of tumor cell death is an effective strategy to control tumor development. Pyroptosis is an inflammatory programmed cell death caused by microbial infection, accompanied by activation of inflammasomes and release of pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The cleavage of gasdermins (GSDMs) promotes the occurrence of pyroptosis leading to cell swelling, lysis, and death. Accumulating evidence has indicated that pyroptosis influences the progression of HCC by regulating immune-mediated tumor cell death. Currently, some researchers hold the view that inhibition of pyroptosis-related components may prevent the incidence of HCC, but more researchers have the view that activation of pyroptosis exerts a tumor-inhibitory effect. Growing evidence indicates that pyroptosis can prevent or promote tumor development depending on the type of tumor. In this review, pyroptosis pathways and pyroptosis-related components were discussed. Next, the role of pyroptosis and its components in HCC was described. Finally, the therapeutic significance of pyroptosis in HCC was discussed.
Collapse
Affiliation(s)
- Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Minghui Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|