1
|
Wielsøe M, Long M, Bønløkke JH, Bossi R, Ebbehøj NE, Rasmussen K, Sigsgaard T, Bonefeld-Jørgensen EC. Persistent organic pollutants among seafood processing workers in West Greenland. Int J Hyg Environ Health 2025; 263:114484. [PMID: 39514925 DOI: 10.1016/j.ijheh.2024.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The Greenlandic population is highly exposed to persistent organic pollutants (POPs) through the consumption of traditional marine food, including marine mammals. Central to Greenland's economy and cultural identity, the fishing industry employes about 15% of the working population. This study investigated POP exposure, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and per- and polyfluoroalkyl substances (PFASs), among seafood processing workers at the Greenlandic west coast. We examined determinants for the POPs including age, smoking habits, ethnicity, and working place. Additionally, we explored the association between POPs and the prevalence of asthma, allergy, and lung function. With samples taken during 2016-2018, the study encompassed 382 workers, primarily of Inuit descent (93%), employed across three large factories located in Nuuk, Sisimiut, and Ilulissat, four smaller factories in settlements (Kangaatsiaq, Ikerasaarsuk, Sarfannguaq, Qeqertarsuaq), and four factory trawlers. Data collected include clinical examinations, questionnaires on ethnicity, occupational exposure status, health indicators, and smoking habits, and serum selenium and POP analyses. We used ANCOVA with adjustment for relevant confounders to assess differences in POPs between groups (e.g. ethnic groups and working place), and multiple linear and logistic regressions were used to assess associations between POPs and lung function, allergy and asthma. Significant differences in POPs were observed among ethnic groups; Faroese workers had the highest concentrations of lipophilic POPs (lipPOPs; PCBs and OCPs), while Inuit workers exhibited highest PFASs. All subsequent analyses were focused on the Inuit workers (n = 337). The PFASs were significantly higher in workers at small factories, followed by large factories and trawlers, whereas no differences were seen for lipPOPs. The differences between the working places were most likely due to differences in lifestyle and diet, but occupational exposures cannot be excluded. LipPOP and PFAS concentrations associated positively with selenium, and PFASs positively associated with lung function. However, upon adjustment of selenium, the associations between PFASs and lung function became non-significant and attenuated towards null. No significant associations were found between POPs and the prevalence of asthma or allergy. Compared to the general population in the same area and period, the seafood processing workers exhibited 2-6 times higher POP levels. The higher exposure level among seafood processing workers, as well as the difference across workplaces, underscore the need for further investigation of environmental and occupational sources of POPs in this population. These findings may contribute to future public health strategies and regulatory measures to reduce POP exposure in Arctic populations.
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark.
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark
| | - Jakob Hjort Bønløkke
- Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Havrevangen 1, 9000, Aalborg, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej, 399, 4000, Roskilde, Denmark
| | - Niels E Ebbehøj
- Department of Occupational and Social Medicine, Holbæk Hospital, Gammel Ringstedvej 4B, 4300, Holbæk, Denmark
| | - Kurt Rasmussen
- Department of Occupational Medicine, Danish Ramazzini Center, Regional Hospital Goedstrup, Hospitalsparken 16, 7400, Herning, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905, Nuussuaq, Greenland
| |
Collapse
|
2
|
Khoury C, Weihe P. Key recommendations and research priorities of the 2021 AMAP human health assessment. Int J Circumpolar Health 2024; 83:2408057. [PMID: 39360677 PMCID: PMC11451291 DOI: 10.1080/22423982.2024.2408057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Over the last three decades, the Arctic Monitoring and Assessment Programme has published five human health assessments. These assessments have summarised the current state of the science regarding environmental contaminants and human health in the Arctic. The 2021 Human Health Assessment Report had a particular focus on dietary transitions, in addition to human biomonitoring levels and trends, health effects, risk assessment methodologies, risk communication and multi-disciplinary approaches to contaminants research. The recommendations and research priorities identified in the latest assessment are summarised here to assist decision- and policy-makers in understanding and addressing the impacts of contaminants on human populations in the Arctic.
Collapse
Affiliation(s)
- Cheryl Khoury
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
| |
Collapse
|
3
|
Bonefeld-Jørgensen EC, Long M. Health effects associated with measured contaminants in the Arctic: short communication. Int J Circumpolar Health 2024; 83:2425467. [PMID: 39552042 PMCID: PMC11574950 DOI: 10.1080/22423982.2024.2425467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The Arctic Monitoring Assessment Program Human Health Assessment report 2021 presents a summary of the presence of environmental contaminants in human populations across the circumpolar Arctic and related health effects. Based on this report the objective of this paper is giving a short summary of the health effects related to the current level of persistent organic pollutants (POP) and metals. The overall key findings are as follows: i. metals and POP (polychlorinated biphenyls, per- and polyfluoroalkyl substances (PFAS)) in the Arctic have known adverse health impacts on humans especially on developing foetuses and children. Lifestyle, diet and nutrition and genetics influence the risk; ii. POP and metals negatively impact the brain and immune system, increasing the risk of childhood obesity, type 2 diabetes later in life and negatively affect foetal growth and development: iii. marine food omega-3 fatty acids can diminish adverse effects of high mercury exposure on cardiovascular and neurological outcomes; iv. the interaction of genetic, lifestyle, nutrition status and contaminants can influence the risk of cancer, metabolic disease, nervous system disorders, disruption of reproduction and foetal and child growth. Future investigations must focus on genetically and effect modifiers and mixtures of POP exposures to explore the effect of chemical interaction on health outcomes.
Collapse
Affiliation(s)
- Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Greenland Center for Health Research, University of Greenland, Nuussuaq, Greenland
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Ghozal M, Delvert R, Adel-Patient K, Tafflet M, Annesi-Maesano I, Crépet A, Sirot V, Charles MA, Heude B, Kadawathagedara M, de Lauzon-Guillain B. Dietary exposure to mixtures of chemicals in the first year of life and allergic and respiratory diseases up to 8 years in the French EDEN mother-child cohort. Food Chem Toxicol 2024; 196:115167. [PMID: 39617287 DOI: 10.1016/j.fct.2024.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Exposure to environmental chemicals has been associated with higher risk of childhood allergies. This study aimed to examine the association between infant's dietary exposure to mixtures of chemicals and allergic and respiratory multimorbidity in childhood. Dietary exposures were assessed at 8 and 12 months in 724 and 745 children of the EDEN cohort. Allergic and respiratory multimorbidity clusters were identified using latent class analyses. Associations between dietary exposure to mixtures of chemicals and allergic clusters were assessed by adjusted multinomial logistic regressions. At 8 months, higher exposure to a mixture of furans, trace elements, dioxins and PAHs was positively associated with the "asthma only" cluster, while moderate exposure to a mixture of PAHs, pesticides, PCBs and acrylamide was negatively associated with this cluster. A mixture of PCBs and BFRs was positively associated with the "multi-morbidity" cluster. Exposure to a mixture of pesticides and trace elements was positively associated with the "allergy without asthma" cluster. At 12-months, higher exposure to a mixture of trace elements and pesticides was positively associated with "multi-morbidity" cluster. The differences in findings between the two ages suggest the need for further studies to explore this critical window of chemical exposure and its impact on children's health.
Collapse
Affiliation(s)
- Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France.
| | - Rosalie Delvert
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94805, Villejuif, France
| | | | - Muriel Tafflet
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health (IDESP), Montpellier University and INSERM, Montpellier, France
| | - Amélie Crépet
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Véronique Sirot
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Marie Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France.
| |
Collapse
|
5
|
Jestin-Guyon N, Raherison-Semjen C. [Pesticide exposure and chronic respiratory diseases]. Rev Mal Respir 2024; 41:343-371. [PMID: 38594123 DOI: 10.1016/j.rmr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Pesticides are used worldwide, mainly in agriculture as a means of controlling pests and protecting crops. That said, the entire world population is ultimately subject to pesticide exposure (consumption of fruits and vegetables, living near treated fields…), with varying degrees of toxicity involved. STATE OF THE ART In recent decades, epidemiological studies have contributed to the identification of chemical pesticide families with detrimental effects on human health: cognitive disorders, Parkinson's disease, prostate cancer… and impairment in respiratory functioning. Current scientific evidence points to the implication of the active substances in insecticides, herbicides and fungicides in chronic respiratory diseases, two examples being chronic obstructive pulmonary disease (COPD) in exposed workers, and asthmatic wheezing in children during prenatal or postnatal exposure. PERSPECTIVES The safety of individuals exposed to pesticides is of key importance in public health. Further epidemiological investigations are needed to identify the chemical families affecting certain populations. CONCLUSIONS The scientific literature suggests strong links between pesticide exposure and respiratory health. Whether it be environmental or occupational, pesticide exposure can lead to respiratory disorders and symptoms of varying severity.
Collapse
Affiliation(s)
- N Jestin-Guyon
- UMR1219 Bordeaux Population Health Centre de Recherche, ISPED, université de Bordeaux, 146, rue Léo-Saignat, 33000 Bordeaux, France.
| | - C Raherison-Semjen
- UMR1219 Bordeaux Population Health Centre de Recherche, ISPED, université de Bordeaux, 146, rue Léo-Saignat, 33000 Bordeaux, France; Centre hospitalier universitaire de la Guadeloupe, 97159 Pointe-à-Pitre, Guadeloupe
| |
Collapse
|
6
|
Cao X, Tan Q, Wang M, Liang R, Yu L, Liu Y, Zhang Y, Zhou M, Chen W. Cross-sectional and longitudinal associations of dichlorodiphenyltrichloroethane (DDT) metabolites exposure with lung function alternation in the Chinese general adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167729. [PMID: 37820796 DOI: 10.1016/j.scitotenv.2023.167729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Exposure of dichlorodiphenyltrichloroethane (DDT) pesticide was suggested to be associated with adverse effects on the respiratory system. However, the effects of DDT exposure on lung function remain unclear. Our objectives were to investigate the potential associations of internal levels of DDT and its metabolites including dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) with lung function. Serum DDT, DDE, and DDD concentrations and lung function were measured among 3968 general adults from the Wuhan-Zhuhai cohort. The cross-sectional and longitudinal associations of serum DDT and its metabolites with lung function were assessed using linear mixed models. The results showed negative dose-response relationships of serum DDT, DDE, and DDD levels with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). In the cross-sectional analyses, each 1-unit increase in natural log-transformed values of p,p'-DDE, o,p'-DDT, o,p'-DDE, or p,p'-DDD was significantly associated with a 25.77-, 44.84-, 51.13-, or 43.44-mL decrease in FVC, respectively. Each 1-unit increase in natural log-transformed values of o,p'-DDT, o,p'-DDE, o,p'-DDD, or p,p'-DDD was significantly associated with a 35.72-, 31.87-, 29.54-, or 36.80-mL decrease in FEV1, respectively. In the three-year longitudinal analyses, each 1-unit increase in natural log-transformed serum p,p'-DDT and p,p'-DDE was significantly associated with a 35.10 mL and 36.38 mL decrease in FVC, and a 26.32 mL and 32.37 mL decrease in FEV1, respectively. In conclusion, DDT and its metabolites exposure were associated with lung function decline in the general Chinese adult population.
Collapse
Affiliation(s)
- Xiuyu Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Long M, Wielsøe M, Bech BH, Henriksen TB, Bonefeld-Jørgensen EC. Maternal serum dioxin-like activity and gestational age at birth and indices of foetal growth: The Aarhus birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165286. [PMID: 37422229 DOI: 10.1016/j.scitotenv.2023.165286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Human exposure to lipophilic persistent organic pollutants (lipPOP) is ubiquitous and life-long, beginning during foetal development. Exposure to lipPOP elicits a number of species and tissue specific responses including dioxin-like activity which involve the activation of aryl hydrocarbon receptor (AhR). This study aims i) to describe the combined dioxin-like activity in serum from Danish pregnant women collected during 2011-2013; ii) to assess the association between maternal serum dioxin-like activity, gestational age at birth and foetal growth indices. The serum lipPOP fraction was extracted using Solid Phase Extraction and cleaned-up on Supelco multi-layer silica and florisil columns. The combined dioxin-like activity of the extract was determined using the AhR reporter gene bioassay, expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent (TEQ) [AhR-TEQ (pg/g lipid)]. The associations of AhR-TEQ and foetal growth indices (birth weight, birth length and head circumference) and gestational age were assessed by linear regression models. We detected AhR-TEQ in 93.9 % of maternal first trimester serum samples, with a median level of 185 pg/g lipid. Each ln-unit increase in AhR-TEQ was associated with an increase in birth weight of 36 g (95 % CI: 5; 68), birth length of 0.2 cm (95 % CI: 0.01; 0.3) and pregnancy duration of 1 day (95 % CI: 0; 1.5). In women who never smoked, higher AhR-TEQ values were associated with higher birth weight and longer duration of gestation, while in smokers the association was the opposite. Mediation analyses suggested that gestational age may mediate the association of AhR-TEQ with foetal growth indices. We conclude that AhR activating substances are present in the bloodstream of almost all pregnant women in Denmark and the AhR-TEQ level was around four times higher than previously reported. The AhR-TEQ was associated with slightly longer gestational duration and thereby higher birth weight and birth length.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Bodil Hammer Bech
- Research unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Center for Health Research, University of Greenland, Nuuk, Greenland.
| |
Collapse
|
8
|
Lam G, Noirez P, Djemai H, Youssef L, Blanc E, Audouze K, Kim MJ, Coumoul X, Li SFY. The effects of pollutant mixture released from grafted adipose tissues on fatty acid and lipid metabolism in the skeletal muscles, kidney, heart, and lungs of male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122387. [PMID: 37591324 DOI: 10.1016/j.envpol.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Persistent organic pollutants (POPs) accumulated in the adipose tissue can affect the fatty acid and lipid metabolism in the body. Gas chromatography-mass spectrometry (GC-MS) metabolomics analysis was carried out to study the metabolic changes induced by internal exposure to the POPs in mouse skeletal muscle (soleus, plantaris, and gastrocnemius), kidney, heart, and lungs. Male donor mice were injected with a mixture of 10 POPs at concentrations of 0 × and 5 × lowest-observed-adverse-effect level (LOAEL). Their adipose tissue (AT) containing the POP was then grafted onto the host mice and the metabolic change of the host mice was monitored for 3 or 21 days. The metabolites related to fatty acid and lipid metabolism were studied. For the host mice engrafted with POP-containing fat pad, there was dysregulation of the fatty acids and glycerides observed in all the organs studied 3 days after the graft. However, there was no longer a significant change in the metabolites 21 days after the graft. The difference in significant values and metabolite regulation in each of the skeletal muscles showed that the POP mixture affects different types of skeletal muscle in a heterogeneous manner. Fold change analysis showed that certain metabolites in the kidney of host mice exposed to POPs for 3 days were greatly affected. Using multivariate analysis, apart from the plantaris, most treated groups exposed to POPs for 3 days are well distinguished from the control groups. However, for host mice exposed to POPs for 21 days, apart from the kidney and heart, groups are not well-distinguished from the control group. This study helps bring new insight into the effects of the pollutants mixture released from AT on fatty acid and lipid metabolism at different periods and how the dysregulation of metabolites might result in diseases associated with the organs.
Collapse
Affiliation(s)
- Gideon Lam
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Phillipe Noirez
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France; PSMS, Performance Santé Métrologie Société, Université de Reims Champagne-Ardenne, Reims, France
| | - Haidar Djemai
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Layale Youssef
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Etienne Blanc
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Karine Audouze
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Min Ji Kim
- UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France; Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France; UMR-S1124, Institut National de La Santé et de La Recherché Médicale (Inserm), T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Paris, France
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Lee F, Gallo MV, Schell LM, Jennings J, Lawrence DA, On The Environment ATF. Exposure of Akwesasne Mohawk women to polychlorinated biphenyls and hexachlorobenzene is associated with increased serum levels of thyroid peroxidase autoantibodies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:597-613. [PMID: 37335069 DOI: 10.1080/15287394.2023.2226685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Persistent organic pollutants (POPs) including polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (p,p'-DDT) were reported to influence immunological activity. As endocrine-disrupting chemicals (EDC), these pollutants may disrupt normal thyroid function and act as catalysts for development of autoimmune thyroid disease by directly and indirectly affecting levels of thyroid peroxidase antibodies (TPOAbs). Native American communities are disproportionately exposed to harmful toxicants and are at an increased risk of developing an autoimmune disease. The aim of this study was to determine the association between POPs and TPOAbs in serum obtained from Native American women. This assessment was used to measure whether increased risk of autoimmune thyroid disease occurred as a result of exposure to POPs. Data were collected from 183 Akwesasne Mohawk women, 21-38 years of age, between 2009 and 2013. Multivariate analyses were conducted to determine the association between toxicant exposure and levels of TPOAbs. In multiple logistic regression analyses, exposure to PCB congener 33 was related to elevated risk of individuals possessing above normal levels of TPOAbs. Further, HCB was associated with more than 2-fold higher risk of possessing above normal levels of TPOAbs compared to women with normal levels of TPOAbs. p,p'-DDE was not associated with TPOAb levels within this study. Exposure to PCB congener 33 and HCB was correlated with above normal levels of TPOAbs, a marker of autoimmune thyroid disease. Additional investigations are needed to establish the causes and factors surrounding autoimmune thyroid disease which are multiple and complex.
Collapse
Affiliation(s)
- Florence Lee
- Department of Anthropology, University at Albany, Albany, NY, USA
| | - Mia V Gallo
- Department of Anthropology, University at Albany, Albany, NY, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, USA
| | - Lawrence M Schell
- Department of Anthropology, University at Albany, Albany, NY, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, NY, USA
- Department of Epidemiology and Biostatistics, University at Albany, Albany, NY, USA
| | - Julia Jennings
- Department of Anthropology, University at Albany, Albany, NY, USA
| | - David A Lawrence
- Wadsworth Center/New York State Department of Health, Albany, NY, USA
- Biomedical Sciences and Environmental Health Sciences, University at Albany, Albany, NY, USA
| | | |
Collapse
|
10
|
Street ME, Shulhai AM, Rotondo R, Giannì G, Caffarelli C. Current knowledge on the effects of environmental contaminants in early life nutrition. Front Nutr 2023; 10:1120293. [PMID: 37324741 PMCID: PMC10267348 DOI: 10.3389/fnut.2023.1120293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Breast milk represents the optimal source of feeding for newborns, in terms of nutritional compounds and as it provides immunological, metabolic, organic, and neurological well-being. As a complex biological fluid, it consists not only of nutritional compounds but also contains environmental contaminants. Formulas through production, contact with bottles and cups, and complementary feeding can also be contaminated. The current review focuses on endocrine-disrupting chemicals, and made-man xenoestrogens present in the environment and both commonly present in food sources, agricultural practices, packaging, consumer products, industry, and medical care. These contaminants are transferred by passive diffusion to breast milk and are delivered during breastfeeding. They mainly act by activating or antagonizing hormonal receptors. We summarize the effects on the immune system, gut microbiota, and metabolism. Exposure to endocrine-disrupting chemicals and indirect food additives may induce tissue inflammation and polarize lymphocytes, increase proinflammatory cytokines, promote allergic sensitization, and microbial dysbiosis, activate nuclear receptors and increase the incidence of allergic, autoimmune, and metabolic diseases. Breast milk is the most important optimal source in early life. This mini-review summarizes current knowledge on environmental contaminants and paves the way for strategies to prevent milk contamination and limit maternal and infant exposure during pregnancy and the first months of life.
Collapse
Affiliation(s)
- Maria E. Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Giuliana Giannì
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Carlo Caffarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| |
Collapse
|
11
|
Assaggaf H, Yoo C, Lucchini RG, Black SM, Hamed M, Minshawi F, Felty Q. Polychlorinated Biphenyls and Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4705. [PMID: 35457576 PMCID: PMC9029704 DOI: 10.3390/ijerph19084705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that were banned because of their potential carcinogenicity. Population studies have shown that PCBs are associated with lung toxicity and hypertension. The objective of this study was to evaluate whether higher exposure to PCB congeners is associated with the risk of pulmonary hypertension. Serum levels of PCBs in 284 subjects with combined risk factors for pulmonary arterial hypertension (PAH) were compared to 4210 subjects with no risk for PAH using the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004. The major findings from this study include significantly higher PCB levels in PAH subjects compared to non-PAH subjects; for example, the geometric mean (GM) of PCB74 was 15.91 (ng/g) (14.45-17.53) vs. 11.48 (ng/g) (10.84-12.16), respectively. Serum levels of PCB congeners showed an increasing trend in the age group 20-59 years as PCB180 GM was 19.45 (ng/g) in PAH vs. 12.75 (ng/g) in the control. A higher body burden of PCB153 followed by PCB138, PCB180, and PCB118 was observed. Estimated age, race, BMI, and gender-adjusted ORs for PCB congener levels in subjects with the combined risk factors for PAH compared to controls was significant; for example, PCB99 (OR: 1.5 (CI: 1.49-1.50). In summary, these findings indicate that exposure, as well as body burden estimated based on lipid adjustment of PCBs, were higher in people with risk factors for PAH, and PCB congeners accumulated with age. These findings should be interpreted with caution because of the use of cross-sectional self-reported data and a small sample size of subjects with combined risk factors for pulmonary arterial hypertension. Nonetheless, our finding emphasizes a need for a comprehensive environmental molecular epidemiologic study to determine the potential role of environmental exposures to PCBs in the development of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (F.M.)
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA;
| | - Roberto G. Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Steven M. Black
- FIU-Center for Translational Science, Port St. Lucie, FL 34987, USA;
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (F.M.)
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
12
|
Berlin M, Flor-Hirsch H, Kohn E, Brik A, Keidar R, Livne A, Marom R, Ovental A, Mandel D, Lubetzky R, Factor-Litvak P, Tovbin J, Betser M, Moskovich M, Hazan A, Britzi M, Gueta I, Berkovitch M, Matok I, Hamiel U. Maternal Exposure to Polychlorinated Biphenyls and Asthma, Allergic Rhinitis and Atopic Dermatitis in the Offspring: The Environmental Health Fund Birth Cohort. Front Pharmacol 2022; 13:802974. [PMID: 35462915 PMCID: PMC9019472 DOI: 10.3389/fphar.2022.802974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Background: Polychlorinated biphenyls (PCBs) are persistent organic pollutants banned for use worldwide. Due to their biodegradation resistance, they accumulate along the food chain and in the environment. Maternal exposure to PCBs may affect the fetus and the infant. PCBs are immunotoxic and may damage the developing immune system. PCBs are associated with elevated IgE antibodies in cord blood and are considered to be predictive of atopic reactions. Several studies on the association between prenatal exposure to PCBs and atopic reactions were previously published, albeit with conflicting results. Objectives: To examine the association between maternal PCBs levels and atopic reactions in their offspring. Methods: During the years 2013-2015, a prospective birth cohort was recruited at the delivery rooms of Shamir Medical Center (Assaf Harofeh) and "Dana Dwek" Children's Hospital. Four PCBs congeners were investigated: PCBs 118, 138, 153, and 180. In 2019, when children reached the age of 4-6 years, mothers were interviewed using the ISAAC questionnaire to assess symptoms of atopic reactions, including asthma, allergic rhinitis, and atopic dermatitis. Results: One hundred and fifty mother-child dyads were analyzed. No significant differences were found in the median serum PCBs concentrations of each studied congener or total PCBs for asthma, allergic rhinitis, atopic dermatitis diagnosis, or parent-reported symptoms. No association was found between exposure to total PCBs and the risk for asthma symptoms or diagnosis, adjusted to maternal age and family member with atopic condition: aOR = 0.94, 95%CI: (0.88; 0.99). No association was observed between each studied PCB congener and asthma symptoms or diagnosis. The same results were found also for other studied outcomes-allergic rhinitis and atopic dermatitis. Conclusion: Our study joins a series of previous studies that attempt to shed light on environmental exposures in utero as influencing factors for atopic conditions in children. Our results reflect the complexity of the pathophysiology of these phenomena. No relationship between maternal serum PCBs levels was demonstrated for asthma, allergic rhinitis, or atopic dermatitis. However, additional multi-participant studies, with longer, spanning into later pediatric age follow up are needed.
Collapse
Affiliation(s)
- Maya Berlin
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Flor-Hirsch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rimona Keidar
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ayelet Livne
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronella Marom
- Departments of Neonatology and Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Amit Ovental
- Departments of Neonatology and Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Mandel
- Departments of Neonatology and Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Departments of Neonatology and Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Josef Tovbin
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Moshe Betser
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Miki Moskovich
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Malka Britzi
- Residues Lab, Kimron Veterinary Institute, Beit-Dagan, Israel
| | - Itai Gueta
- The Institute of Clinical Pharmacology and Toxicology, Department of Medicine, Sheba Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilan Matok
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Hamiel
- Department of Pediatrics, Shamir Medical Center (Assaf Harofeh), Zerifin, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Perez C, Felty Q. Molecular basis of the association between transcription regulators nuclear respiratory factor 1 and inhibitor of DNA binding protein 3 and the development of microvascular lesions. Microvasc Res 2022; 141:104337. [PMID: 35143811 PMCID: PMC8923910 DOI: 10.1016/j.mvr.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
The prognosis of patients with microvascular lesions remains poor because vascular remodeling eventually obliterates the lumen. Here we have focused our efforts on vessel dysfunction in two different organs, the lung and brain. Despite tremendous progress in understanding the importance of blood vessel integrity, gaps remain in our knowledge of the underlying molecular factors contributing to vessel injury, including microvascular lesions. Most of the ongoing research on these lesions have focused on oxidative stress but have not found major molecular targets for the discovery of new treatment or early diagnosis. Herein, we have focused on elucidating the molecular mechanism(s) based on two new emerging molecules NRF1 and ID3, and how they may contribute to microvascular lesions in the lung and brain. Redox sensitive transcriptional activation of target genes depends on not only NRF1, but the recruitment of co-activators such as ID3 to the target gene promoter. Our review highlights the fact that targeting NRF1 and ID3 could be a promising therapeutic approach as they are major players in influencing cell growth, cell repair, senescence, and apoptotic cell death which contribute to vascular lesions. Knowledge about the molecular biology of these processes will be relevant for future therapeutic approaches to not only PAH but cerebral angiopathy and other vascular disorders. Therapies targeting transcription regulators NRF1 or ID3 have the potential for vascular disease-modification because they will address the root causes such as genomic instability and epigenetic changes in vascular lesions. We hope that our findings will serve as a stimulus for further research towards an effective treatment of microvascular lesions.
Collapse
Affiliation(s)
- Christian Perez
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
14
|
Goobie GC, Nouraie M, Zhang Y, Kass DJ, Ryerson CJ, Carlsten C, Johannson KA. Air Pollution and Interstitial Lung Diseases: Defining Epigenomic Effects. Am J Respir Crit Care Med 2020; 202:1217-1224. [PMID: 32569479 PMCID: PMC7605178 DOI: 10.1164/rccm.202003-0836pp] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gillian C. Goobie
- Department of Human Genetics, Graduate School of Public Health and
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Yingze Zhang
- Department of Human Genetics, Graduate School of Public Health and
- Department of Medicine and
| | | | - Christopher J. Ryerson
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada; and
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada; and
| | - Kerri A. Johannson
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Leiser CL, Taddie M, Hemmert R, Richards Steed R, VanDerslice JA, Henry K, Ambrose J, O'Neil B, Smith KR, Hanson HA. Spatial clusters of cancer incidence: analyzing 1940 census data linked to 1966-2017 cancer records. Cancer Causes Control 2020; 31:609-615. [PMID: 32323050 PMCID: PMC7574665 DOI: 10.1007/s10552-020-01302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE A life course perspective to cancer incidence is important for understanding effects of the environment during early life on later cancer risk. We assessed spatial clusters of cancer incidence based on early life location defined as 1940 US Census Enumeration District (ED). METHODS A cohort of 260,585 individuals aged 0-40 years in 1940 was selected. Individuals were followed from 1940 to cancer diagnosis, death, or last residence in Utah. We geocoded ED centroids in Utah for the 1940 Census. Spatial scan statistics with purely spatial elliptic scanning window were used to identify spatial clusters of EDs with excess cancer rates across 26 cancer types, assuming a discrete Poisson model. RESULTS Cancer was diagnosed in 66,904 (25.67%) individuals during follow-up across 892 EDs. Average follow-up was 50.9 years. We detected 15 clusters of excess risk for bladder, breast, cervix, colon, lung, melanoma, oral, ovary, prostate, and soft tissue cancers. An urban area had dense overlap of multiple cancer types, including two EDs at increased risk for five cancer types each. CONCLUSIONS Early environments may contribute to cancer risk later in life. Life course perspectives applied to the study of cancer incidence can provide insights for increasing understanding of cancer etiology.
Collapse
Affiliation(s)
- Claire L Leiser
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | - Marissa Taddie
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - Rachael Hemmert
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| | - Rebecca Richards Steed
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Geography, University of Utah, Salt Lake City, UT, USA
| | - James A VanDerslice
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kevin Henry
- Department of Geography and Urban Studies, Temple University, Philadelphia, PA, USA
| | - Jacob Ambrose
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Brock O'Neil
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Ken R Smith
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Family and Consumer Studies, University of Utah, Salt Lake City, UT, USA
| | - Heidi A Hanson
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, Colacino JA. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999-2014. ENVIRONMENT INTERNATIONAL 2020; 137:105496. [PMID: 32113086 PMCID: PMC7137529 DOI: 10.1016/j.envint.2020.105496] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Stark racial disparities in disease incidence among American women remain a persistent public health challenge. These disparities likely result from complex interactions between genetic, social, lifestyle, and environmental risk factors. The influence of environmental risk factors, such as chemical exposure, however, may be substantial and is poorly understood. OBJECTIVES We quantitatively evaluated chemical-exposure disparities by race/ethnicity, life stage, and time in United States (US) women (n = 38,080) by using biomarker data for 143 chemicals from the National Health and Nutrition Examination Survey (NHANES) 1999-2014. METHODS We applied a series of survey-weighted, generalized linear models using data from the entire NHANES women population along with cycle and age-group stratified subpopulations. The outcome was chemical biomarker concentration, and the main predictor was race/ethnicity with adjustment for age, socioeconomic status, smoking habits, and NHANES cycle. RESULTS Compared to non-Hispanic White women, the highest disparities were observed for non-Hispanic Black, Mexican American, Other Hispanic, and Other Race/Multi-Racial women with higher levels of pesticides and their metabolites, including 2,5-dichlorophenol, o,p'-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol, along with personal care and consumer product compounds, including parabens and monoethyl phthalate, as well as several metals, such as mercury and arsenic. Moreover, for Mexican American, Other Hispanic, and non-Hispanic black women, there were several exposure disparities that persisted across age groups, such as higher 2,4- and 2,5-dichlorophenol concentrations. Exposure levels for methyl and propyl parabens, however, were the highest in non-Hispanic black compared to non-Hispanic white children with average differences exceeding 4-fold. Exposure disparities for methyl and propyl parabens are increasing over time in Other Race/Multi-Racial women while fluctuating for non-Hispanic Black, Mexican American, and Other Hispanic. Cotinine levels are among the highest in Non-Hispanic White women compared to Mexican American and Other Hispanic women with disparities plateauing and increasing, respectively. DISCUSSION We systematically evaluated differences in chemical exposures across women of various race/ethnic groups and across age groups and time. Our findings could help inform chemical prioritization in designing epidemiological and toxicological studies. In addition, they could help guide public health interventions to reduce environmental and health disparities across populations.
Collapse
Affiliation(s)
- Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Adam Kahana
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Julien Heidt
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Kvasnicka
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Nelson W, Wang YX, Sakwari G, Ding YB. Review of the Effects of Perinatal Exposure to Endocrine-Disrupting Chemicals in Animals and Humans. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:131-184. [PMID: 31129734 DOI: 10.1007/398_2019_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maternal exposure to endocrine-disrupting chemicals (EDCs) is associated with long-term hormone-dependent effects that are sometimes not revealed until maturity, middle age, or adulthood. The aim of this study was to conduct descriptive reviews on animal experimental and human epidemiological evidence of the adverse health effects of in utero and lactational exposure to selected EDCs on the first generation and subsequent generation of the exposed offspring. PubMed, Web of Science, and Toxline databases were searched for relevant human and experimental animal studies on 29 October 29 2018. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated and qualitative data extracted for analysis. The search yielded 73 relevant human and 113 animal studies. Results from studies show that in utero and lactational exposure to EDCs is associated with impairment of reproductive, immunologic, metabolic, neurobehavioral, and growth physiology of the exposed offspring up to the fourth generation without additional exposure. Little convergence is seen between animal experiments and human studies in terms of the reported adverse health effects which might be associated with methodologic challenges across the studies. Based on the available animal and human evidence, in utero and lactational exposure to EDCs is detrimental to the offspring. However, more human studies are necessary to clarify the toxicological and pathophysiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- William Nelson
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Gloria Sakwari
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Abellan A, Sunyer J, Garcia-Esteban R, Basterrechea M, Duarte-Salles T, Ferrero A, Garcia-Aymerich J, Gascon M, Grimalt JO, Lopez-Espinosa MJ, Zabaleta C, Vrijheid M, Casas M. Prenatal exposure to organochlorine compounds and lung function during childhood. ENVIRONMENT INTERNATIONAL 2019; 131:105049. [PMID: 31362153 DOI: 10.1016/j.envint.2019.105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Prenatal exposure to organochlorine compounds (OCs) can increase the risk of reported respiratory symptoms in children. It remains unclear whether these compounds can also impact on lung function. We assessed the association between prenatal exposure to OCs and lung function during childhood. METHODS We included 1308 mother-child pairs enrolled in a prospective cohort study. Prenatal concentrations of p,p'-dichlorodiphenyltrichloroethane [p,p'-DDT], p,p'-dichlorodiphenyldichloroethylene [p,p'-DDE], hexachlorobenzene [HCB], and seven polychlorinated biphenyls [PCBs] were measured in cord blood. Spirometry was performed in the offspring at ages 4 (n = 636) and 7 years (n = 1192). RESULTS More than 80% of samples presented quantifiable levels of p,p'-DDE, HCB, PCB-138, PCB-153, and PCB-180; p,p'-DDE was the compound with the highest median concentrations. At 4 years, prenatal p,p'-DDE exposure was associated with a decrease in forced expiratory volume in 1 s (FEV1) in all quartiles of exposure (e.g., third quartile [0.23-0.34 ng/mL]: β for FEV1 -53.61 mL, 95% CI -89.87, -17.35, vs. the lowest). Prenatal p,p'-DDE levels also decreased forced vital capacity (FVC) and FEV1/FVC, but associations did not reach statistical significance in most exposure quartiles. At 7 years, p,p'-DDE was associated with a decrease in FVC and FEV1 in only the second quartile of exposure (e.g. β for FEV1 -36.96 mL, 95% CI -66.22, -7.70, vs. the lowest). Prenatal exposure to HCB was associated with decreased FVC and FEV1, but in only the second quartile and at 7 years (e.g. [0.07-0.14 ng/mL]: β for FEV1 -25.79 mL, 95% CI -55.98, 4.39, vs. the lowest). PCBs were not consistently associated with lung function. CONCLUSION Prenatal exposure to p,p'-DDE may decrease lung function during childhood, especially FEV1 and at medium levels of exposure. Further and deeper knowledge on the impact of environmental chemicals during pregnancy on lung development is needed.
Collapse
Affiliation(s)
- Alicia Abellan
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Raquel Garcia-Esteban
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mikel Basterrechea
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, San Sebastian, Spain; Health Research Institute (BIODONOSTIA), San Sebastian, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Amparo Ferrero
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Carlos Zabaleta
- Health Research Institute (BIODONOSTIA), San Sebastian, Spain; Paediatrics Service, Hospital Zumarraga, Gipuzkoa, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
19
|
Casadó L, Arrebola JP, Fontalba A, Muñoz A. Adverse effects of hexaclorobenzene exposure in children and adolescents. ENVIRONMENTAL RESEARCH 2019; 176:108421. [PMID: 31387069 DOI: 10.1016/j.envres.2019.03.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hexachlorobenzene (HCB: C₆Cl₆) is a persistent, bioaccumulative chemical formerly used worldwide in pesticide mixtures but also produced as a by-product in the chemical and metallurgical industry. Despite current international restrictions in the use and production of HCB, the majority of the general population still show detectable levels of HCB, which raises concerns on the potential health implications of the exposure. OBJECTIVE To compile and synthesize the available scientific evidence regarding the adverse effects of exposure to HCB in children and adolescents. METHODS A review of the literature focused on the adverse effects of HCB exposure in children. Eligible studies were systematically screened from searches in Medline, Scopus and Ebsco-host databases. A total of 62 studies were finally included. RESULTS AND DISCUSSION In our search we found evidences of potential health effects linked to HCB exposure at different levels (e.g. neurotoxic, nephrotoxic, immunotoxic, hepatotoxic and toxicogenomic), although the conclusions are still contradictory. Further prospective research is needed, considering the special vulnerability of children and adolescent population as well as the ubiquity of the exposure.
Collapse
Affiliation(s)
- Lina Casadó
- Department of Nursing, Medical Anthropology Research Centre (MARC), University Rovira i Virgili, Tarragona, Spain.
| | - Juan Pedro Arrebola
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Hospitales Universitarios de Granada, Spain, CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Andrés Fontalba
- Northern Málaga Integrated Healthcare Area, Andalusian Health Service, Antequera, Spain, Department of Nursing, Medicine and Physiotherapy, Almeria University, Almería, Spain
| | - Araceli Muñoz
- School of Social Work, Food Observatory (ODELA), University of Barcelona, Barcelona, Spain, Medical Anthropology Research Centre (MARC), University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
20
|
Jiang Y, Zhang S, Zhang X, Li N, Zhang Q, Guo X, Chi X, Tong M. Peptidomic analysis of zebrafish embryos exposed to polychlorinated biphenyls and their impact on eye development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:164-172. [PMID: 30897415 DOI: 10.1016/j.ecoenv.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs), a class of persistent organic pollutant, are closely related to abnormal eye development in children. However, little is known regarding the role of peptides in the development of PCB-induced ocular dysplasia. To characterize the nature of PCB exposure on peptides involved in the development of the ocular system, we used liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to detect differential expression of peptides between normal and PCB-exposed zebrafish embryos. A total of 7900 peptides were analyzed, 90 of which were differentially expressed, with 29 being up-regulated and 61 down-regulated. These peptides were investigated using ingenuity pathway analysis (IPA) and gene ontology (GO) analysis to explore their role in eye development. This study identified 18 peptides associated with the development of the optic nerve and ocular system in the PCB-exposure group, as well as 10 peptides that are located in the functional domain of their precursor proteins. These peptides provide potential biomarkers for the treatment of ocular dysplasia caused by PCBs and may help us understand the mechanism of abnormal eye development caused by organic pollutants.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Pediatrics, Nanjing Medical University, Nanjing 210004, China
| | - Shuchun Zhang
- Department of Pediatrics, Nanjing Medical University, Nanjing 210004, China
| | - Xin Zhang
- Department of Pediatrics, Nanjing Medical University, Nanjing 210004, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Nan Li
- Ningbo First Hospital | Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Qingyu Zhang
- Department of Pediatrics, Nanjing Medical University, Nanjing 210004, China
| | - Xirong Guo
- Department of Pediatrics, Nanjing Medical University, Nanjing 210004, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Xia Chi
- Department of Pediatrics, Nanjing Medical University, Nanjing 210004, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China.
| | - Meiling Tong
- Department of Pediatrics, Nanjing Medical University, Nanjing 210004, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital affiliated to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Wahlang B. Exposure to persistent organic pollutants: impact on women's health. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:331-348. [PMID: 30110273 DOI: 10.1515/reveh-2018-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 05/23/2023]
Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, 505 S. Hancock Street, CTRB, Louisville, KY 40202-1617, USA
| |
Collapse
|
22
|
Yu JE, Mallapaty A, Miller RL. It's not just the food you eat: Environmental factors in the development of food allergies. ENVIRONMENTAL RESEARCH 2018; 165:118-124. [PMID: 29689456 DOI: 10.1016/j.envres.2018.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The dramatic rise in the prevalence of food allergy and food allergy-associated anaphylaxis in the past few decades has fueled investigative interest into understanding this puzzling trend. Here, we review the question as to whether important external environmental determinants beyond dietary habits and exposure to food allergens are involved. This review will summarize our current understanding of these environment determinants, derived from the latest experimental and epidemiological research. Specifically, we will review the role of exposures that affect skin barrier function, development of a diverse microbiome, and food processing. Additional exposures of concern are insufficient sunlight, endocrine disrupting chemicals and pesticides, and use of specific pharmaceutical agents that may drive or modify the risk for food allergy. Despite limitations in the quantity and quality of research to date, many new epidemiological associations and experimental data in support of this paradigm have emerged.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, PH8E-101, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, USA
| | - Anu Mallapaty
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, PH8E-101, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, USA
| | - Rachel L Miller
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, PH8E-101, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, PH8E-101, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, USA; Department of Environmental Health Sciences, Mailman School of Public Health, 722 W. 168th St., New York, NY 10032, USA.
| |
Collapse
|
23
|
Leijs MM, Koppe JG, Olie K, de Voogt P, van Aalderen WMC, Ten Tusscher GW. Exposure to Environmental Contaminants and Lung Function in Adolescents-Is There a Link? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071352. [PMID: 29954136 PMCID: PMC6069052 DOI: 10.3390/ijerph15071352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 01/20/2023]
Abstract
Dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDF)), polychlorinated biphenyls (PCBs), and brominated flame retardants (BDEs) are well known toxic environmental contaminants. Their possible role in the incidence of respiratory disease is not yet well understood. Previous studies showed a negative effect on lung function in relation to prenatal and lactational dioxin exposure in pre-pubertal children. Effects of BDE exposure on the lung function have not previously been evaluated. As part of a longitudinal cohort study, the effects of perinatal dioxin (PCDD/F) exposure and serum PCDD/F, dl-PCB, and BDE levels on lung function in adolescents were assessed using spirometry, a body box, and diffusion measurements. Thirty-three children (born between 1986 and 1991) consented to the current follow-up study. Prenatal, lactational, and current dioxin, PCB, and BDE concentrations were determined using GC-MS. No relationship was seen between prenatal and lactational dioxin exposure, nor with current PCB body burden, and lung function. Indications of increasing airway obstruction were seen in relation to increasing current BDE exposure. This is a novel finding and certainly warrants further research.
Collapse
Affiliation(s)
- Marike M Leijs
- Department of Paediatrics and Neonatology, Emma Children's Hospital Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands.
- Ecobaby Foundation, Hollandstraat 6, 3634 AT Loenersloot, The Netherlands.
- Department of Dermatology and Allergology, RTWH University Aachen, Pauwelstrasse 30, 52074 Aachen, Germany.
| | - Janna G Koppe
- Department of Paediatrics and Neonatology, Emma Children's Hospital Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands.
- Ecobaby Foundation, Hollandstraat 6, 3634 AT Loenersloot, The Netherlands.
| | - Kees Olie
- IBED/ESPM, University of Amsterdam, 1090 GE Amsterdam, The Netherlands.
| | - Pim de Voogt
- IBED/ESPM, University of Amsterdam, 1090 GE Amsterdam, The Netherlands.
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands.
| | - Wim M C van Aalderen
- Department of Paediatrics and Neonatology, Emma Children's Hospital Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands.
| | - Gavin W Ten Tusscher
- Department of Paediatrics and Neonatology, Westfriesgasthuis, Maelsonstraat 3, 1624 NP Hoorn, The Netherlands.
| |
Collapse
|
24
|
Ye M, Warner M, Mocarelli P, Brambilla P, Eskenazi B. Prenatal exposure to TCDD and atopic conditions in the Seveso second generation: a prospective cohort study. Environ Health 2018; 17:22. [PMID: 29482571 PMCID: PMC5827999 DOI: 10.1186/s12940-018-0365-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/14/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental contaminant that can bioaccumulate in humans, cross the placenta, and cause immunological effects in children, including altering their risk of developing allergies. On July 10, 1976, a chemical explosion in Seveso, Italy, exposed nearby residents to a high amount of TCDD. In 1996, the Seveso Women's Health Study (SWHS) was established to study the effects of TCDD on women's health. Using data from the Seveso Second Generation Health Study, we aim to examine the effect of prenatal exposure to TCDD on the risk of atopic conditions in SWHS children born after the explosion. METHODS Individual-level TCDD was measured in maternal serum collected soon after the accident. In 2014, we initiated the Seveso Second Generation Health Study to follow-up the children of the SWHS cohort who were born after the explosion or who were exposed in utero to TCDD. We enrolled 677 children, and cases of atopic conditions, including eczema, asthma, and hay fever, were identified by self-report during personal interviews with the mothers and children. Log-binomial and Poisson regressions were used to determine the association between prenatal TCDD and atopic conditions. RESULTS A 10-fold increase in 1976 maternal serum TCDD (log10TCDD) was not significantly associated with asthma (adjusted relative risk (RR) = 0.93; 95% CI: 0.61, 1.40) or hay fever (adjusted RR = 0.99; 95% CI: 0.76, 1.27), but was significantly inversely associated with eczema (adjusted RR = 0.63; 95% CI: 0.40, 0.99). Maternal TCDD estimated at pregnancy was not significantly associated with eczema, asthma, or hay fever. There was no strong evidence of effect modification by child sex. CONCLUSIONS Our results suggest that maternal serum TCDD near the time of explosion is associated with lower risk of eczema, which supports other evidence pointing to the dysregulated immune effects of TCDD.
Collapse
Affiliation(s)
- Morgan Ye
- Center for Environmental Research & Children’s Health (CERCH), School of Public Health, University of California, 1995 University Avenue, Suite 265, Berkeley, CA 94720-7392 USA
| | - Marcella Warner
- Center for Environmental Research & Children’s Health (CERCH), School of Public Health, University of California, 1995 University Avenue, Suite 265, Berkeley, CA 94720-7392 USA
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milano-Bicocca and Hospital of Desio, Desio-Milano, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milano-Bicocca and Hospital of Desio, Desio-Milano, Italy
| | - Brenda Eskenazi
- Center for Environmental Research & Children’s Health (CERCH), School of Public Health, University of California, 1995 University Avenue, Suite 265, Berkeley, CA 94720-7392 USA
| |
Collapse
|
25
|
Anzalone DA, Sampino S, Czernik M, Iuso D, Ptak GE. Polychlorinated biphenyls (PCBs) alter DNA methylation and genomic integrity of sheep fetal cells in a simplified in vitro model of pregnancy exposure. Toxicol In Vitro 2018; 46:39-46. [DOI: 10.1016/j.tiv.2017.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
|
26
|
Miyashita C, Bamai YA, Araki A, Itoh S, Minatoya M, Kobayashi S, Kajiwara J, Hori T, Kishi R. Prenatal exposure to dioxin-like compounds is associated with decreased cord blood IgE and increased risk of wheezing in children aged up to 7years: The Hokkaido study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:191-199. [PMID: 28803196 DOI: 10.1016/j.scitotenv.2017.07.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION In utero exposure to dioxin-like compounds (DLCs) may cause imbalance of immune development in early infancy. However, there are few epidemiological studies into the effects of in utero exposure to DLCs on allergies and infections during childhood. This study evaluates associations between concentrations of maternal DLCs and cord blood immunoglobulin (Ig) E, as well as allergies and infections during childhood. METHOD We recruited 514 pregnant women in a maternity hospital in Sapporo, Japan, and measured concentrations of DLCs in 426 maternal blood samples using high-resolution gas chromatography/high-resolution mass spectrometry. We examined the relationship between concentrations of maternal DLCs and cord blood IgE at birth (n=239), as well as for allergies and infections in children at 3.5 (n=327) and 7 (n=264) years, using regression analysis adjusted for confounding variables. RESULTS We found a positive association between maternal DLC concentrations and frequency of wheezing in children aged up to 7years [odds ratio (OR); 7.81 (95% confidence interval (CI), 1.42 to 42.9)]. At 3.5years, boys showed inverse associations between maternal DLC concentrations and cord blood IgE [partial regression coefficient; -0.87 (95% CI), -1.68 to -0.06], and frequency of wheezing [OR; 0.03 (95% CI), 0.00 to 0.94] but girls did not. DISCUSSION As one reason for the significant association observed at 7 but absent at 3.5years, we suggest that allergic symptoms are more obvious in older children due to matured immune function. CONCLUSION The findings suggest that prenatal exposure to DLCs may modify offspring immune responses and result in increased risk of allergy among children of school age.
Collapse
Affiliation(s)
- Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Jumboku Kajiwara
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | - Tsuguhide Hori
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
27
|
Roberts G, Boyle R, Crane J, Hogan SP, Saglani S, Wickman M, Woodfolk JA. Developments in the field of allergy in 2016 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2017; 47:1512-1525. [PMID: 29068551 DOI: 10.1111/cea.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2016. Experimental models of allergic disease, basic mechanisms, clinical mechanisms, allergens, asthma and rhinitis, and clinical allergy are all covered.
Collapse
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - M Wickman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
28
|
Balte PP, Kühr J, Kruse H, Karmaus WJJ. Body Burden of Dichlorodiphenyl Dichloroethene (DDE) and Childhood Pulmonary Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14111376. [PMID: 29135968 PMCID: PMC5708015 DOI: 10.3390/ijerph14111376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 11/23/2022]
Abstract
Longitudinal studies have shown that early life exposure to dichlorodiphenyl dichloroethene (DDE) can lead to growth reduction during childhood and adolescence. In addition, DDE exposure has been linked to respiratory tract infections and an increased risk of asthma in children. Our aim was to understand the relationships between DDE exposure and pulmonary function in children, and, particularly, whether associations are mediated by the height of the children. We used data from an environmental epidemiologic study conducted in central Germany in children aged 8-10 years. The pulmonary function (forced vital capacity, FVC, and forced expiratory volume in one second, FEV1) were measured in three consecutive years. Blood DDE levels were measured at 8 and 10 years. We used linear mixed models for repeated measurements and path analyses to assess the association between blood levels of DDE and pulmonary function measurements. All models were adjusted for confounders. Linear mixed approaches and modelling concurrent effects showed no significant associations. The path analytical models demonstrated that DDE measured at eight years had significant, inverse, indirect, and total effects on FVC at ten years (n = 328; −0.18 L per μg/L of DDE) and FEV1 (n = 328; −0.17 L per μg/L of DDE), mediated through effects of DDE on height and weight. The DDE burden reduces pulmonary function through its diminishing effects on height and weight in children. Further studies are required to test these associations in other samples, preferably from a region with ongoing, high DDT application.
Collapse
Affiliation(s)
- Pallavi P Balte
- Division of General Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| | - Joachim Kühr
- Clinic for Pediatric and Adolescent Medicine Klinikum Karlsruhe, Karlsruhe 76133, Germany.
| | - Herrman Kruse
- Institute for Toxicology und Pharmacology, University Schleswig-Holstein, Kiel 24105, Germany.
| | - Wilfried J J Karmaus
- School of Public Health, Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
29
|
Palkovičová Murínová Ľ, Wimmerová S, Lancz K, Patayová H, Koštiaková V, Richterová D, Govarts E, Jusko TA, Trnovec T. Partitioning of hexachlorobenzene between human milk and blood lipid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:994-999. [PMID: 28778790 PMCID: PMC6044446 DOI: 10.1016/j.envpol.2017.07.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 05/12/2023]
Abstract
In epidemiological studies on the toxic effects of prenatal exposure to hexachlorobenzene (HCB), researchers report HCB concentrations, either as wet-weight or per lipid weight basis, in matrices like breast milk, and maternal and cord blood. Conversion of exposures across matrices is needed for comparisons of concentrations and dose effect across cohorts. Using data from a birth cohort study in eastern Slovakia, we derived the maternal blood to cord blood HCB concentration ratio utilizing measured concentrations in 1027 paired maternal and cord blood samples, on a per-lipid basis. In addition to data from the Slovak study, the maternal milk to maternal serum ratio was summarized from 23 published studies on partitioning of HCB between human milk lipid and blood lipid. We identified two distinct groups of milk:blood ratios, those ≤0.45 and those ≥0.85. We assumed that using partition ratios ≤0.45 will underestimate HCB exposure estimates. Taking into account this precautionary measure, we suggest a conversion ratio of 1.21, which is the median of the 16 ratios identified in our literature review. We consider our estimate as conservative and providing appropriate safety in risk analysis.
Collapse
Affiliation(s)
- Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Soňa Wimmerová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Henrieta Patayová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladimíra Koštiaková
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Denisa Richterová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Eva Govarts
- Unit Environmental Risk and Health, VITO NV, Boeretang 200, 2400 Mol, Belgium
| | - Todd A Jusko
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester, School of Medicine & Dentistry, 265 Crittenden Blvd, CU 420644, Rochester, NY 14642, United States
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
| |
Collapse
|
30
|
Martin E, Smeester L, Bommarito PA, Grace MR, Boggess K, Kuban K, Karagas MR, Marsit CJ, O’Shea TM, Fry RC. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics 2017; 9:267-278. [PMID: 28234023 PMCID: PMC5331919 DOI: 10.2217/epi-2016-0132] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
AIM Sex-based differences in response to adverse prenatal environments and infant outcomes have been observed, yet the underlying mechanisms for this are unclear. The placental epigenome may be a driver of these differences. METHODS Placental DNA methylation was assessed at more than 480,000 CpG sites from male and female infants enrolled in the extremely low gestational age newborns cohort (ELGAN) and validated in a separate US-based cohort. The impact of gestational age on placental DNA methylation was further examined using the New Hampshire Birth Cohort Study for a total of n = 467 placentas. RESULTS A total of n = 2745 CpG sites, representing n = 587 genes, were identified as differentially methylated (p < 1 × 10-7). The majority (n = 582 or 99%) of these were conserved among the New Hampshire Birth Cohort. The identified genes encode proteins related to immune function, growth/transcription factor signaling and transport across cell membranes. CONCLUSION These data highlight sex-dependent epigenetic patterning in the placenta and provide insight into differences in infant outcomes and responses to the perinatal environment.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew R Grace
- Department of Obstetrics & Gynecology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kim Boggess
- Department of Obstetrics & Gynecology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Karl Kuban
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA 30322, USA
| | - T Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017; 9:333-350. [PMID: 28234024 DOI: 10.2217/epi-2016-0112] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
32
|
Assaggaf H, Felty Q. Gender, Estrogen, and Obliterative Lesions in the Lung. Int J Endocrinol 2017; 2017:8475701. [PMID: 28469671 PMCID: PMC5392403 DOI: 10.1155/2017/8475701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Gender has been shown to impact the prevalence of several lung diseases such as cancer, asthma, chronic obstructive pulmonary disease, and pulmonary arterial hypertension (PAH). Controversy over the protective effects of estrogen on the cardiopulmonary system should be of no surprise as clinical trials of hormone replacement therapy have failed to show benefits observed in experimental models. Potential confounders to explain these inconsistent estrogenic effects include the dose, cellular context, and systemic versus local tissue levels of estrogen. Idiopathic PAH is disproportionately found to be up to 4 times more common in females than in males; however, estrogen levels cannot explain why males develop PAH sooner and have poorer survival. Since the sex steroid hormone 17β-estradiol is a mitogen, obliterative processes in the lung such as cell proliferation and migration may impact the growth of pulmonary tissue or vascular cells. We have reviewed evidence for biological differences of sex-specific lung obliterative lesions and highlighted cell context-specific effects of estrogen in the formation of vessel lumen-obliterating lesions. Based on this information, we provide a biological-based mechanism to explain the sex difference in PAH severity as well as propose a mechanism for the formation of obliterative vascular lesions by estrogens.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Environmental & Occupational Health, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental & Occupational Health, Florida International University, Miami, FL, USA
- *Quentin Felty:
| |
Collapse
|
33
|
Stroup AM, Herget KA, Hanson HA, Reed DL, Butler JT, Henry KA, Harrell CJ, Sweeney C, Smith KR. Baby Boomers and Birth Certificates: Early-Life Socioeconomic Status and Cancer Risk in Adulthood. Cancer Epidemiol Biomarkers Prev 2016; 26:75-84. [PMID: 27655898 DOI: 10.1158/1055-9965.epi-16-0371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Early-life socioeconomic status (SES) may play a role in cancer risk in adulthood. However, measuring SES retrospectively presents challenges. Parental occupation on the birth certificate is a novel method of ascertaining early-life SES that has not been applied in cancer epidemiology. METHODS For a Baby-Boom cohort born from 1945-1959 in two Utah counties, individual-level Nam-Powers SES (Np-SES) was derived from parental industry/occupation reported on birth certificates. Neighborhood SES was estimated from average household income of census tract at birth. Cancer incidence was determined by linkage to Utah Cancer Registry records through the Utah Population Database. Hazard ratios (HR) for cancer risk by SES quartile were estimated using Cox proportional hazards regression. RESULTS Females with low Np-SES at birth had lower risk of breast cancer compared with those in the highest Np-SES group [HRQ1/Q4 = 0.83; 95% confidence interval (CI), 0.72-0.97; HRQ2/Q4 = 0.81; 95% CI, 0.69-0.96]. Np-SES was inversely associated with melanoma (HRQ1/Q4 = 0.81; 95% CI, 0.67-0.98) and prostate cancer (HRQ1/Q4 = 0.70; 95% CI, 0.56-0.88). Women born into lower SES neighborhoods had significantly increased risk for invasive cervical cancer (HRQ1/Q4 = 1.44; 95% CI, 1.12-1.85; HRQ2/Q4 = 1.33; 95% CI, 1.04-1.72). Neighborhood SES had similar effects for melanoma and prostate cancers, but was not associated with female breast cancer. We found no association with SES for pancreas, lung, and colon and rectal cancers. CONCLUSIONS Individual SES derived from parental occupation at birth was associated with altered risk for several cancer sites. IMPACT This novel methodology can contribute to improved understanding of the role of early-life SES on cancer risk. Cancer Epidemiol Biomarkers Prev; 26(1); 75-84. ©2016 AACR.
Collapse
Affiliation(s)
- Antoinette M Stroup
- Utah Cancer Registry, University of Utah, Salt Lake City, Utah. .,Rutgers School of Public Health, Piscataway, New Jersey.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | - Heidi A Hanson
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah
| | - Diana Lane Reed
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jared T Butler
- Department of Geography, University of Utah, Salt Lake City, Utah
| | - Kevin A Henry
- Department of Geography, University of Utah, Salt Lake City, Utah.,Department of Geography and Urban Studies, Temple University, Philadelphia, Pennsylvania.,Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - C Janna Harrell
- Utah Cancer Registry, University of Utah, Salt Lake City, Utah
| | - Carol Sweeney
- Utah Cancer Registry, University of Utah, Salt Lake City, Utah.,Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ken R Smith
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Family and Consumer Studies, University of Utah, Salt Lake City, Utah
| |
Collapse
|
34
|
Koskinen JP, Kiviranta H, Vartiainen E, Jousilahti P, Vlasoff T, von Hertzen L, Mäkelä M, Laatikainen T, Haahtela T. Common environmental chemicals do not explain atopy contrast in the Finnish and Russian Karelia. Clin Transl Allergy 2016; 6:14. [PMID: 27047657 PMCID: PMC4819273 DOI: 10.1186/s13601-016-0103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atopic allergy is much more common in Finnish compared with Russian Karelia, although these areas are geographically and genetically close. To explore the role of environmental chemicals on the atopy difference a random sample of 200 individuals, 25 atopic and 25 non-atopic school-aged children and their mothers, were studied. Atopy was defined as having at least one positive skin prick test response to 14 common inhalant and food allergens tested. Concentrations of 11 common environmental pollutants were measured in blood samples. RESULTS Overall, the chemical levels were much higher in Russia than in Finland, except for 2,2',4,4'-tetra-bromodiphenyl ether (BDE47). In Finland but not in Russia, the atopic children had higher concentrations of polychlorinated biphenyls and 1,1-Dichloro-2,2-bis-(p-chlorophenyl)-ethylene (DDE) than the non-atopic children. In Russia but not in Finland, the atopic mothers had higher DDE concentrations than the non-atopic mothers. CONCLUSIONS Higher concentrations of common environmental chemicals were measured in Russian compared with Finnish Karelian children and mothers. The chemicals did not explain the higher prevalence of atopy on the Finnish side.
Collapse
Affiliation(s)
- Jyri-Pekka Koskinen
- Department of Allergy, Skin and Allergy Hospital, Helsinki University Hospital, Jatasalmentie 14a, 00830 Helsinki, Finland
| | - Hannu Kiviranta
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, Finland
| | - Erkki Vartiainen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Jousilahti
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Vlasoff
- North Karelia Center for Public Health, Joensuu, Finland
| | - Leena von Hertzen
- Department of Allergy, Skin and Allergy Hospital, Helsinki University Hospital, Jatasalmentie 14a, 00830 Helsinki, Finland
| | - Mika Mäkelä
- Department of Allergy, Skin and Allergy Hospital, Helsinki University Hospital, Jatasalmentie 14a, 00830 Helsinki, Finland
| | - Tiina Laatikainen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland ; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland ; Hospital District of North Karelia, Joensuu, Finland
| | - Tari Haahtela
- Department of Allergy, Skin and Allergy Hospital, Helsinki University Hospital, Jatasalmentie 14a, 00830 Helsinki, Finland
| |
Collapse
|