1
|
Navarro-Cascales T, Colque-Bayona M, Fernandez-Concha I, Laorden D, Quirce S, Domínguez-Ortega J. A comparison of the impact of anti-IL5/5r therapies in allergic versus non-allergic patients with severe eosinophilic asthma in a real-life setting. J Asthma 2025; 62:319-327. [PMID: 39235972 DOI: 10.1080/02770903.2024.2400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE This study aimed to compare the clinical characteristics and treatment outcomes of allergic patients (AP) and non-allergic patients (NAP) with severe eosinophilic asthma (SEA) treated with anti-IL5/IL5R biologic agents (mepolizumab, benralizumab, or reslizumab) over one year. Sub-analyses assessed treatment response variations between AP and NAP based on the biological used and compared outcomes among AP with and without fungal allergy. METHODS Observational retrospective analysis. Clinical characteristics, laboratory findings, pulmonary function tests, Asthma Control Test (ACT) scores, oral corticosteroid (OCS) usage, and exacerbation frequency were assessed at the initiation of biological treatment and after one year. RESULTS Sixty-five patients with SEA were included, 41 AP and 24 NAP. 55.4% were treated with mepolizumab, 33.8% with benralizumab, and 10.8% with reslizumab. Before anti-IL5/5R treatment, AP had worse baseline outcomes but there were no differences in pulmonary function. Mean annual exacerbation rate and percentage of patients requiring OCS and dose of prednisone were higher in AP than NAP. AP had significantly higher total IgE values. After one year of treatment, more AP discontinued OCS than NAP (p = 0.025). Both experienced a significant reduction in exacerbation frequency (p = 0.001) and improved respiratory function. 70.7% of AP and 60% of NAP improved ACT ≥3 points. There was no significant difference between AP and NAP using mepolizumab (p = 0.145) or benralizumab (p = 0.174) in reducing OCS. CONCLUSIONS Anti-IL5/IL5R reduced the need for OCS and improved asthma control, regardless of allergic status. Fungal allergy led to lower ACT scores and higher exacerbations than other allergens; both groups improved with anti-IL5/ILR.
Collapse
Affiliation(s)
- Tatiana Navarro-Cascales
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | | | - Daniel Laorden
- Institute for Health Research (IdiPAZ), Madrid, Spain
- Department of Pneumology, La Paz University Hospital, Madrid, Spain
- CIBER of Respiratory Diseases, Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Institute for Health Research (IdiPAZ), Madrid, Spain
- CIBER of Respiratory Diseases, Madrid, Spain
| | - Javier Domínguez-Ortega
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Institute for Health Research (IdiPAZ), Madrid, Spain
- CIBER of Respiratory Diseases, Madrid, Spain
| |
Collapse
|
2
|
Tashiro H, Kuwahara Y, Kurihara Y, Takahashi K. Molecular mechanisms and clinical impact of biologic therapies in severe asthma. Respir Investig 2025; 63:50-60. [PMID: 39642687 DOI: 10.1016/j.resinv.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Severe asthma is a critical condition for patients with asthma, characterized by frequent exacerbations, decreased pulmonary function, and unstable symptoms related to asthma. Consequently, the administration of systemic corticosteroids, which cause secondary damage because of their adverse effects, is considered. Recently, several types of molecular-targeted biological therapies have become available for patients with severe asthma, and they have a capacity to improve the pathophysiology of severe asthma. However, several clinical reports indicate that the effects differ depending on the biological targets of asthma in individual patients. In this review, the molecular mechanisms and clinical impact of biologic therapies in severe asthma are described. In addition, molecules targeted by possible future biologics are also addressed. Better understanding of the mechanistic basis for the role of biologics in severe asthma could lead to new therapeutic options for these patients.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan.
| |
Collapse
|
3
|
Xu G, Paglialunga S, Qian X, Ding R, Webster K, van Haarst A, Engel C, Hui CW, Lam LH, Li W, Wu WC, Rasmussen S, Hunt A, Leung SO. Evaluation of the safety, tolerability, pharmacokinetics and pharmacodynamics of SM17 in healthy volunteers: results from pre-clinical models and a first-in-human, randomized, double blinded clinical trial. Front Immunol 2024; 15:1495540. [PMID: 39717777 PMCID: PMC11663749 DOI: 10.3389/fimmu.2024.1495540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Background Alarmins mediate type 2 T helper cell (Th2) inflammation and serve as upstream signaling elements in allergic inflammation and autoimmune responses. The alarmin interleukin (IL)-25 binds to a multi-domain receptor consisting of IL-17RA and IL-17RB subunits, resulting in the release of Th2 cytokines IL-4, IL-5, IL-9 and IL-13 to drive an inflammatory response. Therefore, the blockage of IL-17RB via SM17, a novel humanized monoclonal antibody, offers an attractive therapeutic target for Th2-mediated diseases, such as asthma. Methods Wild-type mice were stimulated with house dust mite (HDM) extracts for evaluation of SM17's pre-clinical efficacy in allergic asthma. The safety, pharmacokinectics (PK), pharmacodynamics (PD), and immunogenicity of intravenous (IV) doses of SM17 were assessed in a 2-part clinical study in healthy adult subjects. In Part A, 53 healthy participants were enrolled to receive a single IV dose of SM17 (2, 20, 70, 200, 400, 600, 1200 mg) or placebo. In Part B, 24 healthy subjects were enrolled to receive a single IV dose of SM17 every two weeks (Q2W; 200, 400, 600 mg) or placebo for a total of 3 doses. Results Animal studies demonstrated that SM17 significantly suppressed Th2 inflammation in the bronchoalveolar lavage fluid and infiltration of immune cells into the lungs. In the Phase I clinical study, no drug-related serious adverse events were observed. Total SM17 exposure increased by approximately 60- to 188-fold with a 60-fold increase in dose from 20 to 1200 mg SM17. Upon administration of the third dose, mean accumulation ratios over 200-600 mg was 1.5 to 2.1, which confirms moderate accumulation of SM17. After Q2W dosing of SM17 over 4 weeks, total exposure increased in a dose-proportional manner from 200 mg to 600 mg SM17. Conclusion In the pre-clinical studies, we demonstrated that SM17 is a potential therapeutic agent to treat allergic asthma. In the Phase 1 clinical trial, a single IV dose of SM17 up to 1200 mg and three Q2W doses up to 600 mg were well tolerated in healthy participants and demonstrated a favorable safety profile. The pre-clinical efficacy and clinical PK and immunogenicity results of SM17 support further clinical development. Clinical trial registration https://clinicaltrials.gov/, identifier NCT05332834.
Collapse
Affiliation(s)
- Guolin Xu
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| | | | - Xuchen Qian
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| | - Ru Ding
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| | | | | | | | - Chin Wai Hui
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| | - Lik Hang Lam
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| | - Weimin Li
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| | - Wai Chung Wu
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| | | | - Allen Hunt
- Celerion Inc., Lincoln, NE, United States
| | - Shui-on Leung
- SinoMab BioScience Limited, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhou X, Simonin EM, Jung YS, Galli SJ, Nadeau KC. Role of allergen immunotherapy and biologics in allergic diseases. Curr Opin Immunol 2024; 91:102494. [PMID: 39357079 PMCID: PMC11609009 DOI: 10.1016/j.coi.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The rise in the prevalence of allergic diseases has become a global health burden. Allergic diseases are a group of immune-mediated disorders characterized by IgE-mediated conditions resulting from a type 2 helper T cell (Th2)-skewed immune response. This review aims to comprehensively summarize recent research on the roles of allergen immunotherapy (AIT) and biologics in allergic diseases. Specifically, we review the mechanisms of AIT and biologics in modulating innate and adaptive immunity involved in allergic disease pathogenesis, as well as their safety and efficacy in the treatment of allergic diseases. We also discuss current new AIT strategies such as recombinant allergen-based vaccines and allergen extract nanoencapsulation. Further research is needed to understand immune tolerance mechanisms beyond the Th2 pathway and to characterize immunological changes in responders and nonresponders to AIT or biologics. This additional research may uncover new targets for monitoring treatment responses and developing personalized treatment strategies for allergic diseases.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Youn S Jung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephen J Galli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
5
|
Domvri K, Tsiouprou I, Bakakos P, Steiropoulos P, Katsoulis K, Kostikas K, Antoniou KM, Papaioannou AI, Rovina N, Katsaounou P, Papamitsou T, Pastelli N, Tryfon S, Fouka E, Papakosta D, Loukides S, Porpodis K. Effect of mepolizumab in airway remodeling in patients with late-onset severe asthma with an eosinophilic phenotype. J Allergy Clin Immunol 2024:S0091-6749(24)01168-0. [PMID: 39521278 DOI: 10.1016/j.jaci.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Clinical trials and real-world experience have provided evidence for the clinical benefits of mepolizumab, an anti-IL-5 biologic, in severe asthma. However, limited data exist regarding the impact of mepolizumab on airway remodeling. OBJECTIVE We sought to investigate the effect of mepolizumab on airway structural remodeling in patients treated for severe asthma in routine clinical care. METHODS The MESILICO (Efficacy of Mepolizumab in patients with latE-onset Severe eosInophiLic asthma and fIxed obstruCtiOn) study is a multicenter study involving 8 pulmonology departments in Greece. This study focused on patients who initiated mepolizumab for severe asthma with an eosinophilic phenotype and had late-onset disease with obstructive patterns (impaired reversibility). Forty-seven patients were recruited, of whom 41 were enrolled in the bronchoscopy substudy. The findings were related to clinical outcome. RESULTS After 12 months, mepolizumab treatment was associated with significant improvements in lung function and Asthma Control Test score, along with a significant decrease in severe exacerbation events (P < .001). Thirty-four of the 41 participants (83%) had paired biopsies for comparative analysis. There was a significant reduction from baseline in sub-basement membrane thickness, airway smooth muscle area, airway smooth muscle layer thickness, extent of epithelial damage, and number of tissue eosinophils (all P < .001). The extent of reduction in airway smooth muscle layer thickness positively correlated with the submucosal eosinophil reduction (r = 0.599; P < .001). CONCLUSIONS This study identified that 12 months of mepolizumab treatment in patients with late-onset severe asthma, who are also characterized by eosinophilic and impaired reversibility phenotypes, not only leads to clinical improvement but also reduces indices of airway tissue remodeling suggestive of a disease-modifying effect.
Collapse
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Pathology, George Papanikolaou General Hospital of Thessaloniki, Thessaloniki, Greece.
| | - Ioanna Tsiouprou
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Bakakos
- 1st Respiratory Department, Sotiria Chest Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, University General Hospital Dragana, Alexandroupolis, Greece
| | | | | | - Katerina M Antoniou
- Department of Thoracic Medicine and Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Crete, Greece
| | - Andriana I Papaioannou
- 1st Respiratory Department, Sotiria Chest Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikoletta Rovina
- 1st Respiratory Department, Sotiria Chest Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Paraskevi Katsaounou
- Pulmonary and Respiratory Failure Department, First ICU, Evaggelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nicoleta Pastelli
- Department of Pathology, George Papanikolaou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stavros Tryfon
- Pulmonary Department (NHS), George Papanikolaou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Fouka
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Papakosta
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stelios Loukides
- Attiko University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Porpodis
- Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Betancor D, Bautista S, López-Rodríguez R, Valverde-Monge M, Fernández-Nieto M, Rial MJ. Four-month real-life response to Tezepelumab in patients with multi-failure to other biologics. Allergol Immunopathol (Madr) 2024; 52:76-78. [PMID: 39515799 DOI: 10.15586/aei.v52i6.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
To evaluate the response to Tezepelumab in real clinical practice, we performed an analysis of the clinical, functional, and inflammatory characteristics of 13 patients with severe asthma after completing four doses of Tezepelumab was performed. When comparing clinical parameters such as asthma control test (ACT), FENO value, exacerbations in the last 4 months, blood eosinophils and FEV1%, before receiving Tezepelumab and after four doses of Tezepelumab, statistically significant differences were found in ACT levels (p=0.0072), exacerbations (p=0.018) and FEV1% (p=0.012) before and after four doses of Tezepelumab. No statistically significant differences were found in blood eosinophils or FeNO levels, however, a mean reduction of 102.5±231 cells/mm3 and 14.67±30 ppb, respectively, was observed. Patients with a high T2 profile had significantly higher baseline FeNO (p<0.05), but no significant improvement in lung function or asthma control was observed in this group. Patients with Aspirin-exacerbated respiratory disease (AERD) were evaluated separately. There was no difference in ACT, FeNO, or lung function changes after tezepelumab use compared to patients without AERD (all p>0.05). We demonstrated, in a multicenter study, the clinical improvement associated with tezepelumab treatment in severe uncontrolled asthma, independent of inflammatory biomarkers, eosinophilic profile, or previous biological failure.
Collapse
Affiliation(s)
- Diana Betancor
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- CIBER Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Sara Bautista
- Allergy Department, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | | | - Marcela Valverde-Monge
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- CIBER Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Mar Fernández-Nieto
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Manuel J Rial
- CIBER Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Allergy Department, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- INIBIC, A Coruña, Spain;
| |
Collapse
|
7
|
Pelaia C, Crimi C, Benfante A, Caiaffa MF, Campisi R, Candia C, Carpagnano GE, Carrieri I, D'Amato M, Detoraki A, Barbaro MPF, Lombardo N, Macchia L, Maglio A, Minenna E, Nolasco S, Paglino G, Papia F, Ricciardi L, Scichilone N, Scioscia G, Spadaro G, Tondo P, Uletta Lionetti S, Valenti G, Vatrella A, Crimi N, Pelaia G. Sustained remission induced by 2 years of treatment with benralizumab in patients with severe eosinophilic asthma and nasal polyposis. Respirology 2024; 29:869-879. [PMID: 38847185 DOI: 10.1111/resp.14767] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/09/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Several randomized controlled trials (RCTs) have shown that benralizumab is characterized by a good profile of efficacy and safety, thereby being potentially able to elicit clinical remission on-treatment of severe eosinophilic asthma (SEA). The main goal of this multicentre observational study was to verify the effectiveness of benralizumab in inducing a sustained remission on-treatment of SEA in patients with or without comorbid chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS Throughout 2 years of treatment with benralizumab, a four-component evaluation of sustained remission of SEA was performed, including the assessment of SEA exacerbations, use of oral corticosteroids (OCSs), symptom control and lung function. RESULTS The present study recruited 164 patients suffering from SEA. After 24 months of add-on biological therapy with benralizumab, 69 (42.1%) achieved the important target of sustained remission on-treatment (exacerbation rate = 0, OCS dose = 0, pre-bronchodilator FEV1 ≥80% pred., ACT score ≥ 20). During the same period, a persistent improvement of CRSwNP (SNOT-22 < 30, NP recurrence = 0) was observed in 33 (40.2%) out of 82 subjects with concomitant NP. The latter comorbidity and post-bronchodilator reversibility of airflow limitation were two independent predictors of sustained remission on-treatment (OR = 2.32, p < 0.05 and OR = 5.59, p < 0.01, respectively). CONCLUSION Taken together, the results of this real-life clinical investigation indicate that benralizumab can induce a sustained remission on-treatment of SEA, especially in those patients with comorbid CRSwNP and reversible airflow limitation.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alida Benfante
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | | | - Raffaele Campisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Claudio Candia
- Department of Respiratory Medicine, "V. Monaldi University Hospital", Naples, Italy
| | | | - Isabella Carrieri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria D'Amato
- Department of Respiratory Medicine, "V. Monaldi University Hospital", Naples, Italy
| | - Aikaterini Detoraki
- Department of Translational Medical Sciences, University "Federico II" of Naples, Naples, Italy
| | | | - Nicola Lombardo
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University "Aldo Moro" of Bari, Bari, Italy
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Elena Minenna
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Paglino
- Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
| | - Francesco Papia
- Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
| | - Luisa Ricciardi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Nicola Scichilone
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University "Federico II" of Naples, Naples, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Giuseppe Valenti
- Allergology and Pulmonology Unit, Provincial Outpatient Center of Palermo, Palermo, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Nunzio Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Yin J, Chen J, Wang T, Sun H, Yan Y, Zhu C, Huang L, Chen Z. Coinhibitory Molecule VISTA Play an Important Negative Regulatory Role in the Immunopathology of Bronchial Asthma. J Asthma Allergy 2024; 17:813-832. [PMID: 39246611 PMCID: PMC11378793 DOI: 10.2147/jaa.s449867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/01/2024] [Indexed: 09/10/2024] Open
Abstract
Objective To investigate the significance of VISTA in bronchial asthma and its impact on the disease. Methods Human peripheral blood of asthma children was gathered. The expression concentrations of VISTA, IL-4, IL-6, CD25, CD40L, and PD-L2 in peripheral blood plasma were detected by ELISA. We established the mouse model of asthma and intervened with agonistic anti-VISTA mAb (4C11) and VISTA fusion protein. ELISA, flow cytometry, and Western blotting were performed to detect the expression levels of Th1, Th2, and Th17 cell subsets and related characteristic cytokines, as well as the protein levels of MAPKs, NF-κB, and TRAF6 in lung tissues. In addition, the infiltration of eosinophils and inflammatory cells, airway mucus secretion, and VISTA protein expression in lung histopathological sections of different groups of mice were analyzed. Results The concentration of VISTA in human asthma group decreased significantly (p < 0.05); A positive correlation was observed between VISTA and CD40L. The intervention of 4C11 mAb and fusion protein respectively during the induction period increase the differentiation of Th1 cells and the secretion of IFN-γ, and inhibit the differentiation of Th2 and Th17 cells, as well as the secretion of IL-4, IL-5, IL-13 and IL-17, partially reduce the pathological changes of asthma in mouse lungs and correct the progress of asthma. The MAPK, NF-κB, and TRAF6 protein levels were the middle range in the 4C11 mAb and fusion protein groups (p < 0.05). Conclusion The findings suggest VISTA may play a negative regulatory role in the occurrence and development of bronchial asthma.
Collapse
Affiliation(s)
- Jianqun Yin
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiawei Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ting Wang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiming Sun
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongdong Yan
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Canhong Zhu
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Huang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhengrong Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
9
|
Wang YY, Jia ZH, Wang QJ, Zhu ZT. Eosinophils and drugs for eosinophilia are associated with the risk of colorectal cancer: a Mendelian randomization study. Aging (Albany NY) 2024; 16:12050-12062. [PMID: 39181688 PMCID: PMC11386931 DOI: 10.18632/aging.206081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/11/2024] [Indexed: 08/27/2024]
Abstract
Eosinophils have the potential to exhibit both anti-tumor properties and tumor-promoting effects. However, the impact of eosinophil levels in the bloodstream on tumorigenesis risk remains inadequately explored. Furthermore, investigations regarding the association between drugs regulating eosinophils and cancer risk are currently absent. In this study, we conducted a Mendelian randomization (MR) analysis utilizing eosinophil count and eosinophil percentage as exposures. In both cohorts, a significant association was observed between eosinophil count and the risk of colorectal cancer and skin malignancies. However, upon conducting a sensitivity analysis, heterogeneity was detected specifically in relation to skin malignancies. Subsequent reverse Mendelian randomization analysis did not indicate any evidence of reverse causality. Furthermore, the multivariate Mendelian randomization analysis results suggested that eosinophils act as a mediating factor in reducing the risk of colorectal cancer and skin malignancies in individuals with asthma. And the use of drugs that modulate eosinophilia may increase the risk of colorectal cancer. It is evident that the statistical evidence supporting a negative correlation between eosinophils count and the susceptibility to colorectal cancer is particularly robust. And, it is plausible to suggest that pharmaceutical interventions aimed at modulating eosinophilia may potentially heighten the risk of colorectal cancer. Hence, it is imperative to exercise caution and remain mindful of the potential risk of colorectal cancer when employing these medications.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Cancer Clinical Research Ward, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhi-Han Jia
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qing-Jun Wang
- Cancer Clinical Research Ward, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhi-Tu Zhu
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Institute of Clinical Bioinformatics, Cancer Center of Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Zheng Y, Chen Q, Shi X, Lei L, Wang D. Causality between various cytokines and asthma: a bidirectional two-sample Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1447673. [PMID: 39175819 PMCID: PMC11338859 DOI: 10.3389/fmed.2024.1447673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Background Many studies have shown that cytokines play an important role in the pathogenesis of asthma, but their biological effects on asthma remain unclear. The Mendelian randomization (MR) method was used to evaluate the causal relationship between various cytokines [such as interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), colony-stimulating factors (CSFs), transforming growth factor (TGF), etc.,] and asthma. Methods In this study, inverse variance weighting was used to evaluate the causal relationship between asthma and cytokines. In addition, the reliability of the results is ensured by multiple methods such as MR-Egger, weighted median, MR-Raps, MR-Presso, and RadialMR, as well as sensitivity analysis. Results The results showed that none of the 11 cytokines was associated with the risk of asthma. In contrast, asthma can increase levels of IL-5 [odds ratio (OR) = 1.112, 95% confidence interval (CI): 1.009-1.224, P = 0.032] and IL-9 (OR = 1.111, 95% CI: 1.013-1.219, P = 0.025). Conclusion Genetically predicted asthma was positively associated with elevated levels of IL-5 and IL-9, indicating the downstream effects of IL-5 and IL-9 on asthma. Medical treatments can thus be designed to target IL-5 and IL-9 to prevent asthma exacerbations.
Collapse
Affiliation(s)
- Yansen Zheng
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| | - Qi Chen
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Xiaqing Shi
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Lei Lei
- Jice Medical Institute, Xi’an, Shaanxi, China
| | - Donglin Wang
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
11
|
AbuJabal R, Ramakrishnan RK, Bajbouj K, Hamid Q. Role of IL-5 in asthma and airway remodelling. Clin Exp Allergy 2024; 54:538-549. [PMID: 38938056 DOI: 10.1111/cea.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Asthma is a common and burdensome chronic inflammatory airway disease that affects both children and adults. One of the main concerns with asthma is the manifestation of irreversible tissue remodelling of the airways due to the chronic inflammatory environment that eventually disrupts the whole structure of the airways. Most people with troublesome asthma are treated with inhaled corticosteroids. However, the development of steroid resistance is a commonly encountered issue, necessitating other treatment options for these patients. Biological therapies are a promising therapeutic approach for people with steroid-resistant asthma. Interleukin 5 is recently gaining a lot of attention as a biological target relevant to the tissue remodelling process. Since IL-5-neutralizing monoclonal antibodies (mepolizumab, reslizumab and benralizumab) are currently available for clinical use, this review aims to revisit the role of IL-5 in asthma pathogenesis at large and airway remodelling in particular, in addition to exploring its role as a target for biological treatments.
Collapse
Affiliation(s)
- Rola AbuJabal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qutayba Hamid
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada
| |
Collapse
|
12
|
Goleij P, Rahimi M, Pourshahroudi M, Tabari MAK, Muhammad S, Suteja RC, Daglia M, Majma Sanaye P, Hadipour M, Khan H, Sadeghi P. The role of IL-2 cytokine family in asthma. Cytokine 2024; 180:156638. [PMID: 38761716 DOI: 10.1016/j.cyto.2024.156638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The interleukin-2 (IL-2) family of cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, are pivotal regulators of the immune response, impacting both innate and adaptive immunity. Understanding their molecular characteristics, receptor interactions, and signalling pathways is essential for elucidating their roles in health and disease. OBJECTIVES This review provides a comprehensive overview of the IL-2 family of cytokines, highlighting their molecular biology, receptor interactions, and signalling mechanisms. Furthermore, it explores the involvement of IL-2 family cytokines in the pathogenesis of chronic respiratory diseases, with a specific focus on chronic obstructive pulmonary disease (COPD) and asthma. METHODS A thorough literature review was conducted to gather insights into the molecular biology, receptor interactions, and signalling pathways of IL-2 family cytokines. Additionally, studies investigating the roles of these cytokines in chronic respiratory diseases, particularly COPD and asthma, were analysed to discern their implications in wider pathophysiology of disease. RESULTS IL-2 family cytokines exert pleiotropic effects on immune cells, modulating cellular proliferation, differentiation, and survival. Dysregulation of IL-2 family cytokines has been implicated in the pathogenesis of chronic respiratory illnesses, including COPD and asthma. Elevated levels of IL-2 and IL-9 have been associated with disease severity in COPD, while IL-4 and IL-9 play crucial roles in asthma pathogenesis by promoting airway inflammation and remodelling. CONCLUSION Understanding the intricate roles of IL-2 family cytokines in chronic respiratory diseases provides valuable insights into potential therapeutic targets for these conditions. Targeting specific cytokines or their receptors may offer novel treatment modalities to attenuate disease progression and improve clinical outcomes in patients with COPD and asthma.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Rahimi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.
| | - Motahareh Pourshahroudi
- Department of Public Health, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Syed Muhammad
- Farooqia College of Pharmacy, Mysuru, Karnataka, India.
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | | | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Parniyan Sadeghi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Antosz K, Batko J, Błażejewska M, Gawor A, Sleziak J, Gomułka K. Insight into IL-5 as a Potential Target for the Treatment of Allergic Diseases. Biomedicines 2024; 12:1531. [PMID: 39062104 PMCID: PMC11275030 DOI: 10.3390/biomedicines12071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Interleukin-5 functions as a B-cell differentiation factor, but more importantly, in the context of this review, it plays a variety of roles in eosinophil biology, including eosinophil differentiation and maturation in the bone marrow, and facilitates eosinophil migration to tissue sites, usually in the context of an allergic reaction. Given the availability of selective anti-IL-5 drugs such as mepolizumab and reslizumab, as well as the IL-5 receptor antagonist benralizumab, it is worth investigating whether they could be used in some cases of allergic disease. Asthma has a well-documented involvement of IL-5 in its pathophysiology and has clear benefits in the case of anti-IL-5 therapy; therefore, current knowledge is presented to provide a reference point for the study of less-described diseases such as atopic dermatitis, chronic rhinosinusitis, chronic spontaneous urticaria, and its association with both IL-5 and anti-IL-5 treatment options. We then review the current literature on these diseases, explain where appropriate potential reasons why anti-IL-5 treatments are ineffective, and then point out possible future directions for further research.
Collapse
Affiliation(s)
- Katarzyna Antosz
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Joanna Batko
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Marta Błażejewska
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Antoni Gawor
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Jakub Sleziak
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Krzysztof Gomułka
- Department of Internal Medicine, Pneumology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
14
|
Venegas Garrido C, Mukherjee M, Svenningsen S, Nair P. Eosinophil-mucus interplay in severe asthma: Implications for treatment with biologicals. Allergol Int 2024; 73:351-361. [PMID: 38485545 DOI: 10.1016/j.alit.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/23/2024] Open
Abstract
Airway mucus is a hydrogel with unique biophysical properties due to its primary water composition and a small proportion of large anionic glycoproteins or mucins. The predominant mucins in human mucus, MUC5AC and MUC5B, are secreted by specialized cells within the airway epithelium both in normal conditions and in response to various stimuli. Their relative proportions are correlated with specific inflammatory responses and disease mechanisms. The dysregulation of mucin expression is implicated in numerous respiratory diseases, including asthma, COPD, and cystic fibrosis, where the pathogenic role of mucus has been extensively described yet often overlooked. In airway diseases, excessive mucus production or impaired mucus clearance leads to mucus plugging, with secondary airway occlusion that contribute to airflow obstruction, asthma severity and poor control. Eosinophils and Charcot Leyden crystals in sputum contribute to the mucus burden and tenacity. Mucin may also contribute to eosinophil survival. Other mechanisms, including eosinophil-independent IL-13 release, mast-cell activation and non-type-2 (T2) cytokines, are also likely to participate in mucus pathobiology. An accurate assessment of mucus and its clinical and functional consequences require a thorough approach that includes evaluation of cellular predominance in sputum, airway cytokines and other inflammatory markers, mucus characteristics and composition and structural and functional impact measured by advanced lung imaging. This review, illustrated with clinical scenarios, provides an overview of current methods to assess mucus and its relevance to the choice of biologics to treat patients with severe asthma.
Collapse
Affiliation(s)
- Carmen Venegas Garrido
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada
| | - Manali Mukherjee
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada
| | - Sarah Svenningsen
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Pilkington AW, Buragamadagu B, Johnston RA. Weighted Breaths: Exploring Biologic and Non-Biologic Therapies for Co-Existing Asthma and Obesity. Curr Allergy Asthma Rep 2024; 24:381-393. [PMID: 38878250 PMCID: PMC11233394 DOI: 10.1007/s11882-024-01153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW To discuss the effectiveness of biologics, some of which comprise the newest class of asthma controller medications, and non-biologics in the treatment of asthma co-existing with obesity. RECENT FINDINGS Our review of recent preliminary and published data from clinical trials revealed that obese asthmatics respond favorably to dupilumab, mepolizumab, omalizumab, and tezepelumab, which are biologics currently indicated as add-on maintenance therapy for severe asthma. Furthermore, clinical trials are ongoing to assess the efficacy of non-biologics in the treatment of obese asthma, including a glucagon-like peptide-1 receptor agonist, a Janus kinase inhibitor, and probiotics. Although many biologics presently indicated as add-on maintenance therapy for severe asthma exhibit efficacy in obese asthmatics, other phenotypes of asthma co-existing with obesity may be refractory to these medications. Thus, to improve quality of life and asthma control, it is imperative to identify therapeutic options for all existing phenotypes of obese asthma.
Collapse
Affiliation(s)
- Albert W Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, United States Department of Health and Human Services, 1000 Frederick Lane, Morgantown, WV, 26508-5402, USA
| | - Bhanusowmya Buragamadagu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, United States Department of Health and Human Services, 1000 Frederick Lane, Morgantown, WV, 26508-5402, USA.
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA.
- Department of Physiology, Pharmacology, and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
16
|
Wijsman PC, Goorsenberg AWM, d'Hooghe JNS, Weersink EJM, Fenn DW, Maitland van der Zee AH, Annema JT, Brinkman P, Bonta PI. Exhaled breath analyses for bronchial thermoplasty in severe asthma patients. Respir Med 2024; 225:107583. [PMID: 38447787 DOI: 10.1016/j.rmed.2024.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Bronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma. Although multiple trials have demonstrated clinical improvement after BT, optimal patient selection remains a challenge and the mechanism of action is incompletely understood. The aim of this study was to examine whether exhaled breath analysis can contribute to discriminate between BT-responders and non-responders at baseline and to explore pathophysiological insights of BT. METHODS Exhaled breath was collected from patients at baseline and six months post-BT. Patients were defined as responders or non-responders based on a half point increase in asthma quality of life questionnaire scores. Gas chromatography-mass spectrometry was used for volatile organic compounds (VOCs) detection and analyses. Analytical workflow consisted of: 1) detection of VOCs that differentiate between responders and non-responders and those that differ between baseline and six months post-BT, 2) identification of VOCs of interest and 3) explore correlations between clinical biomarkers and VOCs. RESULTS Data was available from 14 patients. Nonanal, 2-ethylhexanol and 3-thujol showed a significant difference in intensity between responders and non-responders at baseline (p = 0.04, p = 0.01 and p = 0.03, respectively). After BT, no difference was found in the compound intensity of these VOCs. A negative correlation was observed between nonanal and IgE and BALF eosinophils (r = -0.68, p < 0.01 and r = -0.61, p = 0.02 respectively) and 3-thujol with BALF neutrophils (r = -0.54, p = 0.04). CONCLUSIONS This explorative study identified discriminative VOCs in exhaled breath between BT responders and non-responders at baseline. Additionally, correlations were found between VOC's and inflammatory BALF cells. Once validated, these findings encourage research in breath analysis as a non-invasive easy to apply technique for identifying airway inflammatory profiles and eligibility for BT or immunotherapies in severe asthma.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Annika W M Goorsenberg
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Julia N S d'Hooghe
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Els J M Weersink
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Dominic W Fenn
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | | | - Jouke T Annema
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Paul Brinkman
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Peter I Bonta
- Amsterdam UMC, University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands.
| |
Collapse
|
17
|
Kim B, Rothenberg ME, Sun X, Bachert C, Artis D, Zaheer R, Deniz Y, Rowe P, Cyr S. Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases. J Allergy Clin Immunol 2024; 153:879-893. [PMID: 37634890 PMCID: PMC11215634 DOI: 10.1016/j.jaci.2023.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.
Collapse
Affiliation(s)
- Brian Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, Calif
| | - Claus Bachert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Muenster, Muenster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Sonya Cyr
- Regeneron Pharmaceuticals, Tarrytown, NY
| |
Collapse
|
18
|
Matera MG, Rinaldi B, Calabrese C, Belardo C, Calzetta L, Cazzola M, Page C. The effect of combining an inhaled corticosteroid and a long-acting muscarinic antagonist on human airway epithelial cells in vitro. Respir Res 2024; 25:104. [PMID: 38419021 PMCID: PMC10902985 DOI: 10.1186/s12931-024-02710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Airway epithelial cells (AECs) are a major component of local airway immune responses. Direct effects of type 2 cytokines on AECs are implicated in type 2 asthma, which is driven by epithelial-derived cytokines and leads to airway obstruction. However, evidence suggests that restoring epithelial health may attenuate asthmatic features. METHODS We investigated the effects of passive sensitisation on IL-5, NF-κB, HDAC-2, ACh, and ChAT in human bronchial epithelial cells (HBEpCs) and the effects of fluticasone furoate (FF) and umeclidinium (UME) alone and in combination on these responses. RESULTS IL-5 and NF-κB levels were increased, and that of HDAC-2 reduced in sensitised HEBpCs. Pretreatment with FF reversed the effects of passive sensitisation by concentration-dependent reduction of IL-5, resulting in decreased NF-κB levels and restored HDAC-2 activity. Addition of UME enhanced these effects. Sensitized HEBpCs also exhibited higher ACh and ChAT levels. Pretreatment with UME significantly reduced ACh levels, and addition of FF caused a further small reduction. CONCLUSION This study confirmed that passive sensitisation of AECs results in an inflammatory response with increased levels of IL-5 and NF-κB, reduced levels of HDAC-2, and higher levels of ACh and ChAT compared to normal cells. Combining FF and UME was found to be more effective in reducing IL-5, NF-κB, and ACh and restoring HDAC-2 compared to the individual components. This finding supports adding a LAMA to established ICS/LABA treatment in asthma and suggests the possibility of using an ICS/LAMA combination when needed.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmela Belardo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College, London, UK
| |
Collapse
|
19
|
Palacionyte J, Januskevicius A, Vasyle E, Rimkunas A, Bajoriuniene I, Vitkauskiene A, Miliauskas S, Malakauskas K. Novel Serum Biomarkers for Patients with Allergic Asthma Phenotype. Biomedicines 2024; 12:232. [PMID: 38275403 PMCID: PMC10813071 DOI: 10.3390/biomedicines12010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In distinguishing the allergic asthma (AA) phenotype, it has been identified that specific biomarkers could assist; however, none of them are considered ideal. This study aimed to analyze three groups of biologically active substances in the serum. Twenty steroid-free AA patients, sensitized to Dermatophagoides pteronyssinus, and sixteen healthy subjects (HSs) were enrolled in this study. Blood samples were collected from all patients. Additionally, all AA patients underwent a bronchial allergen challenge (BAC) with Dermatophagoides pteronyssinus, all of which were positive, and blood samples were collected again 24 h later. The concentrations of ten biologically active substances were measured in the serum samples, using enzyme-linked immunosorbent assay (ELISA) and the Luminex® 100/200™ System technology for bead-based multiplex and singleplex immunoassays. Descriptive and analytical statistical methods were used. A p-value of 0.05 or lower was considered statistically significant. The soluble interleukin 5 receptor subunit alpha (sIL-5Rα) and thioredoxin 1 (TRX1) concentrations were significantly increased, whereas those of tyrosine-protein kinase Met (MET), pentraxin 3 (PTX3), and I C-telopeptide of type I collagen (ICTP) were decreased in the AA group compared with the HS group. A significant positive correlation was noted for sIL-5Rα with fractional exhaled nitric oxide (FeNO), blood eosinophil (EOS) count, and total immunoglobulin E (IgE) levels, and a negative correlation was noted with forced expiratory volume in 1 s (FEV1). Moreover, PTX3 showed negative correlations with blood EOS count and total IgE levels, whereas ICTP exhibited a negative correlation with the blood EOS count. In conclusion, this study demonstrated that the serum concentrations of MET, PTX3, TRX1, ICTP, and particularly sIL-5Rα could potentially serve as biomarkers of the AA phenotype.
Collapse
Affiliation(s)
- Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (S.M.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| | - Ieva Bajoriuniene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Skaidrius Miliauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (S.M.); (K.M.)
| | - Kestutis Malakauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (S.M.); (K.M.)
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (E.V.); (A.R.)
| |
Collapse
|
20
|
Garg D, Que LG, Ingram JL. Effects of biological therapies on patients with Type-2 high asthma and comorbid obesity. Front Pharmacol 2024; 14:1315540. [PMID: 38259298 PMCID: PMC10800376 DOI: 10.3389/fphar.2023.1315540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Over 20 million adults and 6 million children in the United States (US) have asthma, a chronic respiratory disease characterized by airway inflammation, bronchoconstriction, and mucus hypersecretion. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of diminished asthma control, increased submucosal eosinophilia, and reduced quality of life. A large subgroup of these patients experiences severe symptoms and recurrent exacerbations despite maximal dosage of standard asthma therapies. In the past two decades, the development of biological therapies has revolutionized the field and advanced our understanding of type 2 inflammatory biomarkers. However, patients with obesity and comorbid asthma are not principally considered in clinical trials of biologics. Large landmark cluster analyses of patients with asthma have consistently identified specific asthma phenotypes that associate with obesity but may be differentiated by age of asthma onset and inflammatory cell profiles in sputum. These patterns suggest that biologic processes driving asthma pathology are heterogenous among patients with obesity. The biological mechanisms driving pathology in patients with asthma and comorbid obesity are not well understood and likely multifactorial. Future research needs to be done to elicit the cellular and metabolic functions in the relationship of obesity and asthma to yield the best treatment options for this multiplex condition. In this review, we explore the key features of type 2 inflammation in asthma and discuss the effectiveness, safety profile, and research gaps regarding the currently approved biological therapies in asthma patients with obesity.
Collapse
Affiliation(s)
- Diya Garg
- Department of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, Irvine, CA, United States
| | - Loretta G. Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jennifer L. Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
21
|
Ying Z, Hardikar S, Plummer JB, Hamidi T, Liu B, Chen Y, Shen J, Mu Y, McBride KM, Chen T. Enhanced CD19 activity in B cells contributes to immunodeficiency in mice deficient in the ICF syndrome gene Zbtb24. Cell Mol Immunol 2023; 20:1487-1498. [PMID: 37990035 PMCID: PMC10687020 DOI: 10.1038/s41423-023-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder characterized by DNA hypomethylation and antibody deficiency. It is caused by mutations in DNMT3B, ZBTB24, CDCA7, or HELLS. While progress has been made in elucidating the roles of these genes in regulating DNA methylation, little is known about the pathogenesis of the life-threatening hypogammaglobulinemia phenotype. Here, we show that mice deficient in Zbtb24 in the hematopoietic lineage recapitulate the major clinical features of patients with ICF syndrome. Specifically, Vav-Cre-mediated ablation of Zbtb24 does not affect lymphocyte development but results in reduced plasma cells and low levels of IgM, IgG1, and IgA. Zbtb24-deficient mice are hyper and hypo-responsive to T-dependent and T-independent type 2 antigens, respectively, and marginal zone B-cell activation is impaired. Mechanistically, Zbtb24-deficient B cells show severe loss of DNA methylation in the promoter region of Il5ra (interleukin-5 receptor subunit alpha), and Il5ra derepression leads to elevated CD19 phosphorylation. Heterozygous disruption of Cd19 can revert the hypogammaglobulinemia phenotype of Zbtb24-deficient mice. Our results suggest the potential role of enhanced CD19 activity in immunodeficiency in ICF syndrome.
Collapse
Affiliation(s)
- Zhengzhou Ying
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tewfik Hamidi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yueping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Li W, Xue L, Peng C, Zhao P, Peng Y, Chen W, Wang W, Shen J. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, relieves airway hyperresponsiveness, mucus hypersecretion and inflammation in a murine asthma model. Mol Med 2023; 29:154. [PMID: 37936054 PMCID: PMC10629066 DOI: 10.1186/s10020-023-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Tyrosine kinase and phosphoinositide kinase pathways play important roles in asthma formation. As a dual tyrosine and phosphoinositide kinase inhibitor, PP121 has shown anticancer efficacy in multiple tumors. However, the study of PP121 in pulmonary diseases is still limited. Herein, we investigated the therapeutic activities of PP121 in asthma treatment. METHODS Tension measurements and patch clamp recordings were made to investigate the anticontractile characteristics of PP121 in vitro. Then, an asthma mouse model was established to further explore the therapeutic characteristics of PP121 via measurement of respiratory system resistance, histological analysis and western blotting. RESULTS We discovered that PP121 could relax precontracted mouse tracheal rings (mTRs) by blocking certain ion channels, including L-type voltage-dependent Ca2+ channels (L-VDCCs), nonselective cation channels (NSCCs), transient receptor potential channels (TRPCs), Na+/Ca2+ exchangers (NCXs) and K+ channels, and accelerating calcium mobilization. Furthermore, PP121 relieved asthmatic pathological features, including airway hyperresponsiveness, systematic inflammation and mucus secretion, via downregulation of inflammatory factors, mucins and the mitogen-activated protein kinase (MAPK)/Akt signaling pathway in asthmatic mice. CONCLUSION In summary, PP121 exerts dual anti-contractile and anti-inflammatory effects in asthma treatment, which suggests that PP121 might be a promising therapeutic compound and shed new light on asthma therapy.
Collapse
Affiliation(s)
- Wei Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Changsi Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yongbo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
23
|
Pagovich OE, Crystal RG. Gene Therapy for Immunoglobulin E, Complement-Mediated, and Eosinophilic Disorders. Hum Gene Ther 2023; 34:986-1002. [PMID: 37672523 PMCID: PMC10616964 DOI: 10.1089/hum.2023.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/30/2023] [Indexed: 09/08/2023] Open
Abstract
Immunoglobulin E, complement, and eosinophils play an important role in host defense, but dysfunction of each of these components can lead to a variety of human disorders. In this review, we summarize how investigators have adapted gene therapy and antisense technology to modulate immunoglobulin E, complement, and/or eosinophil levels to treat these disorders.
Collapse
Affiliation(s)
- Odelya E. Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
24
|
Ten Have L, Visser E, Meulmeester FL, Bendien SA, Braunstahl GJ, Broeders MEAC, Fieten KB, Hashimoto S, van Huisstede A, Langeveld B, Oud KTM, Patberg KW, Smeenk FWJM, van Veen A, van Veen IH, van de Ven MJT, Weersink EJM, de Jong K, Sont JK, Kroes JA, Ten Brinke A. Long-Term Weight Changes After Starting Anti-IL-5/5Ra Biologics in Severe Asthma: The Role of Oral Corticosteroids. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2748-2756.e3. [PMID: 37399945 DOI: 10.1016/j.jaip.2023.06.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Many patients with severe asthma are overweight or obese, often attributed to unintentional weight gain as a side effect of oral corticosteroids (OCSs). Anti-IL-5/5Ra biologics significantly reduce OCS use, but their long-term effects on weight are unknown. OBJECTIVES To examine (1) weight change up to 2 years after anti-IL-5/5Ra initiation in subgroups on the basis of maintenance OCS use at start of treatment and (2) whether cumulative OCS exposure before or changes in OCS exposure during treatment are related to weight change. METHODS Real-world data on weight and cumulative OCS dose from adults included in the Dutch Registry of Adult Patients with Severe asthma for Optimal DIsease management before and at least 2 years after starting anti-IL-5/5Ra were analyzed using linear mixed models and linear regression analyses. RESULTS For the included 389 patients (55% female; mean body mass index, 28 ± 5 kg/m2; 58% maintenance OCS), mean weight decreased -0.27 kg/y (95% CI, -0.51 to -0.03; P = .03), with more weight loss in patients with maintenance OCS use than in those without maintenance OCS use (-0.87 kg/y [95% CI, -1.21 to -0.52; P < .001] vs +0.54 kg/y [0.26 to 0.82; P < .001]). Greater weight loss at 2 years was associated with higher cumulative OCS dose in the 2 years before anti-IL-5/5Ra initiation (β = -0.24 kg/g; 95% CI, -0.38 to -0.10; P < .001) and, independently, greater reduction in cumulative OCS dose during follow-up (β = 0.27 kg/g; 95% CI, 0.11 to 0.43; P < .001). CONCLUSIONS Anti-IL-5/5Ra therapy is associated with long-term weight reduction, especially in patients with higher OCS exposure before treatment and those able to reduce OCS use during treatment. However, the effect is small and does not apply to all patients, and so additional interventions seem necessary if weight change is desired.
Collapse
Affiliation(s)
- Lianne Ten Have
- Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Department of Biomedical Data Science, Medical Decision Making, Leiden University Medical Center, Leiden, The Netherlands.
| | - Edith Visser
- Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Fleur L Meulmeester
- Department of Biomedical Data Science, Medical Decision Making, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah A Bendien
- Department of Respiratory Medicine, HAGA Teaching Hospital, Den Haag, The Netherlands
| | - Gert-Jan Braunstahl
- Department of Respiratory Medicine, St Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
| | - Marielle E A C Broeders
- Department of Respiratory Medicine, Jeroen Bosch Hospital, 's Hertogenbosch, The Netherlands
| | - Karin B Fieten
- Nederlands Astmacentrum Davos, Davos, Switzerland; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Simone Hashimoto
- Department of Pulmonary Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bas Langeveld
- Department of Respiratory Medicine, Deventer Ziekenhuis, Deventer, The Netherlands
| | - Karen T M Oud
- Department of Respiratory Medicine, Ziekenhuis Gelderse Vallei, Ede, The Netherlands
| | - Kornelis W Patberg
- Department of Respiratory Medicine, ISALA Clinics, Zwolle, The Netherlands
| | - Frank W J M Smeenk
- Department of Respiratory Medicine, Catharina Hospital, Eindhoven, The Netherlands
| | - Anneke van Veen
- Department of Respiratory Medicine, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Ilonka H van Veen
- Department of Respiratory Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | | | - Els J M Weersink
- Department of Pulmonary Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Kim de Jong
- Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Jacob K Sont
- Department of Biomedical Data Science, Medical Decision Making, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes A Kroes
- Department of Clinical Pharmacy and Pharmacology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Anneke Ten Brinke
- Department of Pulmonary Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| |
Collapse
|
25
|
Du L, Xu C, Tang K, Shi J, Tang L, Lisha X, Lei C, Liu H, Liang Y, Guo Y. Epithelial CST1 Promotes Airway Eosinophilic Inflammation in Asthma via the AKT Signaling Pathway. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:374-394. [PMID: 37075800 DOI: 10.4168/aair.2023.15.3.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 05/17/2023]
Abstract
PURPOSE Epithelial cystatin SN (CST1), a type 2 cysteine protease inhibitor, was significantly upregulated in asthma. In this study, we aimed to investigate the potential role and mechanism of CST1 in eosinophilic inflammation in asthma. METHODS Bioinformatics analysis on Gene Expression Omnibus datasets were used to explore the expression of CST1 in asthma. Sputum samples were collected from 76 asthmatics and 22 control subjects. CST1 mRNA and protein expression in the induced sputum were measured by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. The possible function of CST1 was explored in ovalbumin (OVA)-induced eosinophilic asthma. Transcriptome sequencing (RNA-seq) was used to predict the possible regulated mechanism of CST1 in bronchial epithelial cells. Overexpression or knockdown of CST1 was further used to verify potential mechanisms in bronchial epithelial cells. RESULTS CST1 expression was significantly increased in the epithelial cells and induced sputum of asthma. Increased CST1 was significantly associated with eosinophilic indicators and T helper cytokines. CST1 aggravated airway eosinophilic inflammation in the OVA-induced asthma model. In addition, overexpression of CST1 significantly enhanced the phosphorylation of AKT and the expression of serpin peptidase inhibitor, clade B, member 2 (SERPINB2), while knockdown using anti-CST1 siRNA reversed the trend. Furthermore, AKT had a positive effect on SERPINB2 expression. CONCLUSIONS Increased sputum CST1 may play a key role in the pathogenesis of asthma through involvement in eosinophilic and type 2 inflammation through activation of the AKT signaling pathway, further promoting SERPINB2 expression. Therefore, targeting CST1 might be of therapeutic value in treating asthma with severe and eosinophilic phenotypes.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changyi Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Kun Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Jia Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Lu Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Xiao Lisha
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Chengcheng Lei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Huicong Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Yuxia Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China.
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
26
|
Du L, Tang L, Xiao L, Tang K, Zeng Z, Liang Y, Guo Y. Increased expression of CSF1 in patients with eosinophilic asthma. Immun Inflamm Dis 2023; 11:e847. [PMID: 37249291 PMCID: PMC10170305 DOI: 10.1002/iid3.847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The link between colony-stimulating factor 1 (CSF1) and asthma was reported recently. However, the role and mechanism of CSF1 in asthma remain poorly understood. In this study, we aimed to explore the expression and its potential mechanism of CSF1 in asthma. METHODS CSF1 expression in the airway samples from asthmatics and healthy controls were examined, then the correlations between CSF1 and eosinophilic indicators were analyzed. Subsequently, bronchial epithelial cells (BEAS-2B) with CSF1 overexpression and knockdown were constructed to investigate the potential molecular mechanism of CSF1. Finally, the effect of CSF1R inhibitor on STAT1 was investigated. RESULTS The expression of CSF1 was significantly increased in patients with asthma compared to healthy controls, especially in patients with severe and eosinophilic asthma. Upregulated CSF1 positively correlated with airway-increased eosinophil inflammation. In vitro, cytokines interleukin 13 (IL-13) and IL-33 can stimulate the upregulation of CSF1 expression. CSF1 overexpression enhanced p-CSF1R/CSF1R and p-STAT1/STAT1 expression, while knockdown CSF1 using anti-CSF1 siRNAs decreased p-CSF1R/CSF1R and p-STAT1/STAT1 expression. Furthermore, the inhibitor of CSF1R significantly decreased p-STAT1/STAT1 expression. CONCLUSIONS Sputum CSF1 may be involved in asthmatic airway eosinophil inflammation by interacting with CSF1R and further activating the STAT1 signaling. Interfering this potential pathway could serve as an anti-inflammatory therapy for asthma.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Department of Respiratory and Critical Care MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Lu Tang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Lisha Xiao
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Kun Tang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Zhimin Zeng
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yuxia Liang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yubiao Guo
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
27
|
Naorem LD, Sharma N, Raghava GPS. A web server for predicting and scanning of IL-5 inducing peptides using alignment-free and alignment-based method. Comput Biol Med 2023; 158:106864. [PMID: 37058758 DOI: 10.1016/j.compbiomed.2023.106864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Interleukin-5 (IL-5) can act as an enticing therapeutic target due to its pivotal role in several eosinophil-mediated diseases. The aim of this study is to develop a model for predicting IL-5 inducing antigenic regions in a protein with high precision. All models in this study have been trained, tested and validated on experimentally validated 1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from IEDB. Our primary analysis indicates that IL-5 inducing peptides are dominated by certain residues like Ile, Asn, and Tyr. It was also observed that binders of a wide range of HLA alleles can induce IL-5. Initially, alignment-based methods have been developed using similarity and motif search. These alignment-based methods provide high precision but poor coverage. In order to overcome this limitation, we explore alignment-free methods which are mainly machine learning-based models. Firstly, models have been developed using binary profiles and eXtreme Gradient Boosting-based model achieved a maximum AUC of 0.59. Secondly, composition-based models have been developed and our dipeptide-based random forest model achieved a maximum AUC of 0.74. Thirdly, random forest model developed using selected 250 dipeptides and achieved AUC 0.75 and MCC 0.29 on validation dataset; best among alignment-free models. In order to improve the performance, we developed an ensemble or hybrid method that combined alignment-based and alignment-free methods. Our hybrid method achieved AUC 0.94 with MCC 0.60 on a validation/independent dataset. The best hybrid model developed in this study has been incorporated into the user-friendly web server and a standalone package named 'IL5pred' (https://webs.iiitd.edu.in/raghava/il5pred/).
Collapse
Affiliation(s)
- Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
28
|
Ying Z, Hardikar S, Plummer JB, Hamidi T, Liu B, Chen Y, Shen J, Mu Y, McBride KM, Chen T. Characterization of a mouse model of ICF syndrome reveals enhanced CD19 activation in inducing hypogammaglobulinemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531982. [PMID: 36945532 PMCID: PMC10028988 DOI: 10.1101/2023.03.09.531982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive disorder characterized by DNA hypomethylation and antibody deficiency. It is caused by mutations in DNMT3B, ZBTB24, CDCA7 or HELLS . While progress has been made in elucidating the roles of these genes in regulating DNA methylation, little is known about the pathogenesis of the life-threatening hypogammaglobulinemia phenotype. Here we show that mice deficient for Zbtb24 in the hematopoietic lineage recapitulate major clinical features of patients with ICF syndrome. Specifically, Vav-Cre-mediated ablation of Zbtb24 does not affect lymphocyte development but results in reduced plasma cells and low levels of IgM, IgG1 and IgA. Zbtb24 -deficient mice are hyper- and hypo-responsive to T-dependent and Tindependent type 2 antigens, respectively, and marginal zone B cell activation is impaired. B cells from Zbtb24 -deficient mice display elevated CD19 phosphorylation. Heterozygous disruption of Cd19 can revert the hypogammaglobulinemia phenotype in these mice. Mechanistically, Il5ra (interleukin-5 receptor subunit alpha) is derepressed in Zbtb24 -deficient B cells, and elevated IL-5 signaling enhances CD19 phosphorylation. Our results reveal a novel link between IL-5 signaling and CD19 activation and suggest that abnormal CD19 activity contributes to immunodeficiency in ICF syndrome. SIGNIFICANCE STATEMENT ICF syndrome is a rare immunodeficiency disorder first reported in the 1970s. The lack of appropriate animal models has hindered the investigation of the pathogenesis of antibody deficiency, the major cause of death in ICF syndrome. Here we show that, in mice, disruption of Zbtb24 , one of the ICF-related genes, in the hematopoietic lineage results in low levels of immunoglobulins. Characterization of these mice reveals abnormal B cell activation due to elevated CD19 phosphorylation. Mechanistically, Il5ra (interleukin-5 receptor subunit alpha) is derepressed in Zbtb24 -deficient B cells, and increased IL-5 signaling enhances CD19 phosphorylation.
Collapse
|
29
|
Martin-Almeida M, Perez-Garcia J, Herrera-Luis E, Rosa-Baez C, Gorenjak M, Neerincx AH, Sardón-Prado O, Toncheva AA, Harner S, Wolff C, Brandstetter S, Valletta E, Abdel-Aziz MI, Hashimoto S, Berce V, Corcuera-Elosegui P, Korta-Murua J, Buntrock-Döpke H, Vijverberg SJH, Verster JC, Kerssemakers N, Hedman AM, Almqvist C, Villar J, Kraneveld AD, Potočnik U, Kabesch M, der Zee AHMV, Pino-Yanes M, Consortium OBOTS. Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030676. [PMID: 36979655 PMCID: PMC10044864 DOI: 10.3390/biomedicines11030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes.
Collapse
Affiliation(s)
- Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Carlos Rosa-Baez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Antoaneta A. Toncheva
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Harner
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Christine Wolff
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Brandstetter
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Elisa Valletta
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Mahmoud I. Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Heike Buntrock-Döpke
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Nikki Kerssemakers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-9223-16502-6343
| | | |
Collapse
|
30
|
Effectiveness of Benralizumab in OCS-Dependent Severe Asthma: The Impact of 2 Years of Therapy in a Real-Life Setting. J Clin Med 2023; 12:jcm12030985. [PMID: 36769635 PMCID: PMC9918073 DOI: 10.3390/jcm12030985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Patients with severe OCS-dependent asthma can be considered a subgroup of asthma patients with severe disease and great risk of complications, related to chronic OCS use. The introduction of biological drugs has represented a turning point in the therapeutic strategy for severe asthma, offering a valid alternative to OCS. Benralizumab, like other anti-IL-5 agents, has been shown to reduce exacerbations and OCS intake/dosage and improve symptom control and lung function. While these findings have also been confirmed in real-life studies, data on long-term efficacy are still limited. METHODS In this retrospective study, we evaluated the effects of 2 years of treatment with benralizumab on 44 patients with OCS-dependent severe asthma by analyzing clinical, biological and functional data. RESULTS After 2 years of benralizumab, 59.4% discontinued OCS and patients who continued to use OCS had their mean dose reduced by approximately 85% from baseline. Meanwhile, 85% of patients had their asthma well-controlled (ACT score > 20) and had no exacerbations, and 41.6% had normal lung function. CONCLUSIONS Our findings support the long-term effectiveness of benralizumab in severe OCS-dependent asthma in a real-life setting, suggesting potential reductive effects on costs and complications such as adverse pharmacological events.
Collapse
|
31
|
Huang F, Tong X, Hu C, Zhang Q, Wei Y, Hu M, Kong L, Fu R, Li X, Xie Y, Ming X, Chen B, Lin Y, Xiong L. CAVO Inhibits Airway Inflammation and ILC2s in OVA-Induced Murine Asthma Mice. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8783078. [PMID: 39282108 PMCID: PMC11401656 DOI: 10.1155/2023/8783078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 09/18/2024]
Abstract
Cang-ai volatile oil (CAVO) is an aromatic Chinese medicine and is widely used to treat upper respiratory tract infections in children. However, the mechanism of CAVO in asthma treatment is unclear. In this study, we investigated the effects of CAVO on airway inflammation and the mechanism of inhibiting Group-2 innate lymphoid cells (ILC2s) in asthmatic mice, which was induced with Ovalbumin (OVA). CAVO improved AHR and airway inflammation in asthmatic mice. CAVO reduced the production of interleukin (IL)-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) in the bronchoalveolar lavage fluid (BALF), while increased the production of IL-10, significantly. CAVO also inhibited the suppressor of tumorigenicity 2 (ST2) and IL-33 expressions in the lung tissue. Moreover, flow analyses demonstrated that CAVO inhibited ILC2s activation by reducing the sedimentation of its upstream cytokines, thus alleviating downstream cytokines. This could be because of the downregulated microRNA-155 and upregulated microRNA-146a. CAVO inhibits ILC2s activation, thus further attenuating airway inflammation and AHR in asthmatic mice. These effects may be related to the downregulation of microRNA-155 and upregulation of microRNA-146a.
Collapse
Affiliation(s)
- Feng Huang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunyan Hu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Qiushi Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yijie Wei
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
- Department of Pharmacy, Tengchong Hospital of Chinese Medicine, Baoshan, China
| | - Min Hu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Lingqi Kong
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Rongbing Fu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
- Department of Ethnic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Xiaohong Li
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuhuan Xie
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Xi Ming
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bojun Chen
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuping Lin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
32
|
Allergy, asthma, and proteomics: opportunities with immediate impact. Allergol Immunopathol (Madr) 2023; 51:16-21. [PMID: 36617817 DOI: 10.15586/aei.v51i1.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/08/2022] [Indexed: 01/03/2023]
Abstract
Allergy is widely discussed by researchers due to its complex mechanism that leads to disorders and injuries, but the reason behind the allergic status remains unclear. Current treatments are insufficient to improve the patient's quality of life significantly. New technologies in scientific and technological development are emerging. For instance, the union between allergy and peptidomics and bioinformatics tools may help fill the gaps in this field, diagnosis, and treatment. In this review, we look at peptidomics and address some findings, such as target proteins or biomarkers that help better understand mechanisms that lead to inflammation, organ damage, and, consequently, poor quality of life or even death.
Collapse
|
33
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
34
|
Wang Y, Wang J, Chen L, Zhang H, Yu L, Chi Y, Chen M, Cai Y. Efficacy of vitamin D supplementation on COPD and asthma control: A systematic review and meta-analysis. J Glob Health 2022; 12:04100. [PMID: 36520525 PMCID: PMC9754066 DOI: 10.7189/jogh.12.04100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The role of vitamin D (VD) in the management of chronic obstructive pulmonary disease (COPD) and asthma remains largely undetermined. In the present meta-analysis, we aimed to comprehensively investigate the efficacy of VD in the treatment of COPD and asthma according to the latest update. Methods The PubMed, Embase, and Cochrane Library databases were searched from their inception to June 2, 2022. Randomized controlled trials (RCTs) comparing the efficacy of VD with placebo against COPD or asthma were included. Results A total of 11 RCTs consisting of 1183 COPD patients and 19 RCTs consisting of 2025 asthmatic patients were finally included. As for pulmonary function, FEV1/FVC was not changed significantly, while FEV1% was improved in the VD group. In the asthma subgroup, FEV1% was not changed significantly, while FEV1/FVC was improved in the VD group. For the questionnaire and rating scale, the mMRC (modified Medical Research Council) dyspnoea scale score for COPD and ACT (Asthma Control Test) score for asthma were not significantly changed, while the SGRQ (St. George's Respiratory Questionnaire) score for COPD was improved in the VD group. For inflammation indicators, IL-6 and IL-10 were statistically equivalent between the VD and placebo groups, while IgE, IL-5, and IL-10 (baseline VD deficiency subgroup) were improved in the VD group. The exacerbation, length of hospital stays, and mortality were statistically equivalent between the two groups. Conclusions VD supplementation improved the indicators of asthma and COPD, especially in pulmonary function, SGRQ scores, IL-5, and IgE. Registration The protocol could be found at PROSPERO with the registration number of CRD42020218058.
Collapse
Affiliation(s)
- Yuhang Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Li Chen
- Department of Information, PLA General Hospital, Beijing, China
| | - Huan Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Ling Yu
- Laboratory of Department of Pulmonary and Critical Care Medicine, PLA General Hospital, Beijing, China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Huang WY, Lee SH, Oh SJ, Yoon H, Pan JH, Jeong I, Kim MJ, Han BK, Kim JK, Shin EC, Kim YJ. Canavalia gladiata Pod Extract Mitigates Ovalbumin-Induced Asthma Onset in Male BALB/c Mice via Suppression of MAPK. Molecules 2022; 27:molecules27196317. [PMID: 36234854 PMCID: PMC9573573 DOI: 10.3390/molecules27196317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Asthma is one of the most common inflammatory diseases of the lung worldwide. There has been considerable progress in recent studies to treat and prevent allergic asthma, however, various side effects are still observed in clinical practice. Six-week-old male BALB/c mice were orally administered with either sword bean pod extracts (SBP; 100 or 300 mg/kg) or dexamethasone (DEX; 5 mg/kg) once daily over 3 weeks, followed by ovalbumin sensitization (OVA/Alum.; intraperitoneal administration, 50 μg/2 mg/per mouse). Scoring of lung inflammation was performed to observe pathological changes in response to SBP treatment compared to OVA/Alum.-induced lung injury. Additionally, inflammatory cytokines were quantified in serum, bronchoalveolar lavage fluid (BALF), and lung tissue using ELISA and Western blot analyses. SBP treatment significantly reduced the infiltration of inflammatory cells, and release of histamine, immunoglobulin E, and leukotriene in serum and BALF. Moreover, the therapeutic effect of SBP was also assessed to analyze the inflammatory changes in the lung tissues. SBP markedly suppressed the activation of the MAPK signaling pathway and the expression of key inflammatory proteins (e.g., TNF-α) and Th2 type cytokines (IL-5 and IL-13). SBP was effective in ameliorating the allergic inflammation against OVA/Alum.-induced asthma by suppressing pulmonary inflammation.
Collapse
Affiliation(s)
- Wen Yan Huang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Sang Hoon Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Seong Ju Oh
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Korea
| | - Hyeock Yoon
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Korea
| | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
| | - Inhye Jeong
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mi Jeong Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Korea
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Korea
- Correspondence: ; Tel.: +82-44-860-1040; Fax: +82-44-860-1780
| |
Collapse
|
36
|
Al Busaidi N, Alweqayyan A, Al Zaabi A, Mahboub B, Al-Huraish F, Hameed M, Al-Ahmad M, Khadadah M, Al Lawati N, Behbehani N, Al Jabri O, Salman R, Al Mubaihsi S, Al Raisi S. Gulf Asthma Diagnosis and Management in Adults: Expert Review and Recommendations. Open Respir Med J 2022. [DOI: 10.2174/18743064-v16-e2205230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevalence and incidence of asthma are increasing globally because of genetic and environmental influences. Prevalence of asthma in the Gulf has been reported to range from 4.7% to 32.0% and has a substantial economic burden. In this paper, we summarize current asthma management guidance for adults, present insights, and recommendations by key opinion leaders (KOLs) in the Gulf region, and key performance indicators for guiding clinical practice for asthma diagnosis, management, and treatment in the Gulf. While it is recommended that the Global Initiative for Asthma (GINA) guidelines should be followed wherever possible for the management of asthma, KOLs in the Gulf region have presented additional recommendations based on regional challenges and insights. There is a need for better diagnosis using objective testing, increased efforts in tackling the burden of comorbidities in the region, and greater provision of the necessary tools for phenotyping severe asthma. Furthermore, there is a need for greater education for physicians regarding asthma treatment, including the importance of inhaled-corticosteroid-containing controller medication. Regionally, there is also a need for specialist asthma clinics and asthma educators, which would serve to educate physicians and their patients as well as to improve the management of patients. Finally, the use of asthma registries, digital devices, and electronic templates would be of benefit in the management of asthma patients in the region.
Collapse
|
37
|
Fuji D, Ando T, Sato M, Takamori Y, Yokoyama T, Vedi S, Yamamoto M, Kawakami T. Discovery of IL-5-binding unnatural cyclic peptides from multiple libraries by directed evolution. Biochem Biophys Res Commun 2022; 610:188-195. [DOI: 10.1016/j.bbrc.2022.04.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
|
38
|
Shamji MH, Boyle RJ. Biomarker strategies for perioperative hypersensitivity reactions and severe eosinophilic asthma. Clin Exp Allergy 2022; 52:216-218. [PMID: 35092109 DOI: 10.1111/cea.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| | - Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
39
|
Ma L, Zhu M, Li G, Gai J, Li Y, Gu H, Qiao P, Li X, Ji W, Zhao R, Wu Y, Wan Y. Preclinical development of a long-acting trivalent bispecific nanobody targeting IL-5 for the treatment of eosinophilic asthma. Respir Res 2022; 23:316. [PMCID: PMC9675287 DOI: 10.1186/s12931-022-02240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Eosinophilic asthma is a common subtype of severe asthma with high morbidity and mortality. The cytokine IL-5 has been shown to be a key driver of the development and progression of disease. Although approved monoclonal antibodies (mAbs) targeting IL-5/IL-5R have shown good safety and efficacy, some patients have inadequate responses and frequent dosing results in medication nonadherence. Results We constructed a novel trivalent bispecific nanobody (Nb) consisting of 3 VHHs that bind to 2 different epitopes of IL-5 and 1 epitope of albumin derived from immunized phage display libraries. This trivalent IL-5-HSA Nb exhibited similar IL-5/IL-5R blocking activities to mepolizumab (Nucala), an approved targeting IL-5 mAb. Surprisingly, this trivalent Nb was 58 times more active than mepolizumab in inhibiting TF-1-cell proliferation. In primate studies, the trivalent IL-5-HSA Nb showed excellent pharmacokinetic properties, and peripheral blood eosinophil levels remained significantly suppressed for two months after a single dose. In addition, the trivalent IL-5-HSA Nb could be produced on a large scale in a P. pastoris X-33 yeast system with high purity and good thermal stability. Conclusions These findings suggest that the trivalent bispecific IL-5-HSA Nb has the potential to be a next-generation therapeutic agent targeting IL-5 for the treatment of severe eosinophilic asthma. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02240-1.
Collapse
Affiliation(s)
- Linlin Ma
- grid.507037.60000 0004 1764 1277School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Yanfei Li
- grid.507037.60000 0004 1764 1277School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Huaiyu Gu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Peng Qiao
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Xiaofei Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Weiwei Ji
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Rui Zhao
- Shanghai Donghai Geriatric Nursing Hospital, Shanghai, China
| | - Yue Wu
- grid.507037.60000 0004 1764 1277School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| |
Collapse
|
40
|
Papaioannou AI, Photiades A, Gaga M. Using placebo-controlled trials to define predictors of future exacerbations in severe asthma patients. Eur Respir J 2021; 58:58/6/2101702. [PMID: 34916254 DOI: 10.1183/13993003.01702-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/05/2022]
Affiliation(s)
| | - Andreas Photiades
- 7th Respiratory Medicine Dept, Athens Chest Hospital, Athens, Greece
| | - Mina Gaga
- 7th Respiratory Medicine Dept and Asthma Centre, Athens Chest Hospital, Athens, Greece
| |
Collapse
|
41
|
De Filippo M, Votto M, Licari A, Pagella F, Benazzo M, Ciprandi G, Marseglia GL. Novel therapeutic approaches targeting endotypes of severe airway disease. Expert Rev Respir Med 2021; 15:1303-1316. [PMID: 34056983 DOI: 10.1080/17476348.2021.1937132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Severe asthma and chronic rhinosinusitis (CRS), with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP), are heterogeneous diseases characterized by different mechanistic pathways (endotypes) and variable clinical presentations (phenotypes).Areas covered: This review provides the clinician with an overview of the prevalence and clinical impact of severe chronic upper and lower airways disease and suggests a novel therapeutic approach with biological agents with possible biomarkers. To select relevant literature for inclusion in this review, we conducted a literature search using the PubMed database, using terms 'severe airways disease' AND 'endotype' AND 'treatment.' The literature review was performed for publication years 2010-2020, restricting the articles to humans and English language publications.Expert opinion: The coronavirus disease (COVID-19) pandemic has brought forth many challenges for patients with severe airway disease and healthcare practitioners involved in care. These patients could have an increased risk of developing severe SARS-CoV-2 disease, although treatment with biologics is not associated with a worse prognosis. Eosinopenia on hospital admission plays a key role as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Maria De Filippo
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Martina Votto
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Fabio Pagella
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Benazzo
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|