1
|
Marsden JWN, Laclé MM, Severs M, Leavis HL. Paucity of gastrointestinal plasma cells in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:464-471. [PMID: 39479953 DOI: 10.1097/aci.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW Common variable immunodeficiency enteropathy (CVID-E) is a noninfectious complication of CVID caused by chronic inflammation of the gastrointestinal (GI) tract. Based on literature, a paucity or lack of plasma cells, although not obligatory for diagnosis, is a pathognomonic feature of CVID and more frequent in CVID-E. However, there is no consensus on standardized histopathological analysis of this feature in biopsies. In this systematic review, we highlight methods of reproducible plasma cell quantification of biopsies in CVID and describe the plasma cell counts and classes as presented in the literature. RECENT FINDINGS Reduced plasma cell counts are commonly found over the entire GI tract, except for in the oesophagus. Immunoglobulin A+ (IgA+) plasma cells appear to be the most commonly reduced plasma cell class in CVID, yet there is scarce literature on the predictive value of low IgA+ plasma cell counts in CVID-E. SUMMARY We propose two optimized methodologies of quantification using a cut-of value of <10 plasma cells per HPF at 40× magnification, or a proportion of ≥1-5% of total mononuclear cells, recorded over ≥3 sections, and in ≥2 biopsies, as the most conservative agreeable definitions for a paucity of plasma cells to be used in diagnostics and further research.
Collapse
Affiliation(s)
- Jan Willem N Marsden
- University Medical Center Utrecht, Department of Clinical Immunology and Rheumatology
| | - Miangela M Laclé
- University Medical Center Utrecht, Department of Pathology, Utrecht University, Utrecht
| | - Mirjam Severs
- Radboud University Medical Center Nijmegen, Department of Gastroenterology, Nijmegen, The Netherlands
| | - Helen Louisa Leavis
- University Medical Center Utrecht, Department of Clinical Immunology and Rheumatology
| |
Collapse
|
2
|
Manthey CF, Epple HJ, Keller KM, Lübbert C, Posovszky C, Ramharter M, Reuken P, Suerbaum S, Vehreschild M, Weinke T, Addo MM, Stallmach A, Lohse AW. S2k-Leitlinie Gastrointestinale Infektionen der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1090-1149. [PMID: 38976986 DOI: 10.1055/a-2240-1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- Carolin F Manthey
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Gemeinschaftspraxis Innere Medizin Witten, Witten, Deutschland
| | - Hans-Jörg Epple
- Antibiotic Stewardship, Vorstand Krankenversorgung, Universitätsmedizin Berlin, Berlin, Deutschland
| | - Klaus-Michael Keller
- Klinik für Kinder- und Jugendmedizin, Helios Dr. Horst Schmidt Kliniken, Klinik für Kinder- und Jugendmedizin, Wiesbaden, Deutschland
| | - Christoph Lübbert
- Bereich Infektiologie und Tropenmedizin, Medizinische Klinik I (Hämatologie, Zelltherapie, Infektiologie und Hämostaseologie), Universitätsklinikum Leipzig, Leipzig, Deutschland
| | | | - Michael Ramharter
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Philipp Reuken
- Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie, Zentrale Endoskopie), Universitätsklinikum Jena, Jena, Deutschland
| | - Sebastian Suerbaum
- Universität München, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, München, Deutschland
| | - Maria Vehreschild
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Thomas Weinke
- Klinik für Gastroenterologie und Infektiologie, Klinikum Ernst von Bergmann, Potsdam, Deutschland
| | - Marylyn M Addo
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Institut für Infektionsforschung und Impfstoffentwicklung Sektion Infektiologie, I. Med. Klinik, Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Andreas Stallmach
- Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie, Zentrale Endoskopie), Universitätsklinikum Jena, Jena, Deutschland
| | - Ansgar W Lohse
- I. Medizinische Klinik und Poliklinik - Schwerpunkt Gastroenterologie; Sektionen Infektions- und Tropenmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| |
Collapse
|
3
|
Correia J, Freitas A, Marinho A, Ponte A, Afecto E, Estevinho M. Small Bowel Villous Atrophy in a Young Patient: A Challenging Diagnosis. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2024; 31:196-202. [PMID: 38836127 PMCID: PMC11149996 DOI: 10.1159/000531396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 06/06/2024]
Abstract
Common variable immunodeficiency enteropathy is a sprue-like disease, which may manifest as a severe malabsorption syndrome with nutritional deficits and cachexia. The authors report a case of a 33-year-old Afghan man, who presented to the emergency department due to chronic watery diarrhea and severe malnourishment. He had been previously misdiagnosed with celiac disease in his early adulthood; however, this was based on inconclusive findings. After a thorough diagnostic workup, the final diagnosis of common variable immunodeficiency enteropathy with symptomatic norovirus infection of the gut was obtained during his prolonged hospitalization. A slow but progressive improvement was observed with immunoglobulin replacement therapy, corticotherapy, and ribavirin treatment. This is a noteworthy case of a rare malabsorption disorder, and it reviews important aspects concerning the differential diagnosis of small bowel villous atrophy of unknown etiology, as well as gastrointestinal manifestations of common variable immunodeficiency disorder.
Collapse
Affiliation(s)
- João Correia
- Gastroenterology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Espinho, Portugal
| | - Andreia Freitas
- Internal Medicine Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Espinho, Portugal
| | - António Marinho
- Internal Medicine Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Ponte
- Gastroenterology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Espinho, Portugal
| | - Edgar Afecto
- Gastroenterology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Espinho, Portugal
| | - Manuela Estevinho
- Gastroenterology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Espinho, Portugal
| |
Collapse
|
4
|
Wasielewski VV, Itani TM, Zakharova YA, Semenov AV. Current trends and new approaches for human norovirus replication in cell culture: a literature review. Arch Virol 2024; 169:71. [PMID: 38459228 DOI: 10.1007/s00705-024-05999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Human norovirus (HuNoV) is one of the world's leading causes of acute gastroenteritis. At present, effective reproduction of the virus in cell cultures remains a challenge for virologists, as there is a lack of a permissive cell line that allows the entire viral life cycle to be reproduced. This is a barrier to the study of the HuNoV life cycle, its tropism, and virus-host interactions. It is also a major hurdle for the development of viral detection platforms, and ultimately for the development of therapeutics. The lack of an inexpensive, technically simple, and easily implemented cultivation method also negatively affects our ability to evaluate the efficacy of a variety of control measures (disinfectants, food processes) for human norovirus. In the process of monitoring this pathogen, it is necessary to detect infectious viral particles in water, food, and other environmental samples. Therefore, improvement of in vitro replication of HuNoV is still needed. In this review, we discuss current trends and new approaches to HuNoV replication in cell culture. We highlight ways in which previous research on HuNoV and other noroviruses has guided and influenced the development of new HuNoV culture systems and discuss the improvement of in vitro replication of HuNoV.
Collapse
Affiliation(s)
- Valentin V Wasielewski
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
| | - Tarek M Itani
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation.
| | - Yuliya A Zakharova
- Institute of Disinfectology of the F.F. Erisman Federal Scientific Centre of Hygiene Rospotrebnadzor, Mosсow, Russian Federation
| | - Aleksandr V Semenov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation
| |
Collapse
|
5
|
Rimkute I, Chaimongkol N, Woods KD, Nagata BM, Darko S, Gudbole S, Henry AR, Sosnovtsev SV, Olia AS, Verardi R, Bok K, Todd JP, Woodward R, Kwong PD, Douek DC, Alves DA, Green KY, Roederer M. A non-human primate model for human norovirus infection. Nat Microbiol 2024; 9:776-786. [PMID: 38321182 DOI: 10.1038/s41564-023-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024]
Abstract
Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.
Collapse
Affiliation(s)
- Inga Rimkute
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Natthawan Chaimongkol
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kamron D Woods
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bianca M Nagata
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Samuel Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sucheta Gudbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stanislav V Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Karin Bok
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ruth Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Derron A Alves
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Kim Y Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
6
|
Chaimongkol N, Dábilla N, Tohma K, Matsushima Y, Yardley AB, Levenson EA, Johnson JA, Ahorrio C, Oler AJ, Kim DY, Souza M, Sosnovtsev SV, Parra GI, Green KY. Norovirus evolves as one or more distinct clonal populations in immunocompromised hosts. mBio 2023; 14:e0217723. [PMID: 37905910 PMCID: PMC10746188 DOI: 10.1128/mbio.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Noroviruses are an important cause of chronic diarrhea in patients with compromised immune systems. Presently, there are no effective therapies to clear the virus, which can persist for years in the intestinal tract. The goal of our study was to develop a better understanding of the norovirus strains that are associated with these long-term infections. With the remarkable diversity of norovirus strains detected in the immunocompromised patient cohort we studied, it appears that most, if not all, noroviruses circulating in nature may have the capacity to establish a chronic infection when a person is unable to mount an effective immune response. Our work is the most comprehensive genetic data set generated to date in which near full-length genomes from noroviruses associated with chronic infection were analyzed by high-resolution next-generation sequencing. Analysis of this data set led to our discovery that certain patients in our cohort were shedding noroviruses that could be subdivided into distinct haplotypes or populations of viruses that were co-evolving independently. The ability to track haplotypes of noroviruses during chronic infection will allow us to fine-tune our understanding of how the virus adapts and maintains itself in the human host, and how selective pressures such as antiviral drugs can affect these distinct populations.
Collapse
Affiliation(s)
- Natthawan Chaimongkol
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathânia Dábilla
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kentaro Tohma
- Division of Viral Products, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yuki Matsushima
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Behrle Yardley
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric A. Levenson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordan A. Johnson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Courtney Ahorrio
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Y. Kim
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Menira Souza
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Stanislav V. Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel I. Parra
- Division of Viral Products, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kim Y. Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Sanchez DA, Rotella K, Toribio C, Hernandez M, Cunningham-Rundles C. Characterization of infectious and non-infectious gastrointestinal disease in common variable immunodeficiency: analysis of 114 patient cohort. Front Immunol 2023; 14:1209570. [PMID: 37711607 PMCID: PMC10498782 DOI: 10.3389/fimmu.2023.1209570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023] Open
Abstract
Common Variable Immunodeficiency (CVID), a complex primary immunodeficiency syndrome defined by defective B cell responses to infection and vaccination, has heterogeneous clinical manifestations. Gastrointestinal (GI) complications in CVID, both infectious and non-infectious, can cause significant impairment leading to malabsorption and frank malnutrition. In order to better characterize the spectrum of GI disease associated with CVID, we describe 114 patients with GI disease (15.6%) from our 728 patient single center CVID cohort. Norovirus, Giardia and Cytomegalovirus were the most frequently isolated infectious pathogens. CVID enteropathy was the most encountered GI diagnosis based on endoscopy, with only a minority of patients having Crohn's disease (6.1%) or ulcerative colitis/proctitis (4.5%). Concurrent autoimmunity (30.7%), lung disease (18.4%) and malignancy (8.7%) were also present in significant proportion of subjects. Lastly, 16 of 47 (34%) who underwent whole exome sequencing demonstrated a culprit gene defect associated with CVID.
Collapse
Affiliation(s)
- David A. Sanchez
- Division of Allergy and Immunology, Mount Sinai, New York, NY, United States
| | - Karina Rotella
- Division of Allergy and Immunology, Mount Sinai, New York, NY, United States
| | | | - Matthew Hernandez
- Division of Allergy and Immunology, Mount Sinai, New York, NY, United States
| | | |
Collapse
|
8
|
Gordon-Lipkin EM, Banerjee P, Franco JLM, Tarasenko T, Kruk S, Thompson E, Gildea DE, Zhang S, Wolfsberg TG, Flegel WA, McGuire PJ. Primary oxidative phosphorylation defects lead to perturbations in the human B cell repertoire. Front Immunol 2023; 14:1142634. [PMID: 37483601 PMCID: PMC10361569 DOI: 10.3389/fimmu.2023.1142634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The majority of studies on oxidative phosphorylation in immune cells have been performed in mouse models, necessitating human translation. To understand the impact of oxidative phosphorylation (OXPHOS) deficiency on human immunity, we studied children with primary mitochondrial disease (MtD). Methods scRNAseq analysis of peripheral blood mononuclear cells was performed on matched children with MtD (N = 4) and controls (N = 4). To define B cell function we performed phage display immunoprecipitation sequencing on a cohort of children with MtD (N = 19) and controls (N = 16). Results Via scRNAseq, we found marked reductions in select populations involved in the humoral immune response, especially antigen presenting cells, B cell and plasma populations, with sparing of T cell populations. MTRNR2L8, a marker of bioenergetic stress, was significantly elevated in populations that were most depleted. mir4485, a miRNA contained in the intron of MTRNR2L8, was co-expressed. Knockdown studies of mir4485 demonstrated its role in promoting survival by modulating apoptosis. To determine the functional consequences of our findings on humoral immunity, we studied the antiviral antibody repertoire in children with MtD and controls using phage display and immunoprecipitation sequencing. Despite similar viral exposomes, MtD displayed antiviral antibodies with less robust fold changes and limited polyclonality. Discussion Overall, we show that children with MtD display perturbations in the B cell repertoire which may impact humoral immunity and the ability to clear viral infections.
Collapse
Affiliation(s)
- Eliza M. Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Payal Banerjee
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jose Luis Marin Franco
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Tarasenko
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth Thompson
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Derek E. Gildea
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Suiyuan Zhang
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tyra G. Wolfsberg
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Peter J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Chadwick PR, Trainor E, Marsden GL, Mills S, Chadwick C, O'Brien SJ, Evans CM, Mullender C, Strazds P, Turner S, Weston V, Toleman MS, de Barros C, Kontkowski G, Bak A. Guidelines for the management of norovirus outbreaks in acute and community health and social care settings. J Hosp Infect 2023:S0195-6701(23)00043-9. [PMID: 36796728 DOI: 10.1016/j.jhin.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023]
Affiliation(s)
| | - Eamonn Trainor
- Northern Care Alliance NHS Foundation Trust, Greater Manchester, UK.
| | - Gemma L Marsden
- Healthcare Infection Society, London, UK; Royal College of General Practitioners, London, UK
| | - Samuel Mills
- British Infection Association, Seafield, West Lothian, UK; Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Cariad M Evans
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | | | - Pixy Strazds
- Infection Prevention Society, London, UK; St Andrew's Healthcare, Northampton, UK
| | - Sarah Turner
- Infection Prevention Society, London, UK; Stockport Council, Stockport, UK
| | - Valya Weston
- Healthcare Infection Society, London, UK; Infection Prevention Society, London, UK; NHS England, London, UK
| | - Michelle S Toleman
- Healthcare Infection Society, London, UK; Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | | | - Aggie Bak
- Healthcare Infection Society, London, UK
| |
Collapse
|
10
|
Strohmeier V, Andrieux G, Unger S, Pascual-Reguant A, Klocperk A, Seidl M, Marques OC, Eckert M, Gräwe K, Shabani M, von Spee-Mayer C, Friedmann D, Harder I, Gutenberger S, Keller B, Proietti M, Bulashevska A, Grimbacher B, Provaznik J, Benes V, Goldacker S, Schell C, Hauser AE, Boerries M, Hasselblatt P, Warnatz K. Interferon-Driven Immune Dysregulation in Common Variable Immunodeficiency-Associated Villous Atrophy and Norovirus Infection. J Clin Immunol 2023; 43:371-390. [PMID: 36282455 PMCID: PMC9892141 DOI: 10.1007/s10875-022-01379-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE About 15% of patients with common variable immunodeficiency (CVID) develop a small intestinal enteropathy, which resembles celiac disease with regard to histopathology but evolves from a distinct, poorly defined pathogenesis that has been linked in some cases to chronic norovirus (NV) infection. Interferon-driven inflammation is a prominent feature of CVID enteropathy, but it remains unknown how NV infection may contribute. METHODS Duodenal biopsies of CVID patients, stratified according to the presence of villous atrophy (VA), IgA plasma cells (PCs), and chronic NV infection, were investigated by flow cytometry, multi-epitope-ligand cartography, bulk RNA-sequencing, and RT-qPCR of genes of interest. RESULTS VA development was connected to the lack of intestinal (IgA+) PC, a T helper 1/T helper 17 cell imbalance, and increased recruitment of granzyme+CD8+ T cells and pro-inflammatory macrophages to the affected site. A mixed interferon type I/III and II signature occurred already in the absence of histopathological changes and increased with the severity of the disease and in the absence of (IgA+) PCs. Chronic NV infection exacerbated this signature when compared to stage-matched NV-negative samples. CONCLUSIONS Our study suggests that increased IFN signaling and T-cell cytotoxicity are present already in mild and are aggravated in severe stages (VA) of CVID enteropathy. NV infection preempts local high IFN-driven inflammation, usually only seen in VA, at milder disease stages. Thus, revealing the impact of different drivers of the pathological mixed IFN type I/III and II signature may allow for more targeted treatment strategies in CVID enteropathy and supports the goal of viral elimination.
Collapse
Affiliation(s)
- Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Adam Klocperk
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, 2Nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Maximilian Seidl
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Otavio Cabral Marques
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marleen Eckert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katja Gräwe
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Michelle Shabani
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Caroline von Spee-Mayer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Friedmann
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvia Gutenberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Jan Provaznik
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Gastrointestinal Involvement in Primary Antibody Deficiencies. GASTROINTESTINAL DISORDERS 2023. [DOI: 10.3390/gidisord5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Primary antibody deficiencies (PADs) are the most frequent group of inborn errors of immunity. Impaired B-cell development, reduced production of immunoglobulins (mainly IgG and IgA), and specific antibodies resulting in recurrent infections are their hallmarks. Infections typically affect the respiratory tract; however, gastrointestinal involvement is also common. These include infection with Helicobacter pylori, Salmonella, Campylobacter species, Giardia, and noroviruses. Impaired IgA production also contributes to dysbiosis and thereby an increase in abundance of species with proinflammatory properties, resulting in immune system dysregulation. Dysregulation of the immune system results in a broad spectrum of non-infectious manifestations, including autoimmune, lymphoproliferative, and granulomatous complications. Additionally, it increases the risk of malignancy, which may be present in more than half of patients with PADs. Higher prevalence is often seen in monogenic causes, and gastrointestinal involvement may clinically mimic various conditions including inflammatory bowel diseases and celiac disease but possess different immunological features and response to standard treatment, which make diagnosis and therapy challenging. The spectrum of malignancies includes gastric cancer and lymphoma. Thus, non-infectious manifestations significantly affect mortality and morbidity. In this overview, we provide a comprehensive insight into the epidemiology, genetic background, pathophysiology, and clinical manifestations of infectious and non-infectious complications.
Collapse
|
12
|
Christensen A, Drabe C, Loft A, Lebech A, Katzenstein T. Unsuccessful treatment of chronic norovirus infection with enteral immunoglobulin in patients with common variable immunodeficiency, case report. IDCases 2023; 32:e01737. [PMID: 36938336 PMCID: PMC10018537 DOI: 10.1016/j.idcr.2023.e01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023] Open
Abstract
Background Norovirus gastroenteritis is commonly an acute infection that lasts 2-3 days, but in immunocompromised patients norovirus can cause a chronic gastroenteritis lasting for years. Norovirus replicates in the gastrointestinal tract, but the pathway of viral clearance is not yet known. Promising results of enterally administered immunoglobulin in the treatment of chronic norovirus gastroenteritis in immunocompromised patients have previously been published. Case presentation We report two individuals with common variable immunodeficiency and chronic debilitating norovirus gastroenteritis. Both patients were treated with enterally administered immunoglobulin via a duodenal feeding tube as other treatment modalities have been unsuccessful. The patients did not experience any immediate or long-term benefit of enterally administered immunoglobulin. Conclusion Despite previous case reports of successful treatment of chronic norovirus infection among immunocompromised patients with enterally administered immunoglobulin, these two patients experienced no benefit of the treatment. This demonstrates the need for further research in treatment of chronic norovirus infection in immunocompromised patients.
Collapse
Affiliation(s)
- A.C.W. Christensen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - C.H. Drabe
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - A. Loft
- Department of Clinical Physiology and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - A.M. Lebech
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T.L. Katzenstein
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Correspondence to: Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Esther Moellersvej 6, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
An Expert Opinion/Approach: Clinical Presentations, Diagnostic Considerations, and Therapeutic Options for Gastrointestinal Manifestations of Common Variable Immune Deficiency. Am J Gastroenterol 2022; 117:1743-1752. [PMID: 36148549 DOI: 10.14309/ajg.0000000000002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency. It is characterized by impaired B-cell differentiation. Although patients can be diagnosed with CVID anytime during their lifetime, most patients have symptoms for 5-9 years before their diagnosis. The diagnosis of CVID starts with a detailed history focusing on the infectious and noninfectious manifestations of the disease. In patients who are suspected to experience CVID, quantitative immunoglobulins (Ig) should be checked to confirm the diagnosis. IgG should be at least 2 times less than the age-specific SD along with either a low IgA or IgM and with evidence of impaired vaccine response. CVID is usually associated with infectious and/or noninfectious conditions, the latter of which can be inflammatory, autoimmune, lymphoproliferative, or malignant, among other manifestations. Ig therapy has positively affected the disease course of patients with infectious complications but has limited effect on the noninfectious manifestations because the noninfectious complications are related to immune dysregulation involving B cells and T cells rather than primarily due to antibody deficiency. When the gastrointestinal (GI) system is involved, patients with CVID may display signs and symptoms that mimic several GI conditions such as celiac disease, pernicious anemia, or inflammatory bowel diseases. The inflammatory bowel disease-like condition is usually treated with steroids, 5-aminosalicylates, thiopurines, or biologic agents to control the inflammation. In this review, the clinical presentations, diagnostic considerations, and therapeutic options for GI manifestations of CVID will be discussed to facilitate the individualized management of these often-complex patients.
Collapse
|
14
|
Lima FMS, Toledo-Barros M, Alves VAF, Duarte MIS, Takakura C, Bernardes-Silva CF, Marinho AKBB, Grecco O, Kalil J, Kokron CM. Liver disease accompanied by enteropathy in common variable immunodeficiency: Common pathophysiological mechanisms. Front Immunol 2022; 13:933463. [PMID: 36341360 PMCID: PMC9632424 DOI: 10.3389/fimmu.2022.933463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is one of the inborn errors of immunity that have the greatest clinical impact. Rates of morbidity and mortality are higher in patients with CVID who develop liver disease than in those who do not. The main liver disorder in CVID is nodular regenerative hyperplasia (NRH), the cause of which remains unclear and for which there is as yet no treatment. The etiology of liver disease in CVID is determined by analyzing the liver injury and the associated conditions. The objective of this study was to compare CVID patients with and without liver–spleen axis abnormalities in terms of clinical characteristics, as well as to analyze liver and duodenal biopsies from those with portal hypertension (PH), to elucidate the pathophysiology of liver injury. Patients were divided into three groups: Those with liver disease/PH, those with isolated splenomegaly, and those without liver–spleen axis abnormalities. Clinical and biochemical data were collected. Among 141 CVID patients, 46 (32.6%) had liver disease/PH; 27 (19.1%) had isolated splenomegaly; and 68 (48.2%) had no liver–spleen axis abnormalities. Among the liver disease/PH group, patients, even those with mild or no biochemical changes, had clinical manifestations of PH, mainly splenomegaly, thrombocytopenia, and esophageal varices. Duodenal celiac pattern was found to correlate with PH (p < 0.001). We identified NRH in the livers of all patients with PH (n = 11). Lymphocytic infiltration into the duodenal mucosa also correlated with PH. Electron microscopy of liver biopsy specimens showed varying degrees of lymphocytic infiltration and hepatocyte degeneration, which is a probable mechanism of lymphocyte-mediated cytotoxicity against hepatocytes and enterocytes. In comparison with the CVID patients without PH, those with PH were more likely to have lymphadenopathy (p < 0.001), elevated β2-microglobulin (p < 0.001), low B-lymphocyte counts (p < 0.05), and low natural killer-lymphocyte counts (p < 0.05). In CVID patients, liver disease/PH is common and regular imaging follow-up is necessary. These patients have a distinct immunological phenotype that may predispose to liver and duodenal injury from lymphocyte-mediated cytotoxicity. Further studies could elucidate the cause of this immune-mediated mechanism and its treatment options.
Collapse
Affiliation(s)
- Fabiana Mascarenhas Souza Lima
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Fabiana Mascarenhas Souza Lima,
| | - Myrthes Toledo-Barros
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Irma Seixas Duarte
- Laboratory of the Discipline of Pathology of Transmissible Diseases, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cleusa Takakura
- Laboratory of the Discipline of Pathology of Transmissible Diseases, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carlos Felipe Bernardes-Silva
- Department of Gastroenterology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Octavio Grecco
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), Sao Paulo, Brazil
| | - Cristina Maria Kokron
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
González-Morcillo G, Calderón-Hernanz B, Serrano-López de Las Hazas J, de Hita-Santabaya AI, Riera-Oliver J. Ribavirin-resistant chronic norovirus infection-associated enteropathy in common variable immunodeficiency. Case report and review of the literature. Clin Res Hepatol Gastroenterol 2022; 46:101956. [PMID: 35613691 DOI: 10.1016/j.clinre.2022.101956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023]
Abstract
Chronic Norovirus infection is particularly challenging in patients with common variable immunodeficiency (CVID) because of their inability to achieve viral clearance and the risk of developing enteropathy leading to intestinal villous atrophy and malabsorption. To date, therapeutic options to eliminate the virus are limited and only ribavirin has been shown to induce viral clearance in norovirus enteropathy associated with CVID. We report a case of a 48-year-old female patient diagnosed with CVID enteropathy possibly related to norovirus infection who failed a ribavirin-based therapy despite dosage optimization through drug plasma level monitoring.
Collapse
Affiliation(s)
- Gonzalo González-Morcillo
- Department of Pharmacy, Servicio de Farmacia Hospitalaria, Son Llàtzer Hospital, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain.
| | - Beatriz Calderón-Hernanz
- Department of Pharmacy, Servicio de Farmacia Hospitalaria, Son Llàtzer Hospital, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| | - Joaquín Serrano-López de Las Hazas
- Department of Pharmacy, Servicio de Farmacia Hospitalaria, Son Llàtzer Hospital, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| | - Ana Isabel de Hita-Santabaya
- Department of Pathology, Hospital Universitario Son Llàtzer, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| | - Joan Riera-Oliver
- Gastroenterology Unit, Hospital Universitario Son Llàtzer, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| |
Collapse
|
16
|
Deere D, Ryan U. Current assumptions for quantitative microbial risk assessment (QMRA) of Norovirus contamination of drinking water catchments due to recreational activities: an update. JOURNAL OF WATER AND HEALTH 2022; 20:1543-1557. [PMID: 36308498 DOI: 10.2166/wh.2022.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contamination of drinking water from Norovirus (NoV) and other waterborne viruses is a major public health concern globally. Increasingly, quantitative microbial risk assessment (QMRA) is being used to assess the various risks from waterborne pathogens and evaluate control strategies. As urban populations grow and expand, there is increasing demand for recreational activities in drinking water catchments. QMRA relies on context-specific data to map out the pathways by which viruses can enter water and be transferred to drinking water consumers and identify risk factors and appropriate controls. This review examines the current evidence base and assumptions for QMRA analysis of NoV and other waterborne viral pathogens and recommends numerical values based on the most recent evidence to better understand the health risks associated with recreators in Australian drinking water sources; these are broadly applicable to all drinking water sources where recreational access is allowed. Key issues include the lack of an agreed upon data and dose-response models for human infectious NoV genotypes, faecal shedding by bathers, the extent of NoV infectivity and aggregation, resistance (secretor status) to NoV and the extent of secondary transmission.
Collapse
Affiliation(s)
- Dan Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia E-mail:
| |
Collapse
|
17
|
Ottosson L, Hagbom M, Svernlöv R, Nyström S, Carlsson B, Öman M, Ström M, Svensson L, Nilsdotter-Augustinsson Å, Nordgren J. Long Term Norovirus Infection in a Patient with Severe Common Variable Immunodeficiency. Viruses 2022; 14:v14081708. [PMID: 36016330 PMCID: PMC9413339 DOI: 10.3390/v14081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Norovirus is the most common cause of acute non-bacterial gastroenteritis. Immunocompromised patients can become chronically infected, with or without symptoms. In Europe, common variable immunodeficiency (CVID) is one of the most common inborn errors of immunity. A potentially severe complication is CVID-associated enteropathy, a disorder with similar histopathology to celiac disease. Studies suggest that chronic norovirus infection may be a contributor to CVID enteropathy, and that the antiviral drug ribavirin can be effective against norovirus. Here, a patient with CVID-like disease with combined B- and T-cell deficiency, had chronic norovirus infection and enteropathy. The patient was routinely administered subcutaneous and intravenous immunoglobulin replacement therapy (SCIg and IVIg). The patient was also administered ribavirin for ~7.5 months to clear the infection. Stool samples (collected 2013–2016) and archived paraffin embedded duodenal biopsies were screened for norovirus by qPCR, confirming a chronic infection. Norovirus genotyping was done in 25 stool samples. For evolutionary analysis, the capsid (VP1) and polymerase (RdRp) genes were sequenced in 10 and 12 stool samples, respectively, collected before, during, and after ribavirin treatment. Secretor phenotyping was done in saliva, and serum was analyzed for histo-blood group antigen (HBGA) blocking titers. The chronic norovirus strain formed a unique variant subcluster, with GII.4 Den Haag [P4] variant, circulating around 2009, as the most recent common ancestor. This corresponded to the documented debut of symptoms. The patient was a secretor and had HBGA blocking titers associated with protection in immunocompetent individuals. Several unique amino acid substitutions were detected in immunodominant epitopes of VP1. However, HBGA binding sites were conserved. Ribavirin failed in treating the infection and no clear association between ribavirin-levels and quantity of norovirus shedding was observed. In conclusion, long term infection with norovirus in a patient with severe CVID led to the evolution of a unique norovirus strain with amino acid substitutions in immunodominant epitopes, but conservation within HBGA binding pockets. Regularly administered SCIg, IVIg, and ~7.5-month ribavirin treatment failed to clear the infection.
Collapse
Affiliation(s)
- Loa Ottosson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Rikard Svernlöv
- Department of Gastroenterology and Hepatology, Linköping University, 58185 Linköping, Sweden; (R.S.); (M.S.)
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Beatrice Carlsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Mattias Öman
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Magnus Ström
- Department of Gastroenterology and Hepatology, Linköping University, 58185 Linköping, Sweden; (R.S.); (M.S.)
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, 17111 Stockholm, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Infectious Diseases/Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Correspondence:
| |
Collapse
|
18
|
Collen LV, Salgado CA, Bao B, Janssen E, Weir D, Goldsmith J, Leichtner A, Sabery Khavari N, Gernez Y, Snapper SB. Cytotoxic T Lymphocyte Antigen 4 Haploinsufficiency Presenting As Refractory Celiac-Like Disease: Case Report. Front Immunol 2022; 13:894648. [PMID: 35935971 PMCID: PMC9352891 DOI: 10.3389/fimmu.2022.894648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Primary immunodeficiency may present with treatment-refractory enteropathy. We present two patients with celiac/celiac-like disease diagnosed in early childhood and refractory to the gluten-free diet. One patient had features of multi-system autoimmunity, whereas the other had celiac-like disease as an isolated clinical finding. Both patients underwent genetic testing given disease refractoriness and were ultimately diagnosed with cytotoxic T lymphocyte antigen 4 (CTLA4) haploinsufficiency. They are both now in complete clinical and endoscopic remission on abatacept. CTLA4 haploinsufficiency has incomplete penetrance and significant phenotypic heterogeneity but should be considered in the differential diagnosis of refractory celiac/celiac-like disease, as treatment implications are significant.
Collapse
Affiliation(s)
- Lauren V. Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Carlos Andres Salgado
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Dascha Weir
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Alan Leichtner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Nasim Sabery Khavari
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Yael Gernez
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Scott B. Snapper,
| |
Collapse
|
19
|
Motta-Raymundo A, Rosmaninho P, Santos DF, Ferreira RD, Silva SP, Ferreira C, Sousa AE, Silva SL. Contribution of Helicobacter pylori to the Inflammatory Complications of Common Variable Immunodeficiency. Front Immunol 2022; 13:834137. [PMID: 35711410 PMCID: PMC9193800 DOI: 10.3389/fimmu.2022.834137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Common Variable Immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, is frequently associated with severe inflammatory complications that determine its morbidity and mortality. We hypothesize that Helicobacter pylori (HP), a very common worldwide infection, may contribute to the clinical and immune phenotype of CVID. We stratified 41 CVID patients into HP+ (n=26) and HPneg (n=15) groups, according to previous urease breath test and/or gastric biopsies, and compared their clinical manifestations and immune profile evaluated by flow cytometry. No genetic variants with known potential impact in HP infection were found upon WES/WGS. Gastric complications were significantly more frequent in HP+ patients. Importantly, the six CVID patients with gastric cancer were infected with HP. In contrast, a significantly higher frequency of cytopenias was observed in the HPneg. Moreover, HP+ did not feature higher prevalence of organ auto-immunity, as well as of lung, liver or intestinal inflammatory manifestations. We observed the same B-cell profiles in HP+ and HPneg groups, accompanied by marked CD4 and CD8 T-cell activation, increased IFNγ production, and contraction of naïve compartments. Notably, HP+ patients featured low CD25 despite preserved Foxp3 levels in CD4 T cells. Overall, HP impact in CVID inflammatory complications was mainly restricted to the gastric mucosa, contributing to increased incidence of early onset gastric cancer. Thus, early HP screening and eradication should be performed in all CVID patients irrespective of symptoms.
Collapse
Affiliation(s)
- Adriana Motta-Raymundo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Pedro Rosmaninho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Diana F. Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Ruben D. Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Sara P. Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Ana E. Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Susana L. Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
- *Correspondence: Susana L. Silva,
| |
Collapse
|
20
|
Distinct CD8 T Cell Populations with Differential Exhaustion Profiles Associate with Secondary Complications in Common Variable Immunodeficiency. J Clin Immunol 2022; 42:1254-1269. [PMID: 35589883 PMCID: PMC9537220 DOI: 10.1007/s10875-022-01291-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Purpose Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency, with heterogeneous clinical presentation. Our goal was to analyze CD8 T cell homeostasis in patients with infection only CVID, compared to those additionally affected by dysregulatory and autoimmune phenomena. Methods We used flow and mass cytometry evaluation of peripheral blood of 40 patients with CVID and 17 healthy donors. Results CD8 T cells are skewed in patients with CVID, with loss of naïve and increase of effector memory stages, expansion of cell clusters with high functional exhaustion scores, and a highly activated population of cells with immunoregulatory features, producing IL-10. These findings correlate to clinically widely used B cell-based EURO classification. Features of exhaustion, including loss of CD127 and CD28, and expression of TIGIT and PD-1 in CD8 T cells are strongly associated with interstitial lung disease and autoimmune cytopenias, whereas CD8 T cell activation with elevated HLA-DR and CD38 expression predict non-infectious diarrhea. Conclusion We demonstrate features of advanced differentiation, exhaustion, activation, and immunoregulatory capabilities within CD8 T cells of CVID patients. Assessment of CD8 T cell phenotype may allow risk assessment of CVID patients and provide new insights into CVID pathogenesis, including a better understanding of mechanisms underlying T cell exhaustion and regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01291-9.
Collapse
|
21
|
Mirabelli C, Jones MK, Young VL, Kolawole AO, Owusu I, Shan M, Abuaita B, Turula H, Trevino JG, Grigorova I, Lundy SK, Lyssiotis CA, Ward VK, Karst SM, Wobus CE. Human Norovirus Triggers Primary B Cell Immune Activation In Vitro. mBio 2022; 13:e0017522. [PMID: 35404121 PMCID: PMC9040803 DOI: 10.1128/mbio.00175-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.
Collapse
Affiliation(s)
- Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa K. Jones
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Vivienne L. Young
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Abimbola O. Kolawole
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Irene Owusu
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Mengrou Shan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Basel Abuaita
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jose G. Trevino
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Irina Grigorova
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven K. Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vernon K. Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephanie M. Karst
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Lu MC, Lin SC, Hsu YH, Chen SY. Epidemiology, Clinical Features, and Unusual Complications of Norovirus Infection in Taiwan: What We Know after Rotavirus Vaccines. Pathogens 2022; 11:pathogens11040451. [PMID: 35456126 PMCID: PMC9026459 DOI: 10.3390/pathogens11040451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Noroviruses (NoVs) are one of the emerging and rapidly spreading groups of pathogens threatening human health. A reduction in sporadic NoV infections was noted following the start of the COVID-19 pandemic, but the return of NoV gastroenteritis during the COVID-19 pandemic has been noted recently. Research in recent years has shown that different virus strains are associated with different clinical characteristics; moreover, there is a paucity of research into extraintestinal or unusual complications that may be associated with NoV. The genomic diversity of circulating NoVs is also complex and may vary significantly. Therefore, this short narrative review focuses on sharing the Taiwan experience of NoV infection including epidemiology, clinical features, and complications following suboptimal rotavirus immunization in Taiwan (after October 2006). We also highlight the unusual complications associated with NoV infections and the impacts of NoV infection during the COVID-19 pandemic in the literature for possible future research directions. To conclude, further research is needed to quantify the burden of NoV across the spectrum of disease severity in Taiwan. The evidence of the connection between NoV and the unusual complications is still lacking.
Collapse
Affiliation(s)
- Meng-Che Lu
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (M.-C.L.); (S.-C.L.)
| | - Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (M.-C.L.); (S.-C.L.)
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei city 11031, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei city 11031, Taiwan
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence:
| |
Collapse
|
23
|
Moral PM, Cabañero-Navalon D, Garcia-Bustos V, Beltrán MN, Lletí MS. Norovirus infection as a model of chronic or recurrent infection in common variable immunodeficiency. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35 Suppl 3:63-66. [PMID: 36285861 PMCID: PMC9717449 DOI: 10.37201/req/s03.14.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency (PID) in general population. PID are genetic diseases that share a dysfunction in the immune system entailing a greater risk of both chronic and recurrent infections. These patients can also develop chronic gastrointestinal infections caused by norovirus with persistent viral dissemination, which can be detected months after primoinfection. Additionally, a proportion of CVID patients show a typical severe enteropathy presenting with recurrent diarrhoea, intestinal malabsorption, inflammatory lesions, and villous atrophy. Some studies have related this enteropathy with chronic intestinal infection caused by norovirus.
Collapse
Affiliation(s)
- Pedro Moral Moral
- Primary Immunodeficiencies Unit. Internal Medicine Section. University and Polytechnic Hospital La Fe. Valencia, Spain,Correspondence: Pedro Moral Moral Primary Immunodeficiencies Unit. Internal Medicine Section. University and Polytechnic Hospital La Fe. Valencia, Spain E-mail:
| | - Dafne Cabañero-Navalon
- Primary Immunodeficiencies Unit. Internal Medicine Section. University and Polytechnic Hospital La Fe. Valencia, Spain
| | - Victor Garcia-Bustos
- Primary Immunodeficiencies Unit. Internal Medicine Section. University and Polytechnic Hospital La Fe. Valencia, Spain
| | - María Núñez Beltrán
- Primary Immunodeficiencies Unit. Internal Medicine Section. University and Polytechnic Hospital La Fe. Valencia, Spain
| | - Miguel Salavert Lletí
- Infectious Diseases Unit. University and Polytechnic Hospital La Fe. Valencia, Spain
| |
Collapse
|
24
|
Makharia G, Mohta S, Sridharan S, Gopalakrishnan R, Prasad N, Bansal S. Diarrhea in solid organ transplant recipients in the South Asian Region - Expert group opinion for diagnosis and management. INDIAN JOURNAL OF TRANSPLANTATION 2022; 16:23. [DOI: 10.4103/ijot.ijot_79_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
25
|
Lucero Y, Matson DO, Ashkenazi S, George S, O’Ryan M. Norovirus: Facts and Reflections from Past, Present, and Future. Viruses 2021; 13:v13122399. [PMID: 34960668 PMCID: PMC8707792 DOI: 10.3390/v13122399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human Norovirus is currently the main viral cause of acute gastroenteritis (AGEs) in most countries worldwide. Nearly 50 years after the discovery of the "Norwalk virus" by Kapikian and colleagues, the scientific and medical community continue to generate new knowledge on the full biological and disease spectrum of Norovirus infection. Nevertheless, several areas remain incompletely understood due to the serious constraints to effectively replicate and propagate the virus. Here, we present a narrated historic perspective and summarize our current knowledge, including insights and reflections on current points of interest for a broad medical community, including clinical and molecular epidemiology, viral-host-microbiota interactions, antivirals, and vaccine prototypes. We also include a reflection on the present and future impacts of the COVID-19 pandemic on Norovirus infection and disease.
Collapse
Affiliation(s)
- Yalda Lucero
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Hospital Dr. Roberto del Río Hospital, Department of Pediatrics and Pediatric Surgery (Northern Campus), Faculty of Medicine, Universidad de Chile, Santiago 8380418, Chile
- Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo-Clínica Alemana, Santiago 7650568, Chile
| | - David O. Matson
- Eastern Shore Health Department, Virginia Department of Public Health, Accomack County, VA 23301, USA;
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Pediatrics A, Schneider Children’s Medical Center, Petach Tikva 49202, Israel
| | - Sergio George
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
| | - Miguel O’Ryan
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Correspondence:
| |
Collapse
|
26
|
Grammatikos A, Donati M, Johnston SL, Gompels MM. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front Immunol 2021; 12:731643. [PMID: 34527001 PMCID: PMC8435594 DOI: 10.3389/fimmu.2021.731643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
In the era of COVID-19, understanding how our immune system responds to viral infections is more pertinent than ever. Immunodeficiencies with very low or absent B cells offer a valuable model to study the role of humoral immunity against these types of infection. This review looks at the available evidence on viral infections in patients with B cell alymphocytosis, in particular those with X-linked agammaglobulinemia (XLA), Good’s syndrome, post monoclonal-antibody therapy and certain patients with Common Variable Immune Deficiency (CVID). Viral infections are not as infrequent as previously thought in these conditions and individuals with very low circulating B cells seem to be predisposed to an adverse outcome. Particularly in the case of SARS-CoV2 infection, mounting evidence suggests that peripheral B cell alymphocytosis is linked to a poor prognosis.
Collapse
Affiliation(s)
- Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Matthew Donati
- Severn Infection Sciences and Public Health England National Infection Service South West, Department of Virology, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Sarah L Johnston
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Mark M Gompels
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| |
Collapse
|
27
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
28
|
Haematopoietic Stem Cell Transplant for Norovirus-Induced Intestinal Failure in X-linked Agammaglobulinemia. J Clin Immunol 2021; 41:1574-1581. [PMID: 34164761 PMCID: PMC8221090 DOI: 10.1007/s10875-021-01088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
Since the first clinical description in 1952, immunoglobulin replacement therapy remains the mainstay of treatment of patients with X-linked agammaglobulinemia (XLA). However, this therapy only replaces IgG isotype and does not compensate for the loss of Bruton tyrosine kinase in non-B-lymphocytes. Patients may still therefore develop complications despite current standard of care. Here, we describe an XLA patient with persistent chronic norovirus infection, refractory to treatment and causing intestinal failure. The patient underwent haematopoietic stem cell transplantation, curing XLA and allowed clearance of norovirus prior to humoral immunoreconstitution, suggesting non-humoral immunodeficiency in these patients.
Collapse
|
29
|
Abstract
Viral acute gastroenteritis (AGE) is common and afflicts people of all ages. Nonviral causes of AGE are less common. Norovirus is a leading cause of sporadic cases and outbreaks of AGE across all ages. Universal rotavirus vaccination of infants has reduced frequency and severity of rotavirus AGE cases in children and indirectly reduced cases in older adults. Severe illness is more likely in persons at age extremes or with immunocompromising conditions. Viral causes of AGE can lead to protracted diarrheal illness in immunocompromised persons. Nucleic acid amplification tests are changing diagnostic testing algorithms.
Collapse
Affiliation(s)
- Jeffery L Meier
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System, SW34 GH, 200 Hawkins Dr., Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Jain P, Mishra A, Gupta D, Kulkarni S. Chronic enteropathy-related malabsorption syndrome in an adult with common variable immunodeficiency and symptomatic norovirus infection of the gut. BMJ Case Rep 2021; 14:14/5/e241752. [PMID: 34016632 DOI: 10.1136/bcr-2021-241752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Common variable immunodeficiency (CVID) causes a chronic debilitating syndrome in affected patients and often leads to high morbidity and mortality. Among its several presentations, chronic enteropathy leading to malabsorption syndrome continues to offer a major diagnostic dilemma. Lately, higher testing for norovirus infection in patients with CVID enteropathy has correlated its presence to chronic diarrhoeas, severe villous atrophy and malabsorption syndromes. There have been no such reports of its clinical and histopathological manifestations in CVID from India. Here, we demonstrate the significance of testing for norovirus in the gut with multiplex PCRs in an adult patient with a chronic undiagnosed CVID enteropathy and its response to monthly intravenous immunoglobulin (IVIG) therapy. Our patient responded after three cycles of monthly IVIG with a complete clinical recovery of his bowel functions, leading to a significant improvement in his quality of life and performance status.
Collapse
Affiliation(s)
- Punit Jain
- Hematology Oncology and Bone Marrow Transplant Unit, Apollo Hospitals (AHNM), Navi Mumbai, India .,HematCare-Speciality Hematology Clinic, Mumbai, India
| | - Anand Mishra
- General Medicine, Apollo Hospitals (AHNM), Navi Mumbai, India
| | | | - Satish Kulkarni
- Gastroenterology, Apollo Hospitals (AHNM), Navi Mumbai, India
| |
Collapse
|
31
|
Ludwig-Begall LF, Di Felice E, Toffoli B, Ceci C, Di Martino B, Marsilio F, Mauroy A, Thiry E. Analysis of Synchronous and Asynchronous In Vitro Infections with Homologous Murine Norovirus Strains Reveals Time-Dependent Viral Interference Effects. Viruses 2021; 13:823. [PMID: 34063220 PMCID: PMC8147416 DOI: 10.3390/v13050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Viral recombination is a key mechanism in the evolution and diversity of noroviruses. In vivo, synchronous single-cell coinfection by multiple viruses, the ultimate prerequisite to viral recombination, is likely to be a rare event and delayed secondary infections are a more probable occurrence. Here, we determine the effect of a temporal separation of in vitro infections with the two homologous murine norovirus strains MNV-1 WU20 and CW1 on the composition of nascent viral populations. WU20 and CW1 were either synchronously inoculated onto murine macrophage cell monolayers (coinfection) or asynchronously applied (superinfection with varying titres of CW1 at half-hour to 24-h delays). Then, 24 h after initial co-or superinfection, quantification of genomic copy numbers and discriminative screening of plaque picked infectious progeny viruses demonstrated a time-dependent predominance of primary infecting WU20 in the majority of viral progenies. Our results indicate that a time interval from one to two hours onwards between two consecutive norovirus infections allows for the establishment of a barrier that reduces or prevents superinfection.
Collapse
Affiliation(s)
- Louisa F. Ludwig-Begall
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Elisabetta Di Felice
- Department of Diagnosis and Surveillance of Exotic Disease, IZS Istituto Zooprofilattico Sperimentale A&M G. Caporale, 64100 Teramo, Italy;
| | - Barbara Toffoli
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Axel Mauroy
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
- Staff Direction for Risk Assessment, Control Policy, FASFC, 1000 Brussels, Belgium
| | - Etienne Thiry
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| |
Collapse
|
32
|
Macleod BL, Elsaesser HJ, Snell LM, Dickson RJ, Guo M, Hezaveh K, Xu W, Kothari A, McGaha TL, Guidos CJ, Brooks DG. A network of immune and microbial modifications underlies viral persistence in the gastrointestinal tract. J Exp Med 2021; 217:152068. [PMID: 32880629 PMCID: PMC7953734 DOI: 10.1084/jem.20191473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Many pathogens subvert intestinal immunity to persist within the gastrointestinal tract (GIT); yet, the underlying mechanisms that enable sanctuary specifically in this reservoir are unclear. Using mass cytometry and network analysis, we demonstrate that chronic LCMV infection of the GIT leads to dysregulated microbial composition, a cascade of metabolic alterations, increased susceptibility to GI disease, and a system-wide recalibration of immune composition that defines viral persistence. Chronic infection led to outgrowth of activated Tbet–expressing T reg cell populations unique to the GIT and the rapid erosion of pathogen-specific CD8 tissue-resident memory T cells. Mechanistically, T reg cells and coinhibitory receptors maintained long-term viral sanctuary within the GIT, and their targeting reactivated T cells and eliminated this viral reservoir. Thus, our data provide a high-dimensional definition of the mechanisms of immune regulation that chronic viruses implement to exploit the unique microenvironment of the GIT and identify T reg cells as key modulators of viral persistence in the intestinal tract.
Collapse
Affiliation(s)
- Bethany L Macleod
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Russell J Dickson
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mengdi Guo
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Akash Kothari
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
34
|
Ashton G, Shand A, Arnott I, Din S. Profound diarrhoea and weight loss in an immunocompromised patient. BMJ Case Rep 2021; 14:14/1/e236913. [PMID: 33462001 PMCID: PMC7813290 DOI: 10.1136/bcr-2020-236913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A 75-year-old man was admitted with a 3-month history of worsening diarrhoea and weight loss. He was on long-term immunosuppression following cardiac transplantation. Investigations revealed herpes simplex oesophagitis and stool samples were positive for norovirus. Treatment with acyclovir and nitazoxanide resulted in a complete resolution of symptoms. Norovirus is a common cause of infectious gastroenteritis, but immunosuppressed patients may present with chronic diarrhoea rather than an acute illness. This case highlights the importance of a low clinical threshold for testing for norovirus infection in immunocompromised patients.
Collapse
Affiliation(s)
| | - Alan Shand
- Gastroenterology Unit, NHS Lothian, Edinburgh, UK
| | - Ian Arnott
- Gastroenterology Unit, NHS Lothian, Edinburgh, UK
| | - Shahida Din
- Gastroenterology Unit, NHS Lothian, Edinburgh, UK
| |
Collapse
|
35
|
Nonthabenjawan N, Boonyos P, Phattanawiboon B, Towayunanta W, Chuntrakool K, Ngaopravet K, Ruchusatsawat K, Uppapong B, Sangkitporn S, Mekada E, Matsuura Y, Tatsumi M, Mizushima H. Identification of GII.14[P7] norovirus and its genomic mutations from a case of long-term infection in a post-symptomatic individual. INFECTION GENETICS AND EVOLUTION 2020; 86:104612. [PMID: 33137471 DOI: 10.1016/j.meegid.2020.104612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Norovirus is a leading cause of acute gastroenteritis worldwide. Norovirus shedding typically lasts one week to one month after the onset of diarrhea in immunocompetent hosts. The occurrence of mutations in the genome during infection has contributed to the evolution of norovirus. It has been suggested that genomic mutations in the P2-domain of capsid protein VP1, the major antigenic site for virus clearance, are involved in the evasion of host immunity and prolonged shedding of norovirus. In our previous study, we found a case of long-term shedding of GII.14 norovirus in a post-symptomatic immunocompetent individual that lasted about three months. In this study, we characterized the genomic sequence of the GII.14 strain to gain insight into the context of long-term shedding. By sequencing a 4.8 kb region of the genome corresponding to half of ORF1 and the entire ORF2 and ORF3, which encode several non-structural proteins and the structural proteins VP1 and VP2, the GII.14 strain was found to be classified as recombinant GII.14[P7]. Six point-mutations occurred during the three-month period of infection in a time-dependent manner in the genomic regions encoding RNA-dependent RNA polymerase, VP1, and VP2. Three of the six mutations were sense mutations, but no amino acid substitution was identified in the P2-domain of VP1. These results suggest that there is a mechanism by which long-term shedding of norovirus occurs in immunocompetent individuals independent of P2-domain mutations.
Collapse
Affiliation(s)
- Nutthawan Nonthabenjawan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Patcharaporn Boonyos
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Benjarat Phattanawiboon
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | | | | | | | - Kriangsak Ruchusatsawat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eisuke Mekada
- Research and Education Promotion Foundation, Bangkok, Thailand
| | - Yoshiharu Matsuura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Hiroto Mizushima
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.
| |
Collapse
|
36
|
|
37
|
Więsik-Szewczyk E, Jahnz-Różyk K. From infections to autoimmunity: Diagnostic challenges in common variable immunodeficiency. World J Clin Cases 2020; 8:3942-3955. [PMID: 33024751 PMCID: PMC7520788 DOI: 10.12998/wjcc.v8.i18.3942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Common variable immunodeficiency (CVID) is the most common clinically significant primary antibody deficiency diagnosed in adults. The early symptoms are not specific. They include common infections, mainly of the respiratory tract, caused by typical microorganisms, so cases can be missed in primary care. In the majority of patients increased susceptibility to infections coexists with signs or symptoms of autoimmunity, inflammation or polyclonal lymphoproliferation, which can divert diagnosis from immune deficiency. The overall incidence of malignancy is increased in CVID and certain cancers are significantly more common. Lymphomas and gastric carcinoma are the most frequently reported malignancies in CVID, so a high index of suspicion is recommended. Diagnostic delay in CVID is seen worldwide. The main goal of this paper is to increase the awareness about CVID among health care professionals. We aim to present features which can be helpful in CVID diagnosis in order to shorten the “latency” of proper management of CVID patients. We review clinical symptoms, complications and laboratory abnormalities of CVID. Immunoglobulin replacement therapy is regarded as the cornerstone of pharmacological intervention. New modes of Ig application, mainly subcutaneously and via the hyaluronidase-facilitated subcutaneous route, help to adjust therapy to patients’ needs and preferences. Still there remain unmet needs. It remains to be seen whether CVID complications can be avoided by earlier diagnosis, treatment and thorough monitoring in the context of increased risk of malignancy. Development of patient tailored protocols depending on the clinical phenotype and risk factors might be more appropriate. The most important consideration is to diagnose suspected cases and stratify patients in a precise and timely way. Work is needed to define features predictive of unfavorable prognosis.
Collapse
Affiliation(s)
- Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw 04-141, Poland
| |
Collapse
|
38
|
Hernandez JM, Silva LD, Sousa Junior EC, Cardoso JF, Reymão TKA, Portela ACR, de Lima CPS, Teixeira DM, Lucena MSS, Nunes MRT, Gabbay YB. Evolutionary and Molecular Analysis of Complete Genome Sequences of Norovirus From Brazil: Emerging Recombinant Strain GII.P16/GII.4. Front Microbiol 2020; 11:1870. [PMID: 32849456 PMCID: PMC7423841 DOI: 10.3389/fmicb.2020.01870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Noroviruses (NoVs) are enteric viruses that cause acute gastroenteritis, and the pandemic GII.4 genotype is spreading and evolving rapidly. The recombinant GII.P16/GII.4_Sydney strain emerged in 2016, replacing GII.P31/GII.4_Sydney (GII.P31 formerly known as GII.Pe) in some countries. We analyzed the complete genome of 20 NoV strains (17 GII.P31/GII.4_ Sydney and 3 GII.P16/GII.4_Sydney) from Belém and Manaus, Brazil, collected from 2012 to 2016. Phylogenetic trees were constructed by maximum likelihood method from 191 full NoV-VP1 sequences, demonstrated segregation of the Sydney lineage in two larger clades, suggesting that GII.4 strains associated with GII.P16 already have modifications compared with GII.P31/GII.4. Additionally, the Bayesian Markov Chain Monte Carlo method was used to reconstruct a time-scaled phylogenetic tree formed by GII.P16 ORF1 sequences (n = 117) and three complete GII.P16 sequences from Belém. The phylogenetic tree indicated the presence of six clades classified into different capsid genotypes and locations. Evolutionary rates of the ORF1 gene of GII.P16 strains was estimated at 2.01 × 10-3 substitutions/site/year, and the most recent common ancestors were estimated in 2011 (2011-2012, 95% HPD). Comparing the amino acid (AA) sequence coding for ORF1 with the prototype strain GII.P16/GII.4, 36 AA changes were observed, mainly in the non-structural proteins p48, p22, and RdRp. GII.P16/GII.4 strains of this study presented changes in amino acids 310, 333, 373, and 393 of the antigenic sites in the P2 subdomain, and ML tree indicating the division within the Sydney lineage according to the GII.P16 and GII.P31 polymerases. Notably, as noroviruses have high recombination rates and the GII.4 genotype was prevalent for a long time in several locations, additional and continuous evolutionary analyses of this new genotype should be needed in the future.
Collapse
Affiliation(s)
- Juliana Merces Hernandez
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luciana Damascena Silva
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | - Jedson Ferreira Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tammy Kathlyn Amaral Reymão
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | | | | | | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
39
|
Abo-zeid Y, Garnett MC. Polymer nanoparticle as a delivery system for ribavirin: Do nanoparticle avoid uptake by Red Blood Cells? J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Zhirakovskaia EV, Tikunov AY, Sokolov SN, Kravchuk BI, Krasnova EI, Tikunova NV. Characterization of the complete genome sequence of the recombinant norovirus GII.P16/GII.4_Sydney_2012 revealed in Russia. Vavilovskii Zhurnal Genet Selektsii 2020; 24:69-79. [PMID: 33659783 PMCID: PMC7716542 DOI: 10.18699/vj20.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Noroviruses (the Caliciviridae family) are a common cause of acute gastroenteritis in all age groups. These small non-envelope viruses with a single-stranded (+)RNA genome are characterized by high genetic variability. Continuous changes in the genetic diversity of co-circulating noroviruses and the emergence of new recombinant variants are observed worldwide. Recently, new recombinant noroviruses with a novel GII.P16 polymerase associated with different capsid proteins VP1 were reported. As a part of the surveillance study of sporadic cases of acute gastroenteritis in Novosibirsk, a total of 46 clinical samples from children with diarrhea were screened in 2016. Norovirus was detected in six samples from hospitalized children by RT-PCR. The identified noroviruses were classified as recombinant variants GII.P21/GII.3, GII. Pe/GII.4_Sydney_2012, and GII.P16/GII.4_Sydney_2012 by sequencing of the ORF1/ORF2 junction. In Novosibirsk, the first appearance of the new recombinant genotype GII.P16/ GII.4_Sydney_2012 was recorded in spring 2016. Before this study, only four complete genome sequences of the Russian GII.P16/GII.3 norovirus strains were available in the GenBank database. In this work, the complete genome sequence of the Russian strain Hu/GII.P16-GII.4/RUS/Novosibirsk/NS16-C38/2016 (GenBank KY210980) was determined. A comparison of the nucleotide and the deduced amino acid sequences showed a high homology of the Russian strain with GII.P16/GII.4_Sydney_2012 strains from other parts of the world. A comparative analysis showed that several unique substitutions occurred in the GII.P16 polymerase, N-terminal p48 protein, and minor capsid protein VP2 genes, while no unique changes in the capsid VP1 gene were observed. A functional significance of these changes suggests that a wide distribution of the strains with the novel GII.P16 polymerase may be associated both with several amino acid substitutions in the polymerase active center and with the insertion of glutamic acid or glycine in an N-terminal p48 protein that blocks the secretory immunity of intestinal epithelial cells. Further monitoring of genotypes will allow determining the distribution of norovirus recombinants with the polymerase GII.P16 in Russia.
Collapse
Affiliation(s)
- E V Zhirakovskaia
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Y Tikunov
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S N Sokolov
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| | - B I Kravchuk
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Krasnova
- Novosibirsk State Medical University, Department of Infectious Diseases, Novosibirsk, Russia
| | - N V Tikunova
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
41
|
Hanajiri R, Sani GM, Saunders D, Hanley PJ, Chopra A, Mallal SA, Sosnovtsev SV, Cohen JI, Green KY, Bollard CM, Keller MD. Generation of Norovirus-Specific T Cells From Human Donors With Extensive Cross-Reactivity to Variant Sequences: Implications for Immunotherapy. J Infect Dis 2020; 221:578-588. [PMID: 31562500 PMCID: PMC7325618 DOI: 10.1093/infdis/jiz491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic norovirus infection in immunocompromised patients can be severe, and presently there is no effective treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the treatment of many viral infections, and this could represent a novel treatment approach for chronic norovirus infection. Hence, we sought to generate human norovirus-specific T cells (NSTs) that can recognize different viral sequences. METHODS Norovirus-specific T cells were generated from peripheral blood of healthy donors by stimulation with overlapping peptide libraries spanning the entire coding sequence of the norovirus genome. RESULTS We successfully generated T cells targeting multiple norovirus antigens with a mean 4.2 ± 0.5-fold expansion after 10 days. Norovirus-specific T cells comprised both CD4+ and CD8+ T cells that expressed markers for central memory and effector memory phenotype with minimal expression of coinhibitory molecules, and they were polyfunctional based on cytokine production. We identified novel CD4- and CD8-restricted immunodominant epitopes within NS6 and VP1 antigens. Furthermore, NSTs showed a high degree of cross-reactivity to multiple variant epitopes from clinical isolates. CONCLUSIONS Our findings identify immunodominant human norovirus T-cell epitopes and demonstrate that it is feasible to generate potent NSTs from third-party donors for use in antiviral immunotherapy.
Collapse
Affiliation(s)
- Ryo Hanajiri
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
| | - Gelina M Sani
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
- GW Cancer Center, George Washington University, Washington, District of Columbia, USA
- Division of Blood and Marrow Transplantation, Children’s National Health System, Washington, District of Columbia, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia
- Division of Infectious Diseases, Department of Medicine Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia
- Division of Infectious Diseases, Department of Medicine Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stanislav V Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kim Y Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
- GW Cancer Center, George Washington University, Washington, District of Columbia, USA
- Division of Blood and Marrow Transplantation, Children’s National Health System, Washington, District of Columbia, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, District of Columbia, USA
- GW Cancer Center, George Washington University, Washington, District of Columbia, USA
- Division of Allergy and Immunology, Children’s National Health System, Washington, District of Columbia, USA
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Noroviruses are a major cause of gastroenteritis. This review summarizes new information on noroviruses that may lead to the development of improved measures for limiting their human health impact. RECENT FINDINGS GII.4 strains remain the most common human noroviruses causing disease, although GII.2 and GII.17 strains have recently emerged as dominant strains in some populations. Histo-blood group antigen (HBGA) expression on the gut mucosa drives susceptibility to different norovirus strains. Antibodies that block virus binding to these glycans correlate with protection from infection and illness. Immunocompromised patients are significantly impacted by norovirus infection, and the increasing availability of molecular diagnostics has improved infection recognition. Human noroviruses can be propagated in human intestinal enteroid cultures containing enterocytes that are a significant primary target for initiating infection. Strain-specific requirements for replication exist with bile being essential for some strains. Several vaccine candidates are progressing through preclinical and clinical development and studies of potential antiviral interventions are underway. SUMMARY Norovirus epidemiology is complex and requires continued surveillance to track the emergence of new strains and recombinants, especially with the continued progress in vaccine development. Humans are the best model to study disease pathogenesis and prevention. New in-vitro cultivation methods should lead to better approaches for understanding virus-host interactions and ultimately to improved strategies for mitigation of human norovirus-associated disease.
Collapse
|
43
|
Sempere RN, Arias A. Establishment of a Cell Culture Model of Persistent Flaviviral Infection: Usutu Virus Shows Sustained Replication during Passages and Resistance to Extinction by Antiviral Nucleosides. Viruses 2019; 11:E560. [PMID: 31212939 PMCID: PMC6630443 DOI: 10.3390/v11060560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/02/2019] [Accepted: 06/15/2019] [Indexed: 12/30/2022] Open
Abstract
Chronic viral disease constitutes a major global health problem, with several hundred million people affected and an associated elevated number of deaths. An increasing number of disorders caused by human flaviviruses are related to their capacity to establish a persistent infection. Here we show that Usutu virus (USUV), an emerging zoonotic flavivirus linked to sporadic neurologic disease in humans, can establish a persistent infection in cell culture. Two independent lineages of Vero cells surviving USUV lytic infection were cultured over 82 days (41 cell transfers) without any apparent cytopathology crisis associated. We found elevated titers in the supernatant of these cells, with modest fluctuations during passages but no overall tendency towards increased or decreased infectivity. In addition to full-length genomes, viral RNA isolated from these cells at passage 40 revealed the presence of defective genomes, containing different deletions at the 5' end. These truncated transcripts were all predicted to encode shorter polyprotein products lacking membrane and envelope structural proteins, and most of non-structural protein 1. Treatment with different broad-range antiviral nucleosides revealed that USUV is sensitive to these compounds in the context of a persistent infection, in agreement with previous observations during lytic infections. The exposure of infected cells to prolonged treatment (10 days) with favipiravir and/or ribavirin resulted in the complete clearance of infectivity in the cellular supernatants (decrease of ~5 log10 in virus titers and RNA levels), although modest changes in intracellular viral RNA levels were recorded (<2 log10 decrease). Drug withdrawal after treatment day 10 resulted in a relapse in virus titers. These results encourage the use of persistently-infected cultures as a surrogate system in the identification of improved antivirals against flaviviral chronic disease.
Collapse
Affiliation(s)
- Raquel Navarro Sempere
- Life Science & Bioengineering Building, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
- Abiopep Sociedad Limitada, Parque Científico de Murcia, 30100 Murcia, Spain.
| | - Armando Arias
- Life Science & Bioengineering Building, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
44
|
The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. Viruses 2019; 11:v11050432. [PMID: 31083353 PMCID: PMC6563215 DOI: 10.3390/v11050432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.
Collapse
|
45
|
Jones TPW, Buckland M, Breuer J, Lowe DM. Viral infection in primary antibody deficiency syndromes. Rev Med Virol 2019; 29:e2049. [PMID: 31016825 DOI: 10.1002/rmv.2049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
Patients with primary antibody deficiency syndromes such as X-linked agammaglobulinemia (XLA) and common variable immunodeficiency (CVID) are at increased risk of severe and invasive infection. Viral infection in these populations has been of increasing interest as evidence mounts that viruses contribute significant morbidity and mortality: this is mediated both directly and via aberrant immune responses. We explain the importance of the humoral immune system in defence against viral pathogens before highlighting several significant viral syndromes in patients with antibody deficiency. We explore historical cases of hepatitis C via contaminated immunoglobulin products, the predisposition to invasive enteroviral infections, prolonged excretion of vaccine-derived poliovirus, the morbidity of chronic norovirus infection, and recent literature revealing the importance of respiratory viral infections. We discuss evidence that herpesviruses may play a role in driving the inflammatory disease seen in a subset of patients. We explore the phenomenon of within-host evolution during chronic viral infection and the potential emergence of new pathogenic strains. We highlight novel and emerging viruses identified via deep sequencing techniques. We describe the treatment strategies that have been attempted in all these scenarios and the urgent outstanding questions for research.
Collapse
Affiliation(s)
- Timothy P W Jones
- Department of Infectious Disease and Microbiology, Royal Free Hospital, London, UK
| | - Matthew Buckland
- Institute of Immunity and Transplantation, Royal Free Campus, University College, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - David M Lowe
- Institute of Immunity and Transplantation, Royal Free Campus, University College, London, UK
| |
Collapse
|
46
|
Gernez Y, Baker MG, Maglione PJ. Humoral immunodeficiencies: conferred risk of infections and benefits of immunoglobulin replacement therapy. Transfusion 2019; 58 Suppl 3:3056-3064. [PMID: 30536429 PMCID: PMC6939302 DOI: 10.1111/trf.15020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Primary immunodeficiency (PID) diseases result from genetic defects of the immune system that increase a patient's susceptibility to infections. The types of infections that occur in patients with PID diseases are dictated largely by the nature of the immunodeficiency, which can be defined by dysfunction of cellular or humoral defenses. An increasing number of PID diseases, including those with both cellular and humoral defects, have antibody deficiency as a major feature, and as a result can benefit from immunoglobulin replacement therapy. In fact, the most common PID diseases worldwide are antibody deficiencies and include common variable immunodeficiency, congenital agammaglobulinemia, hyper‐IgM syndrome, specific antibody deficiency, and Good syndrome. Although immunoglobulin replacement therapy is the cornerstone of treatment for the majority of these conditions, a thorough understanding of the specific infections for which these patients are at increased risk can hasten diagnosis and guide additional therapies. Moreover, the infection trends in some patients with PID disease who have profound defects of cellular immunity, such as autosomal‐dominant hyper‐IgE syndrome (Job/Buckley syndrome) or dedicator of cytokinesis 8 (DOCK8) deficiency, suggest that select patients might benefit from immunoglobulin replacement therapy even if their immunodeficiency is not limited to antibody defects. In this review, we provide an overview of the predisposition to infections seen in PID disease that may benefit from immunoglobulin replacement therapy.
Collapse
Affiliation(s)
- Yael Gernez
- Division of Allergy and Immunology, Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Mary Grace Baker
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
47
|
Nordgren J, Svensson L. Genetic Susceptibility to Human Norovirus Infection: An Update. Viruses 2019; 11:E226. [PMID: 30845670 PMCID: PMC6466115 DOI: 10.3390/v11030226] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Noroviruses are the most common etiological agent of acute gastroenteritis worldwide. Despite their high infectivity, a subpopulation of individuals is resistant to infection and disease. This susceptibility is norovirus genotype-dependent and is largely mediated by the presence or absence of human histo-blood group antigens (HBGAs) on gut epithelial surfaces. The synthesis of these HBGAs is mediated by fucosyl- and glycosyltransferases under the genetic control of the FUT2 (secretor), FUT3 (Lewis) and ABO(H) genes. The so-called non-secretors, having an inactivated FUT2 enzyme, do not express blood group antigens and are resistant to several norovirus genotypes, including the predominant GII.4. Significant genotypic and phenotypic diversity of HBGA expression exists between different human populations. Here, we review previous in vivo studies on genetic susceptibility to norovirus infection. These are discussed in relation to population susceptibility, vaccines, norovirus epidemiology and the impact on public health.
Collapse
Affiliation(s)
- Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden.
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden.
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
48
|
Song J, Lleo A, Yang GX, Zhang W, Bowlus CL, Gershwin ME, Leung PSC. Common Variable Immunodeficiency and Liver Involvement. Clin Rev Allergy Immunol 2018; 55:340-351. [PMID: 28785926 PMCID: PMC5803456 DOI: 10.1007/s12016-017-8638-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary B-cell immunodeficiency disorder, characterized by remarkable hypogammaglobulinemia. The disease can develop at any age without gender predominance. The prevalence of CVID varies widely worldwide. The underlying causes of CVID remain largely unknown; primary B-cell dysfunctions, defects in T cells and antigen-presenting cells are involved. Although some monogenetic defects have been identified in some CVID patients, it is likely that CVID is polygenic. Patients with CVID develop recurrent and chronic infections (e.g., bacterial infections of the respiratory or gastrointestinal tract), autoimmune diseases, lymphoproliferation, malignancies, and granulomatous lesions. Interestingly, autoimmunity can be the only clinical manifestation of CVID at the time of diagnosis and may even develop prior to hypogammaglobulinemia. The diagnosis of CVID is largely based on the criteria established by European Society for Immunodeficiencies and Pan-American Group for Immunodeficiency (ESID/PAGID) and with some recent modifications. The disease can affect multiple organs, including the liver. Clinical features of CVID patients with liver involvement include abnormal liver biochemistries, primarily elevation of alkaline phosphatase (ALP), nodular regenerative hyperplasia (NRH), or liver cirrhosis and its complications. Replacement therapy with immunoglobulin (Ig) and anti-infection therapy are the primary treatment regimen for CVID patients. No specific therapy for liver involvement of CVID is currently available, and liver transplantation is an option only in select cases. The prognosis of CVID varies widely. Further understanding in the etiology and pathophysiology will facilitate early diagnosis and treatments to improve prognosis.
Collapse
Affiliation(s)
- Junmin Song
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Guo Xiang Yang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| |
Collapse
|
49
|
Van Winkle JA, Robinson BA, Peters AM, Li L, Nouboussi RV, Mack M, Nice TJ. Persistence of Systemic Murine Norovirus Is Maintained by Inflammatory Recruitment of Susceptible Myeloid Cells. Cell Host Microbe 2018; 24:665-676.e4. [PMID: 30392829 PMCID: PMC6248887 DOI: 10.1016/j.chom.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Viral persistence can contribute to chronic disease and promote virus dissemination. Prior work demonstrated that timely clearance of systemic murine norovirus (MNV) infection depends on cell-intrinsic type I interferon responses and adaptive immunity. We now find that the capsid of the systemically replicating MNV strain CW3 promotes lytic cell death, release of interleukin-1α, and increased inflammatory cytokine release. Correspondingly, inflammatory monocytes and neutrophils are recruited to sites of infection in a CW3-capsid-dependent manner. Recruited monocytes and neutrophils are subsequently infected, representing a majority of infected cells in vivo. Systemic depletion of inflammatory monocytes or neutrophils from persistently infected Rag1-/- mice reduces viral titers in a tissue-specific manner. These data indicate that the CW3 capsid facilitates lytic cell death, inflammation, and recruitment of susceptible cells to promote persistence. Infection of continuously recruited inflammatory cells may be a mechanism of persistence broadly utilized by lytic viruses incapable of establishing latency.
Collapse
Affiliation(s)
- Jacob A Van Winkle
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Bridget A Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - A Mack Peters
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Lena Li
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ruth V Nouboussi
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Matthias Mack
- Department of Internal Medicine (Nephrology), University of Regensburg, Regensburg, Germany
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
50
|
Nitazoxanide Inhibits Human Norovirus Replication and Synergizes with Ribavirin by Activation of Cellular Antiviral Response. Antimicrob Agents Chemother 2018; 62:AAC.00707-18. [PMID: 30104275 DOI: 10.1128/aac.00707-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Norovirus is the main cause of viral gastroenteritis worldwide. Although norovirus gastroenteritis is self-limiting in immunocompetent individuals, chronic infections with debilitating and life-threatening complications occur in immunocompromised patients. Nitazoxanide (NTZ) has been used empirically in the clinic and has demonstrated effectiveness against norovirus gastroenteritis. In this study, we aimed at uncovering the antiviral potential and mechanisms of action of NTZ and its active metabolite, tizoxanide (TIZ), using a human norovirus (HuNV) replicon. NTZ and TIZ, collectively referred to as thiazolides (TZD), potently inhibited replication of HuNV and a norovirus surrogate, feline calicivirus. Mechanistic studies revealed that TZD activated cellular antiviral response and stimulated the expression of a subset of interferon-stimulated genes (ISGs), particularly interferon regulatory factor 1 (IRF-1), not only in a Huh7 cell-based HuNV replicon, but also in naive Huh7 and Caco-2 cells and novel human intestinal organoids. Overexpression of exogenous IRF-1 inhibited HuNV replication, whereas knockdown of IRF-1 largely attenuated the antiviral activity of TZD, suggesting that IRF-1 mediated TZD inhibition of HuNV. By using a Janus kinase (JAK) inhibitor, CP-690550, and a STAT1 knockout approach, we found that TZD induced antiviral response independently of the classical JAK-signal transducers and activators of transcription (JAK-STAT) pathway. Furthermore, TZD and ribavirin synergized to inhibit HuNV replication and completely depleted the replicons from host cells after long-term treatment. In summary, our results demonstrated that TZD combated HuNV replication through activation of cellular antiviral response, in particular by inducing a prominent antiviral effector, IRF-1. NTZ monotherapy or combination with ribavirin represent promising options for treating norovirus gastroenteritis, especially in immunocompromised patients.
Collapse
|