1
|
Aiyengar A, Romano M, Burch M, Lombardi G, Fanelli G. The potential of autologous regulatory T cell (Treg) therapy to prevent Cardiac Allograft Vasculopathy (CAV) in paediatric heart transplant recipients. Front Immunol 2024; 15:1444924. [PMID: 39315099 PMCID: PMC11416935 DOI: 10.3389/fimmu.2024.1444924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Paediatric heart transplant is an established treatment for end stage heart failure in children, however patients have to commit to lifelong medical surveillance and adhere to daily immunosuppressants to minimise the risk of rejection. Compliance with immunosuppressants can be burdensome with their toxic side effects and need for frequent blood monitoring especially in children. Though the incidence of early rejection episodes has significantly improved overtime, the long-term allograft health and survival is determined by Cardiac Allograft Vasculopathy (CAV) which affects a vast number of post-transplant patients. Once CAV has set in, there is no medical or surgical treatment to reverse it and graft survival is significantly compromised across all age groups. Current treatment strategies include novel immunosuppressant agents and drugs to lower blood lipid levels to address the underlying immunological pathophysiology and to manage traditional cardiac risk factors. Translational researchers are seeking novel immunological approaches that can lead to permanent acceptance of the allograft such as using regulatory T cell (Tregs) immunotherapy. Clinical trials in the setting of graft versus host disease, autoimmunity and kidney and liver transplantation using Tregs have shown the feasibility and safety of this strategy. This review will summarise current knowledge of the latest clinical therapies for CAV and pre-clinical evidence in support of Treg therapy for CAV. We will also discuss the different Treg sources and the considerations of translating this into a feasible immunotherapy in clinical practice in the paediatric population.
Collapse
Affiliation(s)
- Apoorva Aiyengar
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Research Department of Children’s Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| |
Collapse
|
2
|
Dubois A, Jin X, Hooft C, Canovai E, Boelhouwer C, Vanuytsel T, Vanaudenaerde B, Pirenne J, Ceulemans LJ. New insights in immunomodulation for intestinal transplantation. Hum Immunol 2024; 85:110827. [PMID: 38805779 DOI: 10.1016/j.humimm.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Tolerance is the Holy Grail of solid organ transplantation (SOT) and remains its primary challenge since its inception. In this topic, the seminal contributions of Thomas Starzl at Pittsburgh University outlined foundational principles of graft acceptance and tolerance, with chimerism emerging as a pivotal factor. Immunologically, intestinal transplantation (ITx) poses a unique hurdle due to the inherent characteristics and functions of the small bowel, resulting in increased immunogenicity. This necessitates heavy immunosuppression (IS) while IS drugs side effects cause significant morbidity. In addition, current IS therapies fall short of inducing clinical tolerance and their discontinuation has been proven unattainable in most cases. This underscores the unfulfilled need for immunological modulation to safely reduce IS-related burdens. To address this challenge, the Leuven Immunomodulatory Protocol (LIP), introduced in 2000, incorporates various pro-tolerogenic interventions in both the donor to the recipient, with the aim of facilitating graft acceptance and improving outcome. This review seeks to provide an overview of the current understanding of tolerance in ITx and outline recent advances in this domain.
Collapse
Affiliation(s)
- Antoine Dubois
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Emilio Canovai
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Oxford Transplant Centre, Churchill Hospital, Oxford, United Kingdom
| | - Caroline Boelhouwer
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
de Silva TA, Apte S, Voisey J, Spann K, Tan M, Chambers D, O'Sullivan B. Immunological Landscapes in Lung Transplantation: Insights from T Cell Profiling in BAL and PBMC. Int J Mol Sci 2024; 25:2476. [PMID: 38473722 DOI: 10.3390/ijms25052476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Lung transplant recipients frequently encounter immune-related complications, including chronic lung allograft dysfunction (CLAD). Monitoring immune cells within the lung microenvironment is pivotal for optimizing post-transplant outcomes. This study examined the proportion of T cell subsets in paired bronchoalveolar lavage (BAL) and peripheral PBMC comparing healthy (n = 4) and lung transplantation patients (n = 6, no CLAD and n = 14 CLAD) using 14-color flow cytometry. CD4+ T cell proportions were reduced in CD3 cells in both PBMC and BAL, and positive correlations were discerned between T cell populations in peripheral PBMC and BAL, suggesting the prospect of employing less invasive PBMC sampling as a means of monitoring lung T cells. Furthermore, regulatory T cells (Tregs) were enriched in BAL when compared to peripheral PBMC for transplant recipients. A parallel positive correlation emerged between Treg proportions in BAL and peripheral PBMC, underscoring potential avenues for monitoring lung Tregs. Finally, the most promising biomarker was the Teff (CD8+Granzyme B+)-Treg ratio, which was higher in both the PBMC and BAL of transplant recipients compared to healthy individuals, and increased in the patients with CLAD compared to no CLAD and healthy patients. Conclusions: Distinct T cell profiles in BAL and peripheral PBMC underscore the significance of localized immune monitoring in lung transplantation. The Teff (CD8+granzyme B+)-Treg ratio, particularly within the context of CLAD, emerges as a promising blood and BAL biomarker reflective of inflammation and transplant-related complications. These findings emphasize the imperative need for personalized immune monitoring strategies that tailored to address the unique immunological milieu in post-transplant lungs.
Collapse
Affiliation(s)
- Tharushi Ayanthika de Silva
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Daniel Chambers
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Brendan O'Sullivan
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| |
Collapse
|
4
|
Tripathi S, Tsang JS, Park K. Systems immunology of regulatory T cells: can one circuit explain it all? Trends Immunol 2023; 44:766-781. [PMID: 37690962 PMCID: PMC10543564 DOI: 10.1016/j.it.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Regulatory T (Treg) cells play vital roles in immune homeostasis and response, including discrimination between self- and non-self-antigens, containment of immunopathology, and inflammation resolution. These diverse functions are orchestrated by cellular circuits involving Tregs and other cell types across space and time. Despite dramatic progress in our understanding of Treg biology, a quantitative framework capturing how Treg-containing circuits give rise to these diverse functions is lacking. Here, we propose that different facets of Treg function can be interpreted as distinct operating regimes of the same underlying circuit. We discuss how a systems immunology approach, involving quantitative experiments, computational modeling, and machine learning, can advance our understanding of Treg function, and help identify general operating and design principles underlying immune regulation.
Collapse
Affiliation(s)
- Shubham Tripathi
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - John S Tsang
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Kyemyung Park
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; Graduate School of Health Science and Technology and Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Chen Y, Chai H, Li Z, Liu B, Tan M, Li S, Ma Y. Gut microbiota and their metabolite profiles following peripheral nerve xenotransplantation. Heliyon 2023; 9:e18529. [PMID: 37554826 PMCID: PMC10404661 DOI: 10.1016/j.heliyon.2023.e18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Intestinal pathogens are associated with xenotransplantation tolerance and rejection. However, changes in the gut microbiota in patients who have undergone peripheral nerve xenotransplantation and their association with immune rejection have not yet been reported. OBJECTIVE We aimed to explore intestinal microbes and their metabolites at different time points after peripheral nerve transplantation to provide new insight into improving transplant tolerance. METHODS A peripheral nerve xenotransplantation model was constructed by suturing the segmented nerves of Sprague Dawley rats to those of C57 male mice using xenotransplantation nerve bridging. Fecal samples and intestinal contents were collected at three time points: before surgery (Pre group; n = 10), 1 month after transplantation (Pos1 m group; n = 10), and 3 months after transplantation (Pos3 m group; n = 10) for 16S DNA sequencing and nontargeted metabolome detection. RESULTS Alpha diversity results suggested that species diversity was significantly downregulated after peripheral nerve xenotransplantation. There were six gut flora genera with significantly different expression levels after xenotransplantation: four were downregulated and two were upregulated. A comparison of the Pre vs. Pos1 m groups and the Pos1 m vs. Pos3 m groups revealed that the most significant differentially expressed Kyoto Encyclopedia of Genes and Genomes metabolite pathways were involved in phenylalanine, tyrosine, and tryptophan biosynthesis, as well as histidine metabolism. Metabolites with a strong relationship to the differentially expressed microbial flora were identified. CONCLUSION Our study found lower gut microbiome diversity, with increased short-chain fatty acid (SCFA)-producing and sulfate-reducing bacteria at 1 month post peripheral nerve xenotransplantation, and these were decreased at 3 months post-transplantation. The identification of specific bacterial metabolites is essential for recognizing potential diagnostic markers of xenotransplantation rejection or characterizing therapeutic targets to prevent post-transplant infection.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510360, Guangdong, China
| | - Zhenzhen Li
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Bin Liu
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Minxuan Tan
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Shaopeng Li
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Yanxia Ma
- Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Rahimifard K, Shahbazi M, Oliaei F, Akbari R, Tarighi M, Mohammadnia-Afrouzi M. Increased frequency of CD39 +CD73 + regulatory T cells and Deltex-1 gene expression level in kidney transplant recipients with excellent long-term graft function. Transpl Immunol 2023; 78:101823. [PMID: 36921728 DOI: 10.1016/j.trim.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The ability of regulatory T cells (Tregs) to limit inflammatory responses has been demonstrated. However, different subpopulations of this cell have varying abilities to suppress alloreactive immune responses. The primary goal of this study was to assess the frequency of CD4+FOXP3+CD39+CD73+ Tregs and Deltex-1 gene expression on long-term renal transplant function. METHODS A total of 49 subjects were divided into 3 groups: (i) the excellent long-term graft function (ELTGF) group, (ii) the chronic graft dysfunction (CGD) group, and (iii) the healthy control (HC) group. Following sample collection, peripheral blood mononuclear cells (PBMCs) were isolated, and the Deltex-1 gene expression level and the frequency of CD4+FOXP3+CD39+CD73+ Tregs were evaluated. RESULTS The ELTGF group had more CD4+FOXP3+ Tregs than the CGD group, but the difference was not statistically significant (P = 0.07). However, the frequency of CD4+FOXP3+CD39+CD73+ Tregs and the ratio of these cells to total CD4+ lymphocytes significantly increased in the ELTGF group than in the CGD group (P = 0.04 and P = 0.02 respectively). In addition, the expression level of the Deltex-1 gene was significantly lower in the CGD group than in the other 2 groups (P = 0.01 and P = 0.04 respectively). CONCLUSIONS Given the increased frequency of CD4+FOXP3+CD39+CD73+ Tregs and the expression level of the Deltex-1 gene in the ELTGF group, it appears that these factors probably improved function and long-term survival of the transplanted organ through the suppression of alloreactive responses and reduction of inflammation. In other words, one of the immunological mechanisms involved in the CGD group may be a deficiency in Tregs.
Collapse
Affiliation(s)
- Kimiya Rahimifard
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farshid Oliaei
- Kidney Transplantation Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Akbari
- Kidney Transplantation Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Mona Tarighi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
7
|
Lei T, Chen L, Wang K, Du S, Gonelle-Gispert C, Wang Y, Buhler LH. Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: The first clinical steps. Front Immunol 2022; 13:1031185. [PMID: 36561750 PMCID: PMC9766364 DOI: 10.3389/fimmu.2022.1031185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation has the potential to solve the shortfall of human organ donors. Genetically modified pigs have been considered as potential animal donors for human xenotransplantation and have been widely used in preclinical research. The genetic modifications aim to prevent the major species-specific barriers, which include humoral and cellular immune responses, and physiological incompatibilities such as complement and coagulation dysfunctions. Genetically modified pigs can be created by deleting several pig genes related to the synthesis of various pig specific antigens or by inserting human complement- and coagulation-regulatory transgenes. Finally, in order to reduce the risk of infection, genes related to porcine endogenous retroviruses can be knocked down. In this review, we focus on genetically modified pigs and comprehensively summarize the immunological mechanism of xenograft rejection and recent progress in preclinical and clinical studies. Overall, both genetically engineered pig-based xenografts and technological breakthroughs in the biomedical field provide a promising foundation for pig-to-human xenotransplantation in the future.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kejing Wang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | | | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H. Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Muralidharan K, Agarwal D, Naji A, Bhoj VG. Therapeutic Opportunities for Immunoreceptor-Engineered T Cell Therapy for Modulation of Alloimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1811-1816. [PMID: 36344114 PMCID: PMC9680015 DOI: 10.4049/jimmunol.2200542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022]
Abstract
Achieving immunosuppression-free immune tolerance to an allograft is one of the central goals of transplantation. In this article, we review recent developments in the fields of T cell-based therapies and T cell engineering using chimeric Ag receptors and their potential for effective and targeted immune modulation of T and B cell activity in an effort to eliminate pre-existing alloantibodies (desensitization) and achieve long-term tolerance. Approaches that span preclinical to early clinical studies in transplantation will be reviewed, with specific emphasis on advances in T cell immunotherapy that have shown promise. Lastly, we conclude with a forward-looking discussion of how T cell-based therapies in other fields of medicine can be potentially applied to solid organ transplantation.
Collapse
Affiliation(s)
- Kavitha Muralidharan
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Divyansh Agarwal
- Department of Surgery, Massachusetts General Hospital, Boston, MA; and
| | - Ali Naji
- Department of Surgery, Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;
| |
Collapse
|
9
|
Yan S, Kotschenreuther K, Deng S, Kofler DM. Regulatory T cells in rheumatoid arthritis: functions, development, regulation, and therapeutic potential. Cell Mol Life Sci 2022; 79:533. [PMID: 36173485 PMCID: PMC9522664 DOI: 10.1007/s00018-022-04563-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects the joints but also leads to systemic inflammation. Auto-reactivity and dysregulation of self-tolerance are thought to play a vital role in disease onset. In the pathogenesis of autoimmune diseases, disturbed immunosuppressive properties of regulatory T cells contribute to the dysregulation of immune homeostasis. In RA patients, the functions of Treg cells and their frequency are reduced. Therefore, focusing on the re-establishment of self-tolerance by increasing Treg cell frequencies and preventing a loss of function is a promising strategy for the treatment of RA. This approach could be especially beneficial for those patients who do not respond well to current therapies. In this review, we summarize and discuss the current knowledge about the function, differentiation and regulation of Treg cells in RA patients and in animal models of autoimmune arthritis. In addition, we highlight the therapeutic potential as well as the challenges of Treg cell targeting treatment strategies.
Collapse
Affiliation(s)
- Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany
| | - Shuya Deng
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - David M Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany.
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
| |
Collapse
|
10
|
Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Gene Ther 2022; 30:309-322. [PMID: 35931871 PMCID: PMC10113151 DOI: 10.1038/s41434-022-00358-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
A primary goal in transplantation medicine is the induction of a tolerogenic environment for prevention of transplant rejection without the need for long-term pharmacological immunosuppression. Generation of alloantigen-specific regulatory T cells (Tregs) by transduction with chimeric antigen receptors (CARs) is a promising strategy to achieve this goal. This publication reports the preclinical characterization of Tregs (TR101) transduced with a human leukocyte antigen (HLA)-A*02 CAR lentiviral vector (TX200) designated to induce immunosuppression of allograft-specific effector T cells in HLA-A*02-negative recipients of HLA-A*02-positive transplants. In vitro results demonstrated specificity, immunosuppressive function, and safety of TX200-TR101. In NOD scid gamma (NSG) mice, TX200-TR101 prevented graft-versus-host disease (GvHD) in a xenogeneic GvHD model and TX200-TR101 Tregs localized to human HLA-A*02-positive skin transplants in a transplant model. TX200-TR101 persisted over the entire duration of a 3-month study in humanized HLA-A*02 NSG mice and remained stable, without switching to a proinflammatory phenotype. Concomitant tacrolimus did not impair TX200-TR101 Treg survival or their ability to inhibit peripheral blood mononuclear cell (PBMC) engraftment. These data demonstrate that TX200-TR101 is specific, stable, efficacious, and safe in preclinical models, and provide the basis for a first-in-human study.
Collapse
|
11
|
Bernaldo-de-Quirós E, Cózar B, López-Esteban R, Clemente M, Gil-Jaurena JM, Pardo C, Pita A, Pérez-Caballero R, Camino M, Gil N, Fernández-Santos ME, Suarez S, Pion M, Martínez-Bonet M, Correa-Rocha R. A Novel GMP Protocol to Produce High-Quality Treg Cells From the Pediatric Thymic Tissue to Be Employed as Cellular Therapy. Front Immunol 2022; 13:893576. [PMID: 35651624 PMCID: PMC9148974 DOI: 10.3389/fimmu.2022.893576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Due to their suppressive capacity, the adoptive transfer of regulatory T cells (Treg) has acquired a growing interest in controlling exacerbated inflammatory responses. Limited Treg recovery and reduced quality remain the main obstacles in most current protocols where differentiated Treg are obtained from adult peripheral blood. An alternate Treg source is umbilical cord blood, a promising source of Treg cells due to the higher frequency of naïve Treg and lower frequency of memory T cells present in the fetus’ blood. However, the Treg number isolated from cord blood remains limiting. Human thymuses routinely discarded during pediatric cardiac surgeries to access the retrosternal operative field has been recently proposed as a novel source of Treg for cellular therapy. This strategy overcomes the main limitations of current Treg sources, allowing the obtention of very high numbers of undifferentiated Treg. We have developed a novel good manufacturing practice (GMP) protocol to obtain large Treg amounts, with very high purity and suppressive capacity, from the pediatric thymus (named hereafter thyTreg). The total amount of thyTreg obtained at the end of the procedure, after a short-term culture of 7 days, reach an average of 1,757 x106 (range 50 x 106 – 13,649 x 106) cells from a single thymus. The thyTreg product obtained with our protocol shows very high viability (mean 93.25%; range 83.35% – 97.97%), very high purity (mean 92.89%; range 70.10% – 98.41% of CD25+FOXP3+ cells), stability under proinflammatory conditions and a very high suppressive capacity (inhibiting in more than 75% the proliferation of activated CD4+ and CD8+ T cells in vitro at a thyTreg:responder cells ratio of 1:1). Our thyTreg product has been approved by the Spanish Drug Agency (AEMPS) to be administered as cell therapy. We are recruiting patients in the first-in-human phase I/II clinical trial worldwide that evaluates the safety, feasibility, and efficacy of autologous thyTreg administration in children undergoing heart transplantation (NCT04924491). The high quality and amount of thyTreg and the differential features of the final product obtained with our protocol allow preparing hundreds of doses from a single thymus with improved therapeutic properties, which can be cryopreserved and could open the possibility of an “off-the-shelf” allogeneic use in another individual.
Collapse
Affiliation(s)
| | - Beatriz Cózar
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Rocío López-Esteban
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Maribel Clemente
- Cell Culture Unit, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | | | - Carlos Pardo
- Pediatric Cardiac Surgery Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Ana Pita
- Pediatric Cardiac Surgery Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Ramón Pérez-Caballero
- Pediatric Cardiac Surgery Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Manuela Camino
- Pediatric Heart Transplant Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | - Nuria Gil
- Pediatric Heart Transplant Unit, Hospital Materno Infantil Gregorio Marañón, Madrid, Spain
| | | | - Susana Suarez
- Cell Production Unit, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- *Correspondence: Rafael Correa-Rocha, ; Marta Martínez-Bonet,
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- *Correspondence: Rafael Correa-Rocha, ; Marta Martínez-Bonet,
| |
Collapse
|
12
|
Schreeb K, Culme-Seymour E, Ridha E, Dumont C, Atkinson G, Hsu B, Reinke P. Study Design: HLA-A*02-Chimeric Antigen Receptor Regulatory T Cells in Renal Transplantation. Kidney Int Rep 2022; 7:1258-1267. [PMID: 35694562 PMCID: PMC9174048 DOI: 10.1016/j.ekir.2022.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Cell therapy with regulatory T cells (Tregs) in solid organ transplantation is a promising approach for the prevention of graft rejection and induction of immunologic tolerance. Previous clinical studies have demonstrated the safety of Tregs in renal transplant recipients. Antigen-specific Tregs, such as chimeric antigen receptor (CAR)-Tregs, are expected to be more efficacious than polyclonal Tregs in homing to the target antigen. We have developed an autologous cell therapy (TX200-TR101) where a human leukocyte antigen (HLA) class I molecule A∗02 (HLA-A∗02)-CAR is introduced into autologous naive Tregs from a patient with HLA-A∗02-negative end-stage renal disease (ESRD) awaiting an HLA-A∗02-positive donor kidney. Methods This article describes the design of the STEADFAST study, a first-in-human, phase I/IIa, multicenter, open-label, single-ascending dose, dose-ranging study to assess TX200-TR101 in living-donor renal transplant recipients. Up to 15 transplant recipients will receive TX200-TR101 and will be followed up for a total of 84 weeks post-transplant, alongside a control cohort of up to 6 transplant recipients. All transplant recipients will receive a standard of care immunosuppressive regimen, with the intent of intensified tapering of the regimen in the TX200-TR101 cohort. Results The primary end point is the incidence and severity of treatment-emergent adverse events (AEs) within 28 days post–TX200-TR101 infusion. Other end points include additional safety parameters, clinical and renal outcome parameters, and the evaluation of biomarkers. Conclusion The STEADFAST study represents the next frontier in adoptive cell therapies. TX200-TR101 holds great potential to prevent immune-mediated graft rejection and induce immunologic tolerance after HLA-A∗02-mismatched renal transplantation.
Collapse
|
13
|
Bernaldo-de-Quirós E, Pion M, Martínez-Bonet M, Correa-Rocha R. A New Generation of Cell Therapies Employing Regulatory T Cells (Treg) to Induce Immune Tolerance in Pediatric Transplantation. Front Pediatr 2022; 10:862807. [PMID: 35633970 PMCID: PMC9130702 DOI: 10.3389/fped.2022.862807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the preferred treatment for pediatric patients with end-stage renal disease, but it is still not a definitive solution due to immune graft rejection. Regulatory T cells (Treg) and their control over effector T cells is a crucial and intrinsic tolerance mechanism in limiting excessive immune responses. In the case of transplants, Treg are important for the survival of the transplanted organ, and their dysregulation could increase the risk of rejection in transplanted children. Chronic immunosuppression to prevent rejection, for which Treg are especially sensitive, have a detrimental effect on Treg counts, decreasing the Treg/T-effector balance. Cell therapy with Treg cells is a promising approach to restore this imbalance, promoting tolerance and thus increasing graft survival. However, the strategies used to date that employ peripheral blood as a Treg source have shown limited efficacy. Moreover, it is not possible to use this approach in pediatric patients due to the limited volume of blood that can be extracted from children. Here, we outline our innovative strategy that employs the thymus removed during pediatric cardiac surgeries as a source of therapeutic Treg that could make this therapy accessible to transplanted children. The advantageous properties and the massive amount of Treg cells obtained from pediatric thymic tissue (thyTreg) opens a new possibility for Treg therapies to prevent rejection in pediatric kidney transplants. We are recruiting patients in a clinical trial to prevent rejection in heart-transplanted children through the infusion of autologous thyTreg cells (NCT04924491). If its efficacy is confirmed, thyTreg therapy may establish a new paradigm in preventing organ rejection in pediatric transplants, and their allogeneic use would extend its application to other solid organ transplantation.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
14
|
Rickert CG, Markmann JF. Transplantation in the Age of Precision Medicine: The Emerging Field of Treg Therapy. Semin Nephrol 2022; 42:76-85. [DOI: 10.1016/j.semnephrol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Beyzaei Z, Shojazadeh A, Geramizadeh B. The role of regulatory T cells in liver transplantation. Transpl Immunol 2021; 70:101512. [PMID: 34871717 DOI: 10.1016/j.trim.2021.101512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
The liver is considered a tolerogenic organ that can induce peripheral tolerance. The exact mechanisms of tolerance in the liver remain undefined. Regulatory T cells (Tregs) have been demonstrated to be involved in inducing and maintaining peripheral tolerance. They play an important role in the prevention of immune responses and autoimmunity. The main focus of this review is the role of Tregs and their subpopulation in liver transplantation. More specifically, this manuscript will highlight the recent findings about using Treg cells as a biomarker in liver transplantation. There are some reports and animal models about the role of Tregs in the process of rejection of liver transplantation. Previous reports and studies have suggested that by increasing the number of Tregs better liver transplant outcomes will be accomplished by enhancing tolerance. It has been shown that the levels of CD4 + CD25 + FOXP3+ Treg cells correlate with the inhibition of acute allograft rejection in liver transplantation; however, further studies must be done to address the potential role of Treg cells in chronic rejection. Indeed, in the future, Treg cells may have potential use as a beneficial biomarker to screen long-term graft function.
Collapse
Affiliation(s)
- Zahra Beyzaei
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shojazadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Medical School of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Schwarz C, Mahr B, Muckenhuber M, Weijler AM, Unger LW, Pilat N, Latus M, Regele H, Wekerle T. In vivo Treg expansion under costimulation blockade targets early rejection and improves long-term outcome. Am J Transplant 2021; 21:3765-3774. [PMID: 34152692 PMCID: PMC9292010 DOI: 10.1111/ajt.16724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Abstract
CTLA4Ig has been shown to improve kidney allograft function, but an increased frequency of early rejection episodes poses a major obstacle for more widespread clinical use. The deleterious effect of CTLA4Ig on Treg numbers provides a possible explanation for graft injury. Therefore, we aimed at improving CTLA4Ig's efficacy by therapeutically increasing the number of Tregs. Murine cardiac allograft transplantation (BALB/c to B6) was performed under CTLA4Ig therapy modeled after the clinically approved dosing regimen and Tregs were transferred early or late after transplant. Neither early nor late Treg transfer prolonged allograft survival. Transferred Tregs were traceable in various lymphoid compartments but only modestly increased overall Treg numbers. Next, we augmented Treg numbers in vivo by means of IL2 complexes. A short course of IL2/anti-IL2-complexes administered before transplantation reversed the CTLA4Ig-mediated decline in Tregs. Of note, the addition of IL2/anti-IL2-complexes to CTLA4Ig therapy substantially prolonged heart allograft survival and significantly improved graft histology on day 100. The depletion of Tregs abrogated this effect and resulted in a significantly diminished allograft survival. The increase in Treg numbers upon IL2 treatment was associated with a decreased expression of B7 on dendritic cells. These results demonstrate that therapy with IL2 complexes improves the efficacy of CTLA4Ig by counterbalancing its unfavorable effect on Tregs.
Collapse
Affiliation(s)
- Christoph Schwarz
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria,Division of Visceral SurgeryDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Benedikt Mahr
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Moritz Muckenhuber
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Anna Marianne Weijler
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Lukas Walter Unger
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria,Division of Visceral SurgeryDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Nina Pilat
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Michaela Latus
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| | - Heinz Regele
- Clinical Institute of PathologyMedical University ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDivision of TransplantationDepartment of General SurgeryMedical University ViennaViennaAustria
| |
Collapse
|
17
|
Landwehr-Kenzel S, Zobel A, Schmitt-Knosalla I, Forke A, Hoffmann H, Schmueck-Henneresse M, Klopfleisch R, Volk HD, Reinke P. Cyclosporine A but Not Corticosteroids Support Efficacy of Ex Vivo Expanded, Adoptively Transferred Human Tregs in GvHD. Front Immunol 2021; 12:716629. [PMID: 34707604 PMCID: PMC8543016 DOI: 10.3389/fimmu.2021.716629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Reshaping the immune balance by adoptive transfer of regulatory T-cells (Tregs) has emerged as a promising strategy to combat undesired immune reactions, including in Graft-versus-Host Disease (GvHD), which is the most lethal non-relapse complication of allogeneic hematopoietic stem cell transplantation. Currently however, little is known about the potentially inhibitory in vivo effects of conventional immunosuppressive drugs, which are routinely used to treat GvHD, on adoptively transferred Tregs. Here we demonstrate drug-specific effects of the conventional immunosuppressive drugs Cyclosporine A, Mycophenolate mofetil and methylprednisolone on adoptively transferred Tregs in a humanized NOD/SCID/IL2Rgamma-/- GvHD mouse model. The clinical course of GvHD and postmortem organ histology, including cellular organ infiltration, showed that co-administration of Cyclosporine A and Tregs is highly beneficial as it enhanced Treg accumulation at inflammatory sites like lung and liver. Similarly, co-administration of Mycophenolate mofetil and Tregs improved clinical signs of GvHD. In contrast, co-administration of methylprednisolone and Tregs resulted in reduced Treg recruitment to inflammatory sites and the fast deterioration of some animals. Consequently, when clinical trials investigating safety and efficacy of adjunctive Treg therapy in GvHD are designed, we suggest co-administering Cyclosporine A, whereas high doses of glucocorticosteroids should be avoided.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Zobel
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Isabela Schmitt-Knosalla
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Forke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Henrike Hoffmann
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
18
|
Miyamoto E, Takahagi A, Ohsumi A, Martinu T, Hwang D, Boonstra KM, Joe B, Umana JM, Bei KF, Vosoughi D, Liu M, Cypel M, Keshavjee S, Juvet SC. Ex vivo delivery of regulatory T cells for control of alloimmune priming in the donor lung. Eur Respir J 2021; 59:13993003.00798-2021. [PMID: 34475226 DOI: 10.1183/13993003.00798-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/17/2021] [Indexed: 11/05/2022]
Abstract
Survival after lung transplantation (LTx) is hampered by uncontrolled inflammation and alloimmunity. Regulatory T cells (Tregs) are being studied as a cellular therapy in solid organ transplantation. Whether these systemically administered Tregs can function at the appropriate location and time is an important concern. We hypothesized that in vitro expanded, recipient-derived Tregs can be delivered to donor lungs prior to LTx via ex vivo lung perfusion (EVLP), maintaining their immunomodulatory ability.In a rat model, Wistar Kyoto (WKy) CD4+CD25high Tregs were expanded in vitro prior to EVLP. Expanded Tregs were administered to Fisher 344 (F344) donor lungs during EVLP; left lungs were transplanted into WKy recipients. Treg localisation and function post-transplant were assessed. In a proof-of-concept experiment, cryopreserved expanded human CD4+CD25+CD127low Tregs were thawed and injected into discarded human lungs during EVLP.Rat Tregs entered the lung parenchyma and retained suppressive function. Expanded Tregs had no adverse effect on donor lung physiology during EVLP; lung water as measured by wet-to-dry weight ratio was reduced by Treg therapy. The administered cells remained in the graft at 3 days post-transplant where they reduced activation of intragraft effector CD4+ T cells; these effects were diminished by day 7. Human Tregs entered the lung parenchyma during EVLP where they expressed key immunoregulatory molecules (CTLA4+, 4-1BB+, CD39+, and CD15s+).Pre-transplant Treg administration can inhibit alloimmunity within the lung allograft at early time points post- transplant. Our organ-directed approach has potential for clinical translation.
Collapse
Affiliation(s)
- Ei Miyamoto
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Takahagi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Ohsumi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kristen M Boonstra
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Juan Mauricio Umana
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ke F Bei
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Vosoughi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Kwon Y, Lee KW, Kim YM, Park H, Jung MK, Choi YJ, Son JK, Hong J, Park SH, Kwon GY, Yoo H, Kim K, Kim SJ, Park JB, Shin EC. Expansion of CD45RA -FOXP3 ++ regulatory T cells is associated with immune tolerance in patients with combined kidney and bone marrow transplantation. Clin Transl Immunology 2021; 10:e1325. [PMID: 34401148 PMCID: PMC8353318 DOI: 10.1002/cti2.1325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Simultaneous transplantation of a solid organ and bone marrow from the same donor is a possible means of achieving transplant tolerance. Here, we attempted to identify biomarkers that indicate transplant tolerance for discontinuation of immunosuppressants in combined kidney and bone marrow transplantation (CKBMT). Methods Conventional kidney transplant (KT) recipients (n = 20) and CKBMT recipients (n = 6) were included in this study. We examined various immunological parameters by flow cytometry using peripheral blood mononuclear cells (PBMCs), including the frequency and phenotype of regulatory T (Treg) cell subpopulations. We also examined the suppressive activity of the Treg cell population in the setting of mixed lymphocyte reaction (MLR) with or without Treg cell depletion. Results Among six CKBMT recipients, three successfully discontinued immunosuppressants (tolerant group) and three could not (non‐tolerant group). The CD45RA−FOXP3++ Treg cell subpopulation was expanded in CKBMT recipients compared to conventional kidney transplant patients, and this was more obvious in the tolerant group than the non‐tolerant group. In addition, high suppressive activity of the Treg cell population was observed in the tolerant group. The ratio of CD45RA−FOXP3++ Treg cells to CD45RA−FOXP3+ cells indicated good discrimination between the tolerant and non‐tolerant groups. Conclusion Thus, our findings propose a biomarker that can distinguish CKBMT patients who achieve transplant tolerance and are eligible for discontinuation of immunosuppressants and may provide insight into tolerance mechanisms in CKBMT.
Collapse
Affiliation(s)
- Yeongbeen Kwon
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Graduate School Department of Health Sciences & Technology Sungkyunkwan University Seoul Korea.,Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea
| | - Kyo Won Lee
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Surgery Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - You Min Kim
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Hyojun Park
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Medicine Sungkyunkwan University School of Medicine Suwon Korea.,GenNbio Inc. Seoul Korea
| | - Min Kyung Jung
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea.,Department of Ophthalmology Ajou University School of Medicine Suwon Korea
| | - Jin Kyung Son
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,GenNbio Inc. Seoul Korea
| | - JuHee Hong
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Ghee Young Kwon
- Department of Pathology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Heejin Yoo
- Statistics and Data Center Samsung Medical Center Research Institute for Future Medicine Seoul Korea
| | - Kyunga Kim
- Statistics and Data Center Samsung Medical Center Research Institute for Future Medicine Seoul Korea.,Department of Digital Health Samsung Advanced Institute for Health Sciences & Technology Sungkyunkwan University Seoul Korea
| | - Sung Joo Kim
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Medicine Sungkyunkwan University School of Medicine Suwon Korea.,GenNbio Inc. Seoul Korea
| | - Jae Berm Park
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Graduate School Department of Health Sciences & Technology Sungkyunkwan University Seoul Korea.,Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Surgery Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| |
Collapse
|
20
|
Mengrelis K, Kucera F, Shahid N, Watt E, Ross S, Lau CI, Adams S, Gilmour K, Pils D, Crompton T, Burch M, Davies EG. T cell phenotype in paediatric heart transplant recipients. Pediatr Transplant 2021; 25:e13930. [PMID: 33326675 DOI: 10.1111/petr.13930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
Paediatric heart transplantation recipients suffer an increased incidence of infectious, autoimmune and allergic problems. The relative roles of thymus excision and immunosuppressive treatments in contributing to these sequelae are not clear. We compared the immunological phenotypes of 25 heart transplant recipients (Tx), 10 children who underwent thymus excision during non-transplantation cardiac surgery (TE) and 25 age range-matched controls, in two age bands: 1-9 and 10-16 years. Significant differences from controls were seen mainly in the younger age band with Tx showing lower CD3 and CD4 cell counts whilst TE showed lower CD8 cell counts. Naïve T cell and recent thymic emigrant proportions and counts were significantly lower than controls in both groups in the lower age band. T cell recombination excision circle (TREC) levels were lower than controls in both groups in both age bands. There were no differences in regulatory T cells, but in those undergoing thymus excision in infancy, their proportions were higher in TE than Tx, a possible direct effect of immunosuppression. T cell receptor V beta spectratyping showed fewer peaks in both groups than in controls (predominantly in the older age band). Thymus excision in infancy was associated with lower CD8 cell counts and higher proportions of Tregs in TE compared to Tx. These data are consistent with thymus excision, particularly in infancy, being the most important influence on immunological phenotype after heart transplantation.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Filip Kucera
- Department of Cardiology, Great Ormond Street Hospital, London, UK
| | - Nadia Shahid
- Department of Immunology, Great Ormond Street Hospital, London, UK
| | - Eleanor Watt
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stuart Adams
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Kimberly Gilmour
- Department of Immunology, Great Ormond Street Hospital, London, UK
| | - Dietmar Pils
- Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital, London, UK
| | - E Graham Davies
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Immunology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
21
|
Refaie AF, Elbassiouny BL, Kloc M, Sabek OM, Khater SM, Ismail AM, Mohamed RH, Ghoneim MA. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Front Immunol 2021; 12:690623. [PMID: 34248981 PMCID: PMC8262452 DOI: 10.3389/fimmu.2021.690623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy for type 1 diabetes mellitus (T1DM) has been the subject matter of many studies over the past few decades. The wide availability, negligible teratogenic risks and differentiation potential of MSCs promise a therapeutic alternative to traditional exogenous insulin injections or pancreatic transplantation. However, conflicting arguments have been reported regarding the immunological profile of MSCs. While some studies support their immune-privileged, immunomodulatory status and successful use in the treatment of several immune-mediated diseases, others maintain that allogeneic MSCs trigger immune responses, especially following differentiation or in vivo transplantation. In this review, the intricate mechanisms by which MSCs exert their immunomodulatory functions and the influencing variables are critically addressed. Furthermore, proposed avenues to enhance these effects, including cytokine pretreatment, coadministration of mTOR inhibitors, the use of Tregs and gene manipulation, are presented. As an alternative, the selection of high-benefit, low-risk donors based on HLA matching, PD-L1 expression and the absence of donor-specific antibodies (DSAs) are also discussed. Finally, the necessity for the transplantation of human MSC (hMSC)-derived insulin-producing cells (IPCs) into humanized mice is highlighted since this strategy may provide further insights into future clinical applications.
Collapse
Affiliation(s)
- Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Malgorzata Kloc
- Department of Immunobiology, The Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Omaima M Sabek
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Cell and Microbiology Biology, Weill Cornell Medical Biology, New York, NY, United States
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
22
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
23
|
A high concentration of TGF-β correlates with opportunistic infection in liver and kidney transplantation. Hum Immunol 2021; 82:414-421. [PMID: 33814194 DOI: 10.1016/j.humimm.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Transforming growth factor-β (TGF-β) has been associated with numerous human infections, but its role in the occurrence of opportunistic infection (OI) after solid organ transplantation remains unexplored. This study aimed to assess the utility of the TGF-β following in vitro stimulation of whole peripheral blood (WPB) as a surrogate biomarker of post-transplant OI in a cohort of liver and kidney recipients. Thirty liver and thirty-one kidney transplant recipients were recruited to be prospectively monitored for one-year post-transplantation. Enzyme-linked immunosorbent assay (ELISA) was performed to calculate IFN-γ, IL-17, IL-10 and TGF-β concentration in the supernatant from the activated WPB. Recipients showed higher TGF-β concentrations compared to IFN-γ, IL-17, IL-10 at baseline, although these differences were not significant between INF and NoINF. However, recipients who developed an OI within the first sixth months had a higher concentration of TGF-β than those without OI. A concentration of TGF-β > 363.25 pg/ml in liver and TGF-β > 808.51 pg/ml in kidney recipients were able to stratify patients at high risk of OI with a sensitivity and specificity above 70% in both types of solid organ transplantations. TGF-β could provide valuable information for the management of liver and kidney recipients at risk of post-transplant infection.
Collapse
|
24
|
Becker PD, Ratnasothy K, Sen M, Peng Q, Romano M, Bazoer J, Suvitra E, Stout A, Hylton SG, Dorling A, Lechler RI, Smyth LA, Lombardi G. B lymphocytes contribute to indirect pathway T cell sensitization via acquisition of extracellular vesicles. Am J Transplant 2021; 21:1415-1426. [PMID: 32483894 DOI: 10.1111/ajt.16088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/25/2023]
Abstract
B cells have been implicated in transplant rejection via antibody-mediated mechanisms and more recently by presenting donor antigens to T cells. We have shown in patients with chronic antibody-mediated rejection that B cells control the indirect T cell alloresponses. To understand more about the role of B cells as antigen-presenting cells for CD4+ T cell with indirect allospecificity, B cells were depleted in C57BL/6 mice, using an anti-CD20 antibody, prior to receiving MHC class I-mismatched (Kd ) skin. The absence of B cells at the time of transplantation prolonged skin graft survival. To study the mechanisms behind this observation, T cells with indirect allospecificity were transferred in mice receiving a Kd skin transplant. T cell proliferation was markedly inhibited in the absence of recipient B cells, suggesting that B cells contribute to indirect pathway sensitization. Furthermore, we have shown that a possible way in which B cells present alloantigens is via acquisition of MHC-peptide complexes. Finally, we demonstrate that the addition of B cell depletion to the transfer of regulatory T cells (Tregs) with indirect alloresponse further prolonged skin graft survival. This study supports an important role for B cells in indirect T cell priming and further emphasizes the advantage of combination therapies in prolonging transplant survival.
Collapse
Affiliation(s)
- Pablo D Becker
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Kulachelvy Ratnasothy
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Monica Sen
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.,School of Health, Sports and Biosciences, University of East London, London, UK
| | - Qi Peng
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marco Romano
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jordan Bazoer
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Erik Suvitra
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Anas Stout
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Shannon G Hylton
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Anthony Dorling
- MRC Centre for Transplantation, Department of Inflammation Biology, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Robert I Lechler
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lesley A Smyth
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.,School of Health, Sports and Biosciences, University of East London, London, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
25
|
Marfil-Garza BA, Hefler J, Bermudez De Leon M, Pawlick R, Dadheech N, Shapiro AMJ. Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocr Rev 2021; 42:198-218. [PMID: 33247733 DOI: 10.1210/endrev/bnaa028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) have become highly relevant in the pathophysiology and treatment of autoimmune diseases, such as type 1 diabetes (T1D). As these cells are known to be defective in T1D, recent efforts have explored ex vivo and in vivo Treg expansion and enhancement as a means for restoring self-tolerance in this disease. Given their capacity to also modulate alloimmune responses, studies using Treg-based therapies have recently been undertaken in transplantation. Islet transplantation provides a unique opportunity to study the critical immunological crossroads between auto- and alloimmunity. This procedure has advanced greatly in recent years, and reports of complete abrogation of severe hypoglycemia and long-term insulin independence have become increasingly reported. It is clear that cellular transplantation has the potential to be a true cure in T1D, provided the remaining barriers of cell supply and abrogated need for immune suppression can be overcome. However, the role that Tregs play in islet transplantation remains to be defined. Herein, we synthesize the progress and current state of Treg-based therapies in T1D and islet transplantation. We provide an extensive, but concise, background to understand the physiology and function of these cells and discuss the clinical evidence supporting potency and potential Treg-based therapies in the context of T1D and islet transplantation. Finally, we discuss some areas of opportunity and potential research avenues to guide effective future clinical application. This review provides a basic framework of knowledge for clinicians and researchers involved in the care of patients with T1D and islet transplantation.
Collapse
Affiliation(s)
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Mario Bermudez De Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
27
|
Xiong L, Wang D, Lin S, Wang Y, Luo M, Gao L. Soluble CD83 inhibits acute rejection by up regulating TGF-β and IDO secretion in rat liver transplantation. Transpl Immunol 2021; 64:101351. [PMID: 33171217 DOI: 10.1016/j.trim.2020.101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Allogeneic transplantation immune tolerance is currently a hot research issue and soluble CD83(sCD83) is a novel immunomodulator with great potential in inducing transplantation tolerance. OBJECTIVE To investigate the mechanism of the immune tolerance effect of sCD83 on rat liver transplantation. METHOD A rat liver transplantation model was established to study the effects of sCD83 on the expression levels of IL-2, IL-10, and TGF-β in peripheral blood and the mRNA expressions of foxp3, TGF-β, and Indoleamine 2,3-dioxygenase (IDO) in liver. The expression changes of costimulatory molecules CD80, CD86, and MHC-II on the surface of DC cells and the expressions of IDO + DC cell, TGF-β + CD4 + T cell, and CD4 + CD25 + Foxp3 + T cell were analyzed and compared. RESULTS sCD83 alleviated the rejection activity index (RAI) of rat liver transplantation in the early stage, increased the expressions of TGF-β, IL-10 in peripheral blood and the mRNAs of IDO, TGF-β and foxp3 in the transplanted liver, and down-regulated the expressions of MHC-II, CD86, and CD80 in DC cells, resulting in significant increased numbers of tolerogenic TGF-β + CD4 + T cells, Treg cells, and IDO + DC cells with low expression. CONCLUSION sCD83 inhibited acute rejection after liver transplantation in an allogeneic rat, and the mechanism was associated with the effect that sCD83 increased the expression of TGF-β, activated IDO immunosuppressive pathway, and increased tolerogenic DC cells and Treg cells.
Collapse
Affiliation(s)
- Liangxing Xiong
- The First Affiliated Hospital of Hainan Medical College, China; The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, China
| | - Danxin Wang
- The First Affiliated Hospital of Hainan Medical College, China
| | - Shibu Lin
- The First Affiliated Hospital of Hainan Medical College, China
| | - Yubin Wang
- The First Affiliated Hospital of Hainan Medical College, China
| | - Mingwei Luo
- The First Affiliated Hospital of Hainan Medical College, China
| | - Lianghui Gao
- The First Affiliated Hospital of Hainan Medical College, China.
| |
Collapse
|
28
|
Pathak S, Meyer EH. Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation. Front Immunol 2021; 11:612737. [PMID: 33658995 PMCID: PMC7917336 DOI: 10.3389/fimmu.2020.612737] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Pancreatic islet transplantation is a promising method for the treatment of type 1 and type 3 diabetes whereby replacement of islets may be curative. However, long-term treatment with immunosuppressive drugs (ISDs) remains essential for islet graft survival. Current ISD regimens carry significant side-effects for transplant recipients, and are also toxic to the transplanted islets. Pre-clinical efforts to induce immune tolerance to islet allografts identify ways in which the recipient immune system may be reeducated to induce a sustained transplant tolerance and even overcome autoimmune islet destruction. The goal of these efforts is to induce tolerance to transplanted islets with minimal to no long-term immunosuppression. Two most promising cell-based therapeutic strategies for inducing immune tolerance include T regulatory cells (Tregs) and donor and recipient hematopoietic mixed chimerism. Here, we review preclinical studies which utilize Tregs for tolerance induction in islet transplantation. We also review myeloablative and non-myeloablative hematopoietic stem cell transplantation (HSCT) strategies in preclinical and clinical studies to induce sustained mixed chimerism and allograft tolerance, in particular in islet transplantation. Since Tregs play a critical role in the establishment of mixed chimerism, it follows that the combination of Treg and HSCT may be synergistic. Since the success of the Edmonton protocol, the feasibility of clinical islet transplantation has been established and nascent clinical trials testing immune tolerance strategies using Tregs and/or hematopoietic mixed chimerism are underway or being formulated.
Collapse
Affiliation(s)
- Shiva Pathak
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
29
|
Leino AD, Pai MP. Maintenance Immunosuppression in Solid Organ Transplantation: Integrating Novel Pharmacodynamic Biomarkers to Inform Calcineurin Inhibitor Dose Selection. Clin Pharmacokinet 2020; 59:1317-1334. [PMID: 32720300 DOI: 10.1007/s40262-020-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcineurin inhibitors, the primary immunosuppressive therapy used to prevent alloreactivity of transplanted organs, have a narrow therapeutic index. Currently, treatment is individualized based on clinical assessment of the risk of rejection or toxicity guided by trough concentration monitoring. Advances in immune monitoring have identified potential markers that may have value in understanding calcineurin inhibitor pharmacodynamics. Integration of these markers has the potential to complement therapeutic drug monitoring. Existing pharmacokinetic-pharmacodynamic (PK-PD) data is largely limited to correlation between the biomarker and trough concentrations at single time points. Immune related gene expression currently has the most evidence supporting PK-PD integration. Novel biomarker-based approaches to pharmacodynamic monitoring including development of enhanced PK-PD models are proposed to realize the full clinical benefit.
Collapse
Affiliation(s)
- Abbie D Leino
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Du X, Chang S, Guo W, Zhang S, Chen ZK. Progress in Liver Transplant Tolerance and Tolerance-Inducing Cellular Therapies. Front Immunol 2020; 11:1326. [PMID: 32670292 PMCID: PMC7326808 DOI: 10.3389/fimmu.2020.01326] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation is currently the most effective method for treating end-stage liver disease. However, recipients still need long-term immunosuppressive drug treatment to control allogeneic immune rejection, which may cause various complications and affect the long-term survival of the recipient. Many liver transplant researchers constantly pursue the induction of immune tolerance in liver transplant recipients, immunosuppression withdrawal, and the maintenance of good and stable graft function. Although allogeneic liver transplantation is more tolerated than transplantation of other solid organs, and it shows a certain incidence of spontaneous tolerance, there is still great risk for general recipients. With the gradual progress in our understanding of immune regulatory mechanisms, a variety of immune regulatory cells have been discovered, and good results have been obtained in rodent and non-human primate transplant models. As immune cell therapies can induce long-term stable tolerance, they provide a good prospect for the induction of tolerance in clinical liver transplantation. At present, many transplant centers have carried out tolerance-inducing clinical trials in liver transplant recipients, and some have achieved gratifying results. This article will review the current status of liver transplant tolerance and the research progress of different cellular immunotherapies to induce this tolerance, which can provide more support for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Chang
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonghua Klaus Chen
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
31
|
Deng B, Pakhomov OV, Bozhok GA. Long-term effects of acute cadmium exposure on testis immune privilege. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cadmium (Cd) is a widespread and non-biodegradable pollutant of great concern to human health. This element can affect cellular signal transduction and cell-to-cell interaction in the testis. Immune tolerance towards auto- and alloantigens is an important component of testis immunity. It is involved in spermatogenesis and hormone secretion. Plus, the immune tolerance may help to reveal the changes in testis immunity over a long period after Cd exposure. The current research was aimed at investigating the long-term effects of acute Cd exposure on testis immunity by means of elicitation of testicular immune cell composition shift induced by Cd. Cadmium chloride was intraperitoneally injected at 3 mg Cd/kg to mice. After that testis interstitial cells were stained with surface markers for leukocyte and lymphocyte subpopulations (CD45, CD11b, CD3, CD4, CD8, CD25) and analyzed cytofluorimetrically by week 4, 6, 8 and 12 after Cd administration (Cd group). To identify the delayed effects of cadmium on immune tolerance two groups of animals were subjected to intratesticular allotransplantation of neonatal testis (groups ITT and Cd+ ITT). One of the groups was administered with Cd four weeks before the transplantation (Cd+ITT group). I group served as a control that did not undergo any transplantation or Cd injection. For a better demonstration of the phenomenon of immunological tolerance of the testicles, an additional group (UKT group) was used which got grafts under the kidney capsule (non-immune privileged site).Investigation of the cell population showed that CD45+, CD11b+, CD4+, CD8+ cells were permanently present in testicular interstitial tissue in I group. Intratesticular testis transplantation increased the proportion of CD11b+ but did not have such a pronounced effect on CD8+ cells in ITT group. Moreover, the transplantation elevated CD4+ CD25+ cells known for their immunosuppressive property and promoted graft development by week 2 (histological data). Cd injection resulted in severe inflammation that quenched by week 4 (Cd and Cd+ ITT groups). This time point was chosen for transplantation in Cd+ ITT group. Such Cd pretreatment led to a high CD8+ cell proportion and to the delayed appearance of CD4+ CD25+ cells by week 2 (Cd+ ITTgroup). The finding is consistent with the impairment of graft development in Cd+ ITTgroup pretreated with Cd. Observation suggest that Cd pretreatment was associated with disproportion of interstitial immune cell populations which resulted in the impairment of immunoprotective function of the testis. The impairment of testis immunity showed itself only after several weeks of Cd administration, and only when the recipient testis immunity was provoked by alloantigens of donor testes.
Collapse
|
32
|
Klaeske K, Lehmann S, Büttner P, Palitzsch R, Fischer J, Jawad K, Garbade J, Borger MA, Barten MJ, Dieterlen MT. Identification of the immunological profile in rejection-free heart transplantation. Transpl Immunol 2020; 59:101259. [DOI: 10.1016/j.trim.2019.101259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
|
33
|
The Role of IL-33 in Experimental Heart Transplantation. Cardiol Res Pract 2020; 2020:6108362. [PMID: 32257426 PMCID: PMC7106886 DOI: 10.1155/2020/6108362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues. Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an "alarmin" upon binding to its specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment. To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system, digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart transplantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.
Collapse
|
34
|
Tran GT, Hodgkinson SJ, Carter N, Verma ND, Robinson CM, Plain KM, Nomura M, Hall BM. Autoantigen specific IL-2 activated CD4 +CD25 +T regulatory cells inhibit induction of experimental autoimmune neuritis. J Neuroimmunol 2020; 341:577186. [PMID: 32058174 DOI: 10.1016/j.jneuroim.2020.577186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 01/04/2023]
Abstract
Experimental autoimmune neuritis (EAN) induced by peripheral nerve myelin (PNM) is self-limiting and re-immunization with PNM does not re-activate disease. This study showed inhibition of EAN by CD4+CD25+T cells both from sensitized hosts or from naïve hosts after ex-vivo activation by PNM and rIL-2. Transfer of naïve CD4+CD25+T cells has no effect on EAN, nor did naïve CD4+CD25+T cells activated with rIL-2 and renal tubular antigen. Culture of naive CD4+CD25+Treg with rIL-2 and PNM induced mRNA for the IFN-gamma receptor. We showed naïve CD4+CD25+T cells activated by specific auto-antigen and rIL-2 produced more potent antigen-specific Treg that may have therapeutic potential.
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Karren M Plain
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Masaru Nomura
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
35
|
Cortés-Hernández A, Alvarez-Salazar E, Arteaga-Cruz S, Alberu-Gómez J, Soldevila G. Ex vivo expansion of regulatory T cells from long-term Belatacept-treated kidney transplant patients restores their phenotype and suppressive function but not their FOXP3 TSDR demethylation status. Cell Immunol 2020; 348:104044. [PMID: 32005344 DOI: 10.1016/j.cellimm.2020.104044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 02/09/2023]
Abstract
We recently reported that Tregs from long-term Belatacept-treated kidney transplant patients displayed an altered phenotype and impaired suppressive function compared to Tregs from healthy controls. However, it remains unknown whether ex vivo expansion of Tregs from patients who underwent long-term immunosuppression may be feasible to be used in their treatment. In this work, Tregs from Belatacept-treated patients were polyclonally expanded in vitro in the presence of rapamycin and IL-2. After four weeks of expansion, Tregs from patients expressed high levels of FOXP3, CD25, CTLA-4, Helios and CCR7, and showed strong suppressive activity, even in the presence of pro-inflammatory cytokines. However, FOXP3 TSDR demethylation remained lower in expanded Tregs from Belatacept-treated patients compared to healthy control Tregs. These data suggest that ex vivo expansion of Tregs from patients undergoing long-term immunosuppression may require the use of epigenetic modifying agents to stabilize FOXP3 expression to be considered as treatment in kidney transplant patients.
Collapse
Affiliation(s)
- A Cortés-Hernández
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E Alvarez-Salazar
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - S Arteaga-Cruz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Alberu-Gómez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., México 64710, Mexico
| | - G Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
36
|
Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020; 137:104760. [PMID: 31978602 PMCID: PMC7933730 DOI: 10.1016/j.nbd.2020.104760] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
With the increasing prevalence of Parkinson’s disease (PD), there is an immediate need to interdict disease signs and symptoms. In recent years this need was met through therapeutic approaches focused on regenerative stem cell replacement and alpha-synuclein clearance. However, neither have shown long-term clinical benefit. A novel therapeutic approach designed to affect disease is focused on transforming the brain’s immune microenvironment. As disordered innate and adaptive immune functions are primary components of neurodegenerative disease pathogenesis, this has emerged as a clear opportunity for therapeutic development. Interventions that immunologically restore the brain’s homeostatic environment can lead to neuroprotective outcomes. These have recently been demonstrated in both laboratory and early clinical investigations. To these ends, efforts to increase the numbers and function of regulatory T cells over dominant effector cells that exacerbate systemic inflammation and neurodegeneration have emerged as a primary research focus. These therapeutics show broad promise in affecting disease outcomes beyond PD, such as for Alzheimer’s disease, stroke and traumatic brain injuries, which share common neurodegenerative disease processes.
Collapse
Affiliation(s)
- Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| |
Collapse
|
37
|
Mukhin VE, Polyakova YV, Kaabak MM, Babenko NN, Bryzgalina EV, V'yunkova YN. [Control and prevention of kidney transplant rejection: the role and possibilities for the clinical use of regulatory T-cells in transplantation]. Khirurgiia (Mosk) 2019:80-85. [PMID: 31532171 DOI: 10.17116/hirurgia201909180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article discusses the need to implement effective methods for monitoring immune status and rehabilitation of patients after kidney transplantation. Induction of immunological tolerance which allows minimizing or even completely canceling supportive immunosuppressive therapy is one of the key tasks in the field of organ transplantation. Regulatory T-cells (TREGs) play an important role in maintaining immunological homeostasis, including limiting kidney transplant rejection, and potentially contribute to the development of immunological tolerance. At the same time, for the introduction of TREG therapy into clinical practice, it is necessary to overcome a number of unsolved problems, such as induction and cultivation of a sufficient number of TREG cells for therapeutic action as well as reducing the risks associated with TREG conversion to effector lymphocytes or an undesirable non-specific immunosuppressive effect. This review examines both the impact of common post-transplant pharmacological immunosuppression approaches on TREGs and the therapeutic potential of TREG cell cultures in prevention of kidney transplant rejection. The questions of ex vivo TREG manufacturing process and possible threats of applying cell technologies in this branch of transplantology were considered.
Collapse
Affiliation(s)
- V E Mukhin
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - Yu V Polyakova
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - M M Kaabak
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - N N Babenko
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| | - E V Bryzgalina
- Moscow State University im. M.V. Lomonosov, Moscow, Russia
| | - Yu N V'yunkova
- Petrovsky Russian Research Center for Surgery, Moscow, Russia
| |
Collapse
|
38
|
Terzieva V, Mihova A, Altankova I, Velikova T, Donchev D, Uzunova J, Goncharov A, Jurukova N, Georgieva V, Yordanova E, Sekulovski M, Chalamanov O, Spassov L. The Dynamic Changes in Soluble CD30 and Regulatory T Cells Before and After Solid Organ Transplantations: A Pilot Study. Monoclon Antib Immunodiagn Immunother 2019; 38:137-144. [PMID: 31361582 DOI: 10.1089/mab.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among multiple parameters, applied in the immunologic monitoring of transplantation, the levels of serum soluble CD30 (sCD30) and peripheral regulatory T cells (Tregs) are very promising. These are relatively new biomarkers, considered to reflect immune activation and tolerance in solid organ transplantation. Results are shown here from a preliminary study on the relevance of sCD30 and Tregs in the monitoring of the early post-transplantation period. Sixteen patients with chronic liver or kidney disease were examined. Nine of them were further selected for transplantation. Follow-up of sCD30 and Tregs was carried out during the first month after transplantation. Until day 30 (D30) after transplantation, a progressive decrease in sCD30 levels was observed in all patients. Conversely, the dynamic of Tregs was dependent on the transplanted organ: in liver recipients, an increase of Tregs was detected at day 7 (D7) followed by a gradual decrease until D30, whereas in kidney recipients, a sustained downward trend starting on D7 was observed. In liver recipients, the increase in Tregs preceded albumin normalization, whereas in kidney recipients, sCD30 was found to have predictive significance for the creatinine levels. Our results demonstrated that peripheral blood sCD30 and Tregs are valuable parameters in the immunologic monitoring of transplanted patients.
Collapse
Affiliation(s)
- Velislava Terzieva
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Antoaneta Mihova
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Iskra Altankova
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Tsvetelina Velikova
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Deyan Donchev
- 2Laboratory of Microbiology and Virology, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Jordanka Uzunova
- 3Department of Pediatrics, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Andrey Goncharov
- 3Department of Pediatrics, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Nonka Jurukova
- 4Department of Gastroenterology, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Viktoriya Georgieva
- 4Department of Gastroenterology, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Emilia Yordanova
- 5Department of Hemodyalisis, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Metodija Sekulovski
- 6Intensive Care Unit, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Ognian Chalamanov
- 6Intensive Care Unit, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Lubomir Spassov
- 7Department of Surgery, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| |
Collapse
|
39
|
Treg-mediated prolonged survival of skin allografts without immunosuppression. Proc Natl Acad Sci U S A 2019; 116:13508-13516. [PMID: 31196957 PMCID: PMC6613183 DOI: 10.1073/pnas.1903165116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Injection of Interleukin-2 (IL-2) complexed with a particular anti-IL-2 monoclonal antibody (mab) JES6-1 has been shown to selectively expand CD4+Foxp3+ T regulatory T cells (Tregs) in vivo. Although the potency of this approach with regard to transplantation has already been proven in an islet transplantation model, skin graft survival could not be prolonged. Since the latter is relevant to human allograft survival, we sought to improve the efficiency of IL-2 complex (cplx) treatment for skin allograft survival in a stringent murine skin graft model. Here, we show that combining low doses of IL-2 cplxs with rapamycin and blockade of the inflammatory cytokine IL-6 leads to long-term (>75 d) survival of major histocompatibility complex-different skin allografts without the need for immunosuppression. Allograft survival was critically dependent on CD25+FoxP3+ Tregs and was not accompanied by impaired responsiveness toward donor alloantigens in vitro after IL-2 cplx treatment was stopped. Furthermore, second donor-type skin grafts were rejected and provoked rejection of the primary graft, suggesting that operational tolerance is not systemic but restricted to the graft. These findings plus the lack of donor-specific antibody formation imply that prolonged graft survival was largely a reflection of immunological ignorance. The results may represent a potentially clinically translatable strategy for the development of protocols for tolerance induction.
Collapse
|
40
|
Jin X, Zhang C, Gong L, Li H, Wang Y, Li Q, Li H. Altered expression of CD39 on memory regulatory T cells in type 1 diabetes patients. J Diabetes 2019; 11:440-448. [PMID: 30318734 DOI: 10.1111/1753-0407.12870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease resulting from an attack by autoreactive T lymphocytes against pancreatic islet β- cells. In recent studies, regulatory T cells (Tregs) have been implicated in the process of T1D. Furthermore, cluster of differentiation 39 (CD39), which is involved in the suppression of inflammation, has been shown to be expressed on Tregs. However, the pathological importance of CD39 to the memory Treg population remains unclear. METHODS This study investigated Treg subsets, focusing on resting, effector, and memory Tregs, and determined CD39 expression on Tregs. In addition, changes in Treg subsets and Treg-associated cytokine secretion after CD3/CD28 stimulation of peripheral blood mononuclear cells were evaluated in diabetic patients and healthy controls. The suppressive function of Tregs was measured using the mixed lymphocyte reaction (MLR) test. RESULTS There was a higher percentage of memory Tregs in T1D patients than healthy controls. However, Tregs in T1D patients showed impaired suppression, with low forkhead box P3 (Foxp3) expression and low serum interleukin (IL)-10 levels. Furthermore, CD39 expression on Tregs, and on memory Tregs in particular, was lower in T1D patients than healthy controls. After stimulation, the percentage of resting Tregs was decreased and that of effector/memory Tregs was increased in both healthy controls and T1D patients, but CD39 expression on effector/memory Tregs was still lower and there was no increase in IL-10 secretion in T1D patients. CONCLUSIONS The defective suppressive function of Tregs in T1D patients is due to lower expression of CD39 on memory Tregs.
Collapse
MESH Headings
- Adult
- Apyrase/metabolism
- Biomarkers/analysis
- Blood Glucose/analysis
- Case-Control Studies
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Follow-Up Studies
- Forkhead Transcription Factors/metabolism
- Glycated Hemoglobin/analysis
- Humans
- Immunologic Memory/immunology
- Interleukin-10/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Male
- Middle Aged
- Prognosis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Xi Jin
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenghui Zhang
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Lina Gong
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Li
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Qin Li
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Leick MB, Maus MV. CAR-T cells beyond CD19, UnCAR-Ted territory. Am J Hematol 2019; 94:S34-S41. [PMID: 30632631 DOI: 10.1002/ajh.25398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
CAR-T cells have made dramatic inroads in targeting CD19-positive B-cell malignancies. This review focuses on application of CAR-T cells in hematologic malignancies beyond targeting CD19, with specific attention to Hodgkin's lymphoma and acute myeloid leukemia.
Collapse
Affiliation(s)
- Mark B. Leick
- Cellular Immunotherapy ProgramCancer Center, Massachusetts General Hospital Boston Massachusetts
- Harvard Medical School Boston Massachusetts
| | - Marcela V. Maus
- Cellular Immunotherapy ProgramCancer Center, Massachusetts General Hospital Boston Massachusetts
- Harvard Medical School Boston Massachusetts
| |
Collapse
|
42
|
Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, Present, and Future of Regulatory T Cell Therapy in Transplantation and Autoimmunity. Front Immunol 2019; 10:43. [PMID: 30804926 PMCID: PMC6371029 DOI: 10.3389/fimmu.2019.00043] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs) are important for the induction and maintenance of peripheral tolerance therefore, they are key in preventing excessive immune responses and autoimmunity. In the last decades, several reports have been focussed on understanding the biology of Tregs and their mechanisms of action. Preclinical studies have demonstrated the ability of Tregs to delay/prevent graft rejection and to control autoimmune responses following adoptive transfer in vivo. Due to these promising results, Tregs have been extensively studied as a potential new tool for the prevention of graft rejection and/or the treatment of autoimmune diseases. Currently, solid organ transplantation remains the treatment of choice for end-stage organ failure. However, chronic rejection and the ensuing side effects of immunosuppressants represent the main limiting factors for organ acceptance and patient survival. Autoimmune disorders are chronic diseases caused by the breakdown of tolerance against self-antigens. This is triggered either by a numerical or functional Treg defect, or by the resistance of effector T cells to suppression. In this scenario, patients receiving high doses of immunosuppressant are left susceptible to life-threatening opportunistic infections and have increased risk of malignancies. In the last 10 years, a few phase I clinical trials aiming to investigate safety and feasibility of Treg-based therapy have been completed and published, whilst an increasing numbers of trials are still ongoing. The first results showed safety and feasibility of Treg therapy and phase II clinical trials are already enrolling. In this review, we describe our understanding of Tregs focussing primarily on their ontogenesis, mechanisms of action and methods used in the clinic for isolation and expansion. Furthermore, we will describe the ongoing studies and the results from the first clinical trials with Tregs in the setting of solid organ transplantation and autoimmune disorders. Finally, we will discuss strategies to further improve the success of Treg therapy.
Collapse
Affiliation(s)
- Marco Romano
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giorgia Fanelli
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Caraugh Jane Albany
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Giulio Giganti
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Scuola di Specializzazione in Medicina Interna, Universita' degli Studi di Milano, Milan, Italy
| | - Giovanna Lombardi
- Immunoregulation Laboratory, MRC Centre for Transplantation, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
43
|
Martin-Moreno PL, Tripathi S, Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin J Am Soc Nephrol 2018; 13:1760-1764. [PMID: 29789350 PMCID: PMC6237070 DOI: 10.2215/cjn.01750218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.
Collapse
Affiliation(s)
- Paloma Leticia Martin-Moreno
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Nephrology Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sudipta Tripathi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
44
|
Zhang Q, Lu W, Liang CL, Chen Y, Liu H, Qiu F, Dai Z. Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Front Immunol 2018; 9:2359. [PMID: 30369931 PMCID: PMC6194362 DOI: 10.3389/fimmu.2018.02359] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Cellular therapies with polyclonal regulatory T-cells (Tregs) in transplantation and autoimmune diseases have been carried out in both animal models and clinical trials. However, The use of large numbers of polyclonal Tregs with unknown antigen specificities has led to unwanted effects, such as systemic immunosuppression, which can be avoided via utilization of antigen-specific Tregs. Antigen-specific Tregs are also more potent in suppression than polyclonal ones. Although antigen-specific Tregs can be induced in vitro, these iTregs are usually contaminated with effector T cells during in vitro expansion. Fortunately, Tregs can be efficiently engineered with a predetermined antigen-specificity via transfection of viral vectors encoding specific T cell receptors (TCRs) or chimeric antigen receptors (CARs). Compared to Tregs engineered with TCRs (TCR-Tregs), CAR-modified Tregs (CAR-Tregs) engineered in a non-MHC restricted manner have the advantage of widespread applications, especially in transplantation and autoimmunity. CAR-Tregs also are less dependent on IL-2 than are TCR-Tregs. CAR-Tregs are promising given that they maintain stable phenotypes and functions, preferentially migrate to target sites, and exert more potent and specific immunosuppression than do polyclonal Tregs. However, there are some major hurdles that must be overcome before CAR-Tregs can be used in clinic. It is known that treatments with anti-tumor CAR-T cells cause side effects due to cytokine “storm” and neuronal cytotoxicity. It is unclear whether CAR-Tregs would also induce these adverse reactions. Moreover, antibodies specific for self- or allo-antigens must be characterized to construct antigen-specific CAR-Tregs. Selection of antigens targeted by CARs and development of specific antibodies are difficult in some disease models. Finally, CAR-Treg exhaustion may limit their efficacy in immunosuppression. Recently, innovative CAR-Treg therapies in animal models of transplantation and autoimmune diseases have been reported. In this mini-review, we have summarized recent progress of CAR-Tregs and discussed their potential applications for induction of immunological tolerance.
Collapse
Affiliation(s)
- Qunfang Zhang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Weihui Lu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Feifei Qiu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
46
|
Sicard A, Levings MK, Scott DW. Engineering therapeutic T cells to suppress alloimmune responses using TCRs, CARs, or BARs. Am J Transplant 2018; 18:1305-1311. [PMID: 29603617 PMCID: PMC5992079 DOI: 10.1111/ajt.14747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 01/25/2023]
Abstract
Adoptive cell therapy with therapeutic T cells has become one of the most promising strategies to stimulate or suppress immune responses. Using virus-mediated genetic manipulation, the antigen specificity of T cells can now be precisely redirected. Tailored specificity has not only overcome technical limitations and safety concerns but also considerably broadened the spectrum of therapeutic applications. Different T cell-engineering strategies have now become available to suppress alloimmune responses. We first provide an overview of the allorecognition pathways and effector mechanisms that are responsible for alloimmune injuries in the setting of vascularized organ transplantation. We then discuss the potential to use different T cell-engineering approaches to suppress alloimmune responses. Specifically, expression of allospecific T cell receptors, single-chain chimeric antigen receptors, or antigen domains recognized by B cell receptors (B cell antibody receptors) in regulatory or cytotoxic T cells are considered. The ability of these strategies to control the direct or indirect pathways of allorecognition and the cellular or humoral alloimmune responses is discussed. An intimate understanding of the complex interplay that occurs between the engineered T cells and the alloimmune players is a necessary prerequisite for the design of safe and successful strategies for precise immunomodulation in transplantation.
Collapse
Affiliation(s)
- Antoine Sicard
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Surgery, University of British Columbia, Vancouver, BC, Canada,Department of Nephrology, University Hospital of Nice, Nice and CNRS, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| | - Megan K. Levings
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - David W. Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
47
|
Safinia N, Grageda N, Scottà C, Thirkell S, Fry LJ, Vaikunthanathan T, Lechler RI, Lombardi G. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Front Immunol 2018. [PMID: 29535728 PMCID: PMC5834909 DOI: 10.3389/fimmu.2018.00354] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5). As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8). However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9). As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs) identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.
Collapse
Affiliation(s)
- Niloufar Safinia
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Faculty of Medicine, Division of Digestive Disease, Imperial College London, London, United Kingdom
| | - Nathali Grageda
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Cristiano Scottà
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Sarah Thirkell
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Laura J Fry
- Clinical Research Facility GMP Unit, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Trishan Vaikunthanathan
- The Blizard Institute of Cell and Molecular Science, Queen Mary University of London, London, United Kingdom
| | - Robert I Lechler
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Department of Immunoregulation and Immune Intervention, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
48
|
Chan-On C, Liberto JM, Sarwal MM. Mechanisms and biomarkers of immune quiescence in kidney transplantation. Hum Immunol 2018; 79:356-361. [PMID: 29408630 DOI: 10.1016/j.humimm.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
This review discusses the current understanding of biomarkers of immune quiescence based on reviews of published literature in kidney transplant operational tolerance and mechanistic studies based on a better characterization of the stable, well-functioning renal allograft.
Collapse
Affiliation(s)
- Chitranon Chan-On
- Division of Nephrology, Faculty of Medicine, Department of Internal Medicine, Khon Kaen University, Khon Kaen, Thailand; Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Juliane M Liberto
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
49
|
Marshall GP, Cserny J, Perry DJ, Yeh WI, Seay HR, Elsayed AG, Posgai AL, Brusko TM. Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. CELL & GENE THERAPY INSIGHTS 2018; 4:405-429. [PMID: 34984106 PMCID: PMC8722436 DOI: 10.18609/cgti.2018.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interest in adoptive T-cell therapies has been ignited by the recent clinical success of genetically-modified T cells in the cancer immunotherapy space. In addition to immune targeting for malignancies, this approach is now being explored for the establishment of immune tolerance with regulatory T cells (Tregs). Herein, we will summarize the basic science and clinical results emanating from trials directed at inducing durable immune regulation through administration of Tregs. We will discuss some of the current challenges facing the field in terms of maximizing cell purity, stability and expansion capacity, while also achieving feasibility and GMP production. Indeed, recent advances in methodologies for Treg isolation, expansion, and optimal source materials represent important strides toward these considerations. Finally, we will review the emerging genetic and biomaterial-based approaches on the horizon for directing Treg specificity to augment tissue-targeting and regenerative medicine.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Ahmed G Elsayed
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Todd M Brusko
- OneVax LLC, Sid Martin Biotechnology Institute, Alachua, Florida, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
50
|
Zhang Y, Wang X, Mao L, Yang D, Gao W, Tian Z, Zhang M, Yang X, Ma K, Wu Y, Ni B. Dual roles of IL-22 at ischemia-reperfusion injury and acute rejection stages of rat allograft liver transplantation. Oncotarget 2017; 8:115384-115397. [PMID: 29383167 PMCID: PMC5777779 DOI: 10.18632/oncotarget.23266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Interleukin-22 (IL-22) is a recently identified regulator of inflammation, but little is known about its role in liver transplantation. Therefore, in this study, we explored the roles and the underlying mechanisms of IL-22 in acute allograft rejection by using a rat allogeneic liver transplantation model. Results showed that allograft liver transplantation led to damage of the parent liver and to significantly increased IL-22 expression in the allograft liver and plasma of the recipient rats compared with the rats who received isografts. Moreover, the significantly increased IL-22 expression was accompanied by markedly increased level of phospho-STAT3 in the allogeneic liver tissues after transplantation. Of note, neutralization of the IL-22 protein in recipient rats significantly worsened the function of the allograft liver at 1 day post-transplantation (ischemia-reperfusion injury, IRI) but improved the function at 7 days post-transplantation (acute rejection, AR). At IRI stage, IL-22 protected liver function through the increase of anti-apoptosis and pro-regeneration cytokines. However, IL-22 led to the increase of pro-inflammation factors at AR stage, accompanied by the marked increase of the Th17 and the marked decrease of Treg cells in allograft recipient rats through modulating the expression of chemokines for different cell types, which however were reversed by in vivo IL-22 neutralization. Results indicate the dual roles of IL-22 and suggest the differential potential clinical application of IL-22 at different stage of allograft liver transplantation.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China
- Laboratory Department, 150th Hospital of PLA, Luoyang 471031, PR China
| | - Xiaofei Wang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Liwei Mao
- Department of Oncology, 309th Hospital of PLA, Beijing 100091, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Mengjie Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Xia Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Kuansheng Ma
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|