1
|
Cárdenas G, Chávez-Canales M, Espinosa AM, Jordán-Ríos A, Malagon DA, Murillo MFM, Araujo LVT, Campos RLB, Wong-Chew RM, González LER, Cresencio KI, Velázquez EG, de la Cerda MR, Leyva Y, Hernández-Ruiz J, Hernández-Medel ML, León-Hernández M, Quero KM, Monciváis AS, Sarmiento EB, Reynoso RIA, Reyes DM, Del Río Ambriz LR, Hernández JSG, Cruz J, Ferrer SIV, Huerta L, Fierro NA, Hernández M, Pérez-Tapia M, Meneses G, Rosas G, Hernández-Aceves JA, Cervantes-Torres J, Valdez RA, Rodríguez AF, Espíndola-Arriaga E, Ortiz M, Salazar EA, Barba CC, Besedovsky H, Romano MC, Jung H, Bobes RJ, Soldevila G, López-Alvarenga JC, Fragoso G, Laclette JP, Sciutto E. Intranasal Versus Intravenous Dexamethasone to Treat Hospitalized COVID-19 Patients: A Randomized Multicenter Clinical Trial. Arch Med Res 2024; 55:102960. [PMID: 38290199 DOI: 10.1016/j.arcmed.2024.102960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND SARS-CoV2 induces flu-like symptoms that can rapidly progress to severe acute lung injury and even death. The virus also invades the central nervous system (CNS), causing neuroinflammation and death from central failure. Intravenous (IV) or oral dexamethasone (DXM) reduced 28 d mortality in patients who required supplemental oxygen compared to those who received conventional care alone. Through these routes, DMX fails to reach therapeutic levels in the CNS. In contrast, the intranasal (IN) route produces therapeutic levels of DXM in the CNS, even at low doses, with similar systemic bioavailability. AIMS To compare IN vs. IV DXM treatment in hospitalized patients with COVID-19. METHODS A controlled, multicenter, open-label trial. Patients with COVID-19 (69) were randomly assigned to receive IN-DXM (0.12 mg/kg for three days, followed by 0.6 mg/kg for up to seven days) or IV-DXM (6 mg/d for 10 d). The primary outcome was clinical improvement, as defined by the National Early Warning Score (NEWS) ordinal scale. The secondary outcome was death at 28 d between IV and IN patients. Effects of both treatments on biochemical and immunoinflammatory profiles were also recorded. RESULTS Initially, no significant differences in clinical severity, biometrics, and immunoinflammatory parameters were found between both groups. The NEWS-2 score was reduced, in 23 IN-DXM treated patients, with no significant variations in the 46 IV-DXM treated ones. Ten IV-DXM-treated patients and only one IN-DXM patient died. CONCLUSIONS IN-DMX reduced NEWS-2 and mortality more efficiently than IV-DXM, suggesting that IN is a more efficient route of DXM administration.
Collapse
Affiliation(s)
- Graciela Cárdenas
- Neurology Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - María Chávez-Canales
- Research Unit Universidad Autónoma de Mexico, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Espinosa
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | | | - Daniel Anica Malagon
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | | | | | | | - Rosa María Wong-Chew
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | - Yoana Leyva
- Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Joselin Hernández-Ruiz
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | | | - Mireya León-Hernández
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Karen Medina Quero
- Hospital Militar, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | | | | | | | | | | | | | - Jocelyn Cruz
- Neurology Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sergio Iván Valdés Ferrer
- Neurology and Psychiatry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Leonor Huerta
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nora Alma Fierro
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisela Hernández
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mayra Pérez-Tapia
- Bioprocess Development and Research Unit, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Meneses
- Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez, Mexico City, Mexico
| | - Gabriela Rosas
- Faculty of Medicine, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Alberto Hernández-Aceves
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaquelynne Cervantes-Torres
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo A Valdez
- Physiology, Biophysics and Neurosciences Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anai Fuentes Rodríguez
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Erick Espíndola-Arriaga
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Mauricio Ortiz
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Evelyn Alvarez Salazar
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Carlos Castellanos Barba
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Hugo Besedovsky
- Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Marta C Romano
- Physiology, Biophysics and Neurosciences Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Helgi Jung
- Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl J Bobes
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | | | - Gladis Fragoso
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pedro Laclette
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edda Sciutto
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Tret'yakova LV, Kvichansky AA, Barkovskaya ES, Manolova AO, Bolshakov AP, Gulyaeva NV. Ambiguous Contribution of Glucocorticosteroids to Acute Neuroinflammation in the Hippocampus of Rat. Int J Mol Sci 2023; 24:11147. [PMID: 37446324 DOI: 10.3390/ijms241311147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Effects of modulation of glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) on acute neuroinflammatory response were studied in the dorsal (DH) and ventral (VH) parts of the hippocampus of male Wistar rats. Local neuroinflammatory response was induced by administration of bacterial lipopolysaccharide (LPS) to the DH. The modulation of GR and MR was performed by dexamethasone (GR activation), mifepristone, and spironolactone (GR and MR inhibition, respectively). Experimental drugs were delivered to the dentate gyrus of the DH bilaterally by stereotaxic injections. Dexamethasone, mifepristone, and spironolactone were administered either alone (basal conditions) or in combination with LPS (neuroinflammatory conditions). Changes in expression levels of neuroinflammation-related genes and morphology of microglia 3 days after intrahippocampal administration of above substances were assessed. Dexamethasone alone induced a weak proinflammatory response in the hippocampal tissue, while neither mifepristone nor spironolactone showed significant effects. During LPS-induced neuroinflammation, GR activation suppressed expression of selected inflammatory genes, though it did not prevent appearance of activated forms of microglia. In contrast to GR activation, GR or MR inhibition had virtually no influence on LPS-induced inflammatory response. The results suggest glucocorticosteroids ambiguously modulate specific aspects of neuroinflammatory response in the hippocampus of rats at molecular and cellular levels.
Collapse
Affiliation(s)
- Liya V Tret'yakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Alexey A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Ekaterina S Barkovskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anna O Manolova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| |
Collapse
|
3
|
Espinosa-Cerón A, Méndez A, Hernández-Aceves J, Juárez-González JC, Villalobos N, Hernández M, Díaz G, Soto P, Concha L, Pérez-Osorio IN, Ortiz-Retana JJ, Bobes RJ, Parkhouse RM, Hamamoto Filho PT, Fragoso G, Sciutto E. Standardizing an Experimental Murine Model of Extraparenchymal Neurocysticercosis That Immunologically Resembles Human Infection. Brain Sci 2023; 13:1021. [PMID: 37508953 PMCID: PMC10377049 DOI: 10.3390/brainsci13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Neurocysticercosis (NCC) is endemic in non-developed regions of the world. Two forms of NCC have been described, for which neurological morbidity depends on the location of the lesion, which can be either within the cerebral parenchyma or in extraparenchymal spaces. The extraparenchymal form (EXP-NCC) is considered the most severe form of NCC. EXP-NCC often requires several cycles of cysticidal treatment and the concomitant use of glucocorticoids to prevent increased inflammation, which could lead to intracranial hypertension and, in rare cases, to death. Thus, the improvement of EXP-NCC treatment is greatly needed. METHODS An experimental murine model of EXP-NCC, as an adequate model to evaluate new therapeutic approaches, and the parameters that support it are described. EXP-NCC was established by injecting 30 Taenia crassiceps cysticerci, which are less than 0.5 mm in diameter, into the cisterna magna of male and female Wistar rats. RESULTS Cyst implantation and infection progression were monitored by detecting the HP10 antigen and anti-cysticercal antibodies in the serum and cerebral spinal fluid (CSF) of infected rats and by magnetic resonance imaging. Higher HP10 levels were observed in CSF than in the sera, as in the case of human EXP-NCC. Low cell recruitment levels were observed surrounding established cysticerci in histological analysis, with a modest increase in GFAP and Iba1 expression in the parenchyma of female animals. Low cellularity in CSF and low levels of C-reactive protein are consistent with a weak inflammatory response to this infection. After 150 days of infection, EXP-NCC is accompanied by reduced levels of mononuclear cell proliferation, resembling the human disease. EXP-NCC does not affect the behavior or general status of the rats. CONCLUSIONS This model will allow the evaluation of new approaches to control neuroinflammation and immunomodulatory treatments to restore and improve the specific anti-cysticercal immunity in EXP-NCC.
Collapse
Affiliation(s)
- Alejandro Espinosa-Cerón
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Méndez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan Hernández-Aceves
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Juárez-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Nelly Villalobos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Paola Soto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Iván N Pérez-Osorio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan J Ortiz-Retana
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Raúl J Bobes
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Robert M Parkhouse
- Instituto Gulbekian de Ciência, Portugal. R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - P T Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, UNESP-Universidade Estadual Paulista, São Paulo 18618-687, Brazil
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Lara-Espinosa JV, Arce-Aceves MF, Barrios-Payán J, Mata-Espinosa D, Lozano-Ordaz V, Becerril-Villanueva E, Ponce-Regalado MD, Hernández-Pando R. Effect of Low Doses of Dexamethasone on Experimental Pulmonary Tuberculosis. Microorganisms 2023; 11:1554. [PMID: 37375056 DOI: 10.3390/microorganisms11061554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tuberculosis (TB) is the deadliest disease caused by a bacterial agent. Glucocorticoids (GCs) have a typical anti-inflammatory effect, but recently it has been shown that they can present proinflammatory activity, mainly by increasing molecules from innate immunity. In the current study, we evaluated the effect of low doses of dexamethasone on Mycobacterium tuberculosis in vivo and in vitro. We used an established mice model of progressing tuberculosis (TB) in the in vivo studies. Intratracheal or intranasal dexamethasone therapy administered with conventional antibiotics in the late stage of the disease decreased the lung bacilli load and lung pneumonia, and increased the survival of the animals. Finally, the treatment decreased the inflammatory response in the SNC and, therefore, sickness behavior and neurological abnormalities in the infected animals. In the in vitro experiments, we used a cell line of murine alveolar macrophages infected with Mtb. Low-dose dexamethasone treatment increased the clearance capacity of Mtb by MHS macrophages, MIP-1α, and TLR2 expression, decreased proinflammatory and anti-inflammatory cytokines, and induced apoptosis, a molecular process that contributes to the control of the mycobacteria. In conclusion, the administration of low doses of dexamethasone represents a promising adjuvant treatment for pulmonary TB.
Collapse
Affiliation(s)
- Jacqueline V Lara-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - María Fernanda Arce-Aceves
- Laboratorio de Estudios en Tripasomiasis y Leishmaniasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Vasti Lozano-Ordaz
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - María Dolores Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Av Rafael Casillas Aceves 120, Tepatitlán de Morelos 47620, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
5
|
Pharmacokinetic Study of Intranasal Dexamethasone and Methylprednisolone Compared with Intravenous Administration: Two Open-Label, Single-Dose, Two-Period, Two-Sequence, Cross-Over Study in Healthy Volunteers. Pharmaceutics 2022; 15:pharmaceutics15010105. [PMID: 36678735 PMCID: PMC9861764 DOI: 10.3390/pharmaceutics15010105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Dexamethasone (DXM) and methylprednisolone (MEP) are potent glucocorticoids used to control several inflammatory conditions. Evidence of delayed DXM reaching the central nervous system (CNS) as well as tachyphylaxis and systemic, undesirable side effects are the main limitations of peripheral delivery. Intranasal administration offers direct access to the brain as it bypasses the blood-brain barrier. The Mucosal Atomization Device is an optimal tool that can achieve rapid absorption into the CNS and the bloodstream across mucosal membranes. This study was designed to evaluate and compare the bioavailability of DXM and MEP after intranasal versus intravenous administration. Two open-label, balanced, randomized, two-treatment, two-period, two-sequence, single-dose, crossover studies were conducted, which involved healthy male and female adult volunteers. After intranasal administration, DXM and MEP were detected in plasma after the first sampling time. Mean peak concentrations of DXM and MEP were 86.61 ng/mL at 60 min and 843.2 ng/mL at 1.5 h post-administration, respectively. DXM and MEP showed high absolute bioavailability, with values of 80% and 95%, respectively. No adverse effects were observed. DXM and MEP systemic bioavailability by intranasal administration was comparable with the intravenous one, suggesting that the intranasal route can be used as a non-invasive and appropriate alternative for systemic drug delivery.
Collapse
|
6
|
Intranasal Methylprednisolone Ameliorates Neuroinflammation Induced by Chronic Toluene Exposure. Pharmaceutics 2022; 14:pharmaceutics14061195. [PMID: 35745768 PMCID: PMC9230943 DOI: 10.3390/pharmaceutics14061195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Inhalants are chemical substances that induce intoxication, and toluene is the main component of them. Increasing evidence indicates that a dependence on inhalants involves a state of chronic stress associated to the activation of immune cells in the central nervous system and release of proinflammatory mediators, especially in some brain areas such as the nucleus accumbens and frontal cortex, where the circuits of pleasure and reward are. In this study, anti-neuroinflammatory treatment based on a single dose of intranasal methylprednisolone was assessed in a murine model of chronic toluene exposure. The levels of proinflammatory mediators, expression levels of Iba-1 and GFAP, and histological changes in the frontal cortex and nucleus accumbens were evaluated after the treatment. The chronic exposure to toluene significantly increased the levels of TNF-α, IL-6, and NO, the expression of GFAP, and induced histological alterations in mouse brains. The treatment with intranasally administered MP significantly reduced the expression of TNF-α and NO and the expression of GFAP (p < 0.05); additionally, it reversed the central histological damage. These results indicate that intranasally administered methylprednisolone could be considered as a treatment to reverse neuroinflammation and histological damages associated with the use of inhalants.
Collapse
|
7
|
Cárdenas G, Chávez-Canales M, Espinosa AM, Jordán-Ríos A, Malagon DA, Murillo MFM, Araujo LVT, Campos RLB, Wong-Chew RM, González LER, Cresencio KI, Velázquez EG, de la Cerda MR, Leyva Y, Hernández-Ruiz J, Hernández-Medel ML, León-Hernández M, Quero KM, Monciváis AS, Díaz SH, Martínez IRZ, Martínez-Cuazitl A, Salazar INM, Sarmiento EB, Peña AF, Hernández PS, Reynoso RIA, Reyes DM, del Río Ambriz LR, Bonilla RAA, Cruz J, Huerta L, Fierro NA, Hernández M, Pérez-Tapia M, Meneses G, Espíndola-Arriaga E, Rosas G, Chinney A, Mendoza SR, Hernández-Aceves JA, Cervantes-Torres J, Rodríguez AF, Alor RO, Francisco SO, Salazar EA, Besedovsky H, Romano MC, Bobes RJ, Jung H, Soldevila G, López-Alvarenga J, Fragoso G, Laclette JP, Sciutto E. Intranasal dexamethasone: a new clinical trial for the control of inflammation and neuroinflammation in COVID-19 patients. Trials 2022; 23:148. [PMID: 35164840 PMCID: PMC8845269 DOI: 10.1186/s13063-022-06075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background By end December of 2021, COVID-19 has infected around 276 million individuals and caused over 5 million deaths worldwide. Infection results in dysregulated systemic inflammation, multi-organ dysfunction, and critical illness. Cells of the central nervous system are also affected, triggering an uncontrolled neuroinflammatory response. Low doses of glucocorticoids, administered orally or intravenously, reduce mortality among moderate and severe COVID-19 patients. However, low doses administered by these routes do not reach therapeutic levels in the CNS. In contrast, intranasally administered dexamethasone can result in therapeutic doses in the CNS even at low doses. Methods This is an approved open-label, multicenter, randomized controlled trial to compare the effectiveness of intranasal versus intravenous dexamethasone administered in low doses to moderate and severe COVID-19 adult patients. The protocol is conducted in five health institutions in Mexico City. A total of 120 patients will be randomized into two groups (intravenous vs. intranasal) at a 1:1 ratio. Both groups will be treated with the corresponding dexamethasone scheme for 10 days. The primary outcome of the study will be clinical improvement, defined as a statistically significant reduction in the NEWS-2 score of patients with intranasal versus intravenous dexamethasone administration. The secondary outcome will be the reduction in mortality during hospitalization. Conclusions This protocol is currently in progress to improve the efficacy of the standard therapeutic dexamethasone regimen for moderate and severe COVID-19 patients. Trial registration ClinicalTrials.govNCT04513184. Registered November 12, 2020. Approved by La Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS) with identification number DI/20/407/04/36. People are currently being recruited. Graphical abstract ![]()
REVIVAL is a multicenter, open-label, randomized, controlled study to compare the standard low doses of intravenous dexamethasone with weight-adjusted low doses of intranasal dexamethasone. Intranasal dexamethasone can reach the respiratory tract more effectively than intravenous administration. Intranasal dexamethasone can reach the central nervous system in therapeutic concentrations, even at low doses. REVIVAL aims to reduce central failures and sequelae by controlling not only systemic inflammation but also neuroinflammation.
Collapse
|
8
|
Yang HL, Li MM, Zhou MF, Xu HS, Huan F, Liu N, Gao R, Wang J, Zhang N, Jiang L. Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation. Inflammation 2021; 44:2448-2462. [PMID: 34657991 DOI: 10.1007/s10753-021-01514-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.
Collapse
Affiliation(s)
- Hai-Long Yang
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Meng-Meng Li
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215008, China
| | - Man-Fei Zhou
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huai-Sha Xu
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fei Huan
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China
| | - Rong Gao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China.
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
9
|
Pilicheva B, Boyuklieva R. Can the Nasal Cavity Help Tackle COVID-19? Pharmaceutics 2021; 13:1612. [PMID: 34683904 PMCID: PMC8537957 DOI: 10.3390/pharmaceutics13101612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the progress made in the fight against the COVID-19 pandemic, it still poses dramatic challenges for scientists around the world. Various approaches are applied, including repurposed medications and alternative routes for administration. Several vaccines have been approved, and many more are under clinical and preclinical investigation. This review aims to systemize the available information and to outline the key therapeutic strategies for COVID-19, based on the nasal route of administration.
Collapse
Affiliation(s)
- Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Radka Boyuklieva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
10
|
Tret’yakova LV, Kvichansky AA, Bolshakov AP, Gulyaeva NV. Dexamethasone Modulates Lipopolysaccharide-Induced Expression of Proinflammatory Cytokines in Rat Hippocampus. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421330011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Heimfarth L, Nascimento LDS, Amazonas da Silva MDJ, Lucca Junior WD, Lima ES, Quintans-Junior LJ, Veiga-Junior VFD. Neuroprotective and anti-inflammatory effect of pectolinarigenin, a flavonoid from Amazonian Aegiphila integrifolia (Jacq.), against lipopolysaccharide-induced inflammation in astrocytes via NFκB and MAPK pathways. Food Chem Toxicol 2021; 157:112538. [PMID: 34500010 DOI: 10.1016/j.fct.2021.112538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases affect millions of people worldwide. Regardless of the underlying cause, neuroinflammation is the greatest risk factor for developing any of these disorders. Pectolinarigenin (PNG) is an active flavonoid with several biological properties, anti-metastatic and anti-inflammatory activity. This study investigate the biological effects of PNG in macrophage and astrocyte cultures, with focus on elucidating the molecular mechanisms involved in the PNG activity. J774A.1 murine macrophage or cerebral cortex primary astrocytes primary cultures were treated with different concentration of PNG (1-160 μM) and the inflammatory process was stimulated by LPS (1 μg/ml) and the effect of PNG in different inflammatory markers were determined. PNG did not affect astrocyte or macrophage viability. Moreover, this flavonoid reduced NO• release in macrophages, attenuated astrocyte activation by preventing the overexpression of glial fibrillary acidic protein, and decreased the release of inflammatory mediators, IL-1β and IL-6 induced by LPS by the glial cell, as well as enhanced basal levels of IL-10. In addition, PNG suppressed NFκB, p38MAPK and ERK1/2 phosphorylation in astrocytes culture induced by LPS. The results show clear evidence that this novel flavonoid protects astrocytes against LPS-induced inflammatory toxicity. In conclusion, PNG presents neuroprotective and anti-inflammatory property through the inhibition of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| | | | | |
Collapse
|
12
|
Pérez-Osorio IN, Espinosa A, Giraldo Velázquez M, Padilla P, Bárcena B, Fragoso G, Jung-Cook H, Besedovsky H, Meneses G, Sciutto Conde EL. Nose-to-Brain Delivery of Dexamethasone: Biodistribution Studies in Mice. J Pharmacol Exp Ther 2021; 378:244-250. [PMID: 34531307 DOI: 10.1124/jpet.121.000530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation (NI) is an important physiologic process which promotes the tissue repair and homeostatic maintenance in the central nervous system after different types of insults. However, when it is exacerbated and sustained in time, NI plays a critical role in the pathogenesis of different neurologic diseases. The high systemic doses required for brain-specific targeting lead to severe undesirable effects. The intranasal (IN) route has been proposed as an alternative drug administration route for a better NI control. Herein, the brain biodistribution of intranasally administered dexamethasone versus intravenously administered one is reported. A higher amount of dexamethasone was found in every analyzed region of those brains of intranasally administered mice. HPLC analysis also revealed that IN administration allows Dex to arrive faster and in a greater concentration to the brain in comparison with intravenous administration, data confirmed by immunofluorescence and HPLC analysis. These data support the proposal of the IN administration of Dex as an alternative for a more efficient control of NI. SIGNIFICANCE STATEMENT: This work highlights the biodistribution of dexamethasone after its intranasal administration. Intranasal administration allows for a faster arrival, better distribution, and a higher concentration of the drug within the brain compared to its intravenous administration. These results explain some of the evidence shown in a previous work in which dexamethasone controls neuroinflammation in a murine stroke model and can be used to propose alternative treatments for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Iván Nicolás Pérez-Osorio
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Alejandro Espinosa
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Manuel Giraldo Velázquez
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Patricia Padilla
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Brandon Bárcena
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Helgi Jung-Cook
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Hugo Besedovsky
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Gabriela Meneses
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Edda Lydia Sciutto Conde
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| |
Collapse
|
13
|
Lara-Espinosa JV, Arce-Aceves MF, Mata-Espinosa D, Barrios-Payán J, Marquina-Castillo B, Hernández-Pando R. The Therapeutic Effect of Intranasal Administration of Dexamethasone in Neuroinflammation Induced by Experimental Pulmonary Tuberculosis. Int J Mol Sci 2021; 22:ijms22115997. [PMID: 34206086 PMCID: PMC8199538 DOI: 10.3390/ijms22115997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is an important infectious disease and a public health problem. The organs most frequently affected by TB are the lungs; despite this, it has been reported that TB patients suffer from depression and anxiety, which have been attributed to social factors. In previous experimental work, we observed that the extensive pulmonary inflammation characteristic of TB with high cytokine production induces neuroinflammation, neuronal death and behavioral abnormalities in the absence of brain infection. The objective of the present work was to reduce this neuroinflammation and avoid the psycho-affective disorders showed during pulmonary TB. Glucocorticoids (GCs) are the first-line treatment for neuroinflammation; however, their systemic administration generates various side effects, mostly aggravating pulmonary TB due to immunosuppression of cellular immunity. Intranasal administration is a route that allows drugs to be released directly in the brain through the olfactory nerve, reducing their doses and side effects. In the present work, dexamethasone’s (DEX) intranasal administration was evaluated in TB BALB /c mice comparing three different doses (0.05, 0.25 and 2.5 mg/kg BW) on lung disease evolution, neuroinflammation and behavioral alterations. Low doses of dexamethasone significantly decreased neuroinflammation, improving behavioral status without aggravating lung disease.
Collapse
|
14
|
A Dry Powder Platform for Nose-to-Brain Delivery of Dexamethasone: Formulation Development and Nasal Deposition Studies. Pharmaceutics 2021; 13:pharmaceutics13060795. [PMID: 34073500 PMCID: PMC8229415 DOI: 10.3390/pharmaceutics13060795] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Nasal route of administration offers a unique opportunity of brain targeted drug delivery via olfactory and trigeminal pathway, providing effective CNS concentrations at lower doses and lower risk for adverse reactions compared to systemic drug administration. Therefore, it has been recently proposed as a route of choice for glucocorticoids to control neuroinflammation processes in patients with severe Covid-19. However, appropriate delivery systems tailored to enhance their efficacy yet need to emerge. In this work we present the development of sprayable brain targeting powder delivery platform of dexamethasone sodium phosphate (DSP). DSP-loaded microspheres, optimised employing Quality-by-Design approach, were blended with soluble inert carriers (mannitol or lactose monohydrate). Powder blends were characterized in terms of homogeneity, flow properties, sprayability, in vitro biocompatibility, permeability and mucoadhesion. Nasal deposition studies were performed using 3D printed nasal cavity model. Mannitol provided better powder blend flow properties compared to lactose. Microspheres blended with mannitol retained or enlarged their mucoadhesive properties and enhanced DSP permeability across epithelial model barrier. DSP dose fraction deposited in the olfactory region reached 17.0% revealing the potential of developed powder platform for targeted olfactory delivery. The observed impact of nasal cavity asymmetry highlighted the importance of individual approach when aiming olfactory region.
Collapse
|
15
|
Dey R, Bishayi B. Ciprofloxacin and dexamethasone in combination attenuate S. aureus induced brain abscess via neuroendocrine-immune interaction of TLR-2 and glucocorticoid receptor leading to behavioral improvement. Int Immunopharmacol 2021; 97:107695. [PMID: 33962227 DOI: 10.1016/j.intimp.2021.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus induced brain abscess is a critical health concern throughout the developing world. The conventional surgical intervention could not regulate the abscess-induced brain inflammation. Thus further study over the alternative therapeutic strategy for treating a brain abscess is of high priority. The resident glial cells recognize the invading S. aureus by their cell surface Toll-like receptor-2 (TLR-2). Glucocorticoid receptor (GR) was known for its immunosuppressive effects. In this study, an attempt had been taken to utilize the functional relationship or cross-talking between TLR-2 and GR during the pathogenesis of brain abscesses. Here, the combination of an antibiotic (i.e. ciprofloxacin) and dexamethasone was used to regulate the brain inflammation either in TLR-2 or GR blocking condition. We were also interested to figure out the possible impact of alternative therapy on behavioral impairments. The results indicated that combination treatment during TLR-2 blockade significantly reduced the bacterial burden and abscess area score in the infected brain. However, marked improvements were observed in anxiety, depression-like behavior, and motor co-ordination. The combination treatment after TLR-2 blocking effectively scavenged free radicals (H2O2, superoxide anion, and NO) through modulating antioxidant enzyme activities that ultimately control S. aureus induced glial reactivity possibly via up-regulating GR expression. The exogenous dexamethasone might regulate the GR expression in the brain by increasing the corticosterone concentration and the GC-GR mediated signaling. Therefore, this in-vivo study demonstrates the possible regulatory mechanism of bacterial brain abscess that involved TLR-2 and GR as a part of neuroendocrine-immune interaction.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India.
| |
Collapse
|
16
|
Zhang D, Hu W, Tu H, Hackfort BT, Duan B, Xiong W, Wadman MC, Li YL. Macrophage depletion in stellate ganglia alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis by attenuating neuroinflammation in heart failure. Basic Res Cardiol 2021; 116:28. [PMID: 33884509 PMCID: PMC8060235 DOI: 10.1007/s00395-021-00871-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Cardiac sympathetic overactivation is involved in arrhythmogenesis in patients with chronic heart failure (CHF). Inflammatory infiltration in the stellate ganglion (SG) is a critical factor for cardiac sympathoexcitation in patients with ventricular arrhythmias. This study aims to investigate if macrophage depletion in SGs decreases cardiac sympathetic overactivation and ventricular arrhythmogenesis in CHF. Surgical ligation of the coronary artery was used for induction of CHF. Clodronate liposomes were microinjected into bilateral SGs of CHF rats for macrophage depletion. Using cytokine array, immunofluorescence staining, and Western blot analysis, we found that macrophage expansion and expression of TNFα and IL-1β in SGs were markedly increased in CHF rats. Flow cytometry data confirmed that the percentage of macrophages in SGs was higher in CHF rats than that in sham rats. Clodronate liposomes significantly reduced CHF-elevated proinflammatory cytokine levels and macrophage expansion in SGs. Clodronate liposomes also reduced CHF-increased N-type Ca2+ currents and excitability of cardiac sympathetic postganglionic neurons and inhibited CHF-enhanced cardiac sympathetic nerve activity. ECG data from 24-h, continuous telemetry recording in conscious rats demonstrated that clodronate liposomes not only restored CHF-induced heterogeneity of ventricular electrical activities, but also decreased the incidence and duration of ventricular tachycardia/fibrillation in CHF. Macrophage depletion with clodronate liposomes attenuated CHF-induced cardiac sympathetic overactivation and ventricular arrhythmias through reduction of macrophage expansion and neuroinflammation in SGs.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wanfen Xiong
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Sinha P, Verma B, Ganesh S. Dexamethasone-induced activation of heat shock response ameliorates seizure susceptibility and neuroinflammation in mouse models of Lafora disease. Exp Neurol 2021; 340:113656. [PMID: 33639210 DOI: 10.1016/j.expneurol.2021.113656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/26/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022]
Abstract
Heat shock response (HSR) is a conserved cytoprotective pathway controlled by the master transcriptional regulator, the heat shock factor 1 (HSF1), that activates the expression of heat shock proteins (HSPs). HSPs, as chaperones, play essential roles in minimizing stress-induced damages and restoring proteostasis. Therefore, compromised HSR is thought to contribute to neurodegenerative disorders. Lafora disease (LD) is a fatal form of neurodegenerative disorder characterized by the accumulation of abnormal glycogen as Lafora bodies in neurons and other tissues. The symptoms of LD include progressive myoclonus epilepsy, dementia, and cognitive deficits. LD is caused by the defects in the gene coding laforin phosphatase or the malin ubiquitin ligase. Laforin and malin are known to work upstream of HSF1 and are essential for the activation of HSR. Herein, we show that mice deficient for laforin or malin show reduced levels of HSF1 and their targets in their brain tissues, suggesting compromised HSR; this could contribute to the neuropathology in LD. Intriguingly, treatment of LD animals with dexamethasone, a synthetic glucocorticoid analogue, partially restored the levels of HSF1 and its targets. Dexamethasone treatment was also able to ameliorate the neuroinflammation and susceptibility to induced seizures in the LD animals. However, dexamethasone treatment did not show a significant effect on Lafora bodies or autophagy defects. Taken together, the present study establishes a role for HSR in seizure susceptibility and neuroinflammation and dexamethasone as a potential antiepileptic agent, suitable for further studies in LD.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Bhupender Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
18
|
Cárdenas G, Torres-García D, Cervantes-Torres J, Rosales-Mendoza S, Fleury A, Fragoso G, Laclette JP, Sciutto E. Role of Systemic and Nasal Glucocorticoid Treatment in the Regulation of the Inflammatory Response in Patients with SARS-Cov-2 Infection. Arch Med Res 2020; 52:143-150. [PMID: 33160751 PMCID: PMC7586926 DOI: 10.1016/j.arcmed.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The Chinese outbreak of SARS-CoV-2 during 2019 has become pandemic and the most important concerns are the acute respiratory distress syndrome (ARDS) and hyperinflammation developed by the population at risk (elderly and/or having obesity, diabetes, and hypertension) in whom clinical evolution quickly progresses to multi-organ dysfunction and fatal outcome. Immune dysregulation is linked to uncontrolled proinflammatory response characterized by the release of cytokines (cytokines storm). A proper control of this response is mandatory to improve clinical prognosis. In this context, glucocorticoids are able to change the expression of several genes involved in the inflammatory response leading to an improvement in acute respiratory distress. Although there are contradictory data in the literature, in this report we highlight the potential benefits of glucocorticoids as adjuvant therapy for hyperinflammation control; emphasizing that adequate dosage, timing, and delivery are crucial to reduce the dysregulated peripheral-and neuro-inflammatory response with minimal adverse effects. We propose the use of the intranasal route for glucocorticoid administration, which has been shown to effectively control the neuro-and peripheral-inflammatory response using low doses without generating unwanted side effects.
Collapse
Affiliation(s)
- Graciela Cárdenas
- Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | - Diana Torres-García
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Sergio Rosales-Mendoza
- Centro de Investigación en Biomedicina y Salud, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Agnes Fleury
- Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Pedro Laclette
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
19
|
Jin Z, Hu J, Ma D. Postoperative delirium: perioperative assessment, risk reduction, and management. Br J Anaesth 2020; 125:492-504. [DOI: 10.1016/j.bja.2020.06.063] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022] Open
|
20
|
Espinosa A, Meneses G, Chavarría A, Mancilla R, Pedraza-Chaverri J, Fleury A, Bárcena B, Pérez-Osorio IN, Besedovsky H, Arauz A, Fragoso G, Sciutto E. Intranasal Dexamethasone Reduces Mortality and Brain Damage in a Mouse Experimental Ischemic Stroke Model. Neurotherapeutics 2020; 17:1907-1918. [PMID: 32632775 PMCID: PMC7851226 DOI: 10.1007/s13311-020-00884-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation triggered by the expression of damaged-associated molecular patterns released from dying cells plays a critical role in the pathogenesis of ischemic stroke. However, the benefits from the control of neuroinflammation in the clinical outcome have not been established. In this study, the effectiveness of intranasal, a highly efficient route to reach the central nervous system, and intraperitoneal dexamethasone administration in the treatment of neuroinflammation was evaluated in a 60-min middle cerebral artery occlusion (MCAO) model in C57BL/6 male mice. We performed a side-by-side comparison using intranasal versus intraperitoneal dexamethasone, a timecourse including immediate (0 h) or 4 or 12 h poststroke intranasal administration, as well as 4 intranasal doses of dexamethasone beginning 12 h after the MCAO versus a single dose at 12 h to identify the most effective conditions to treat neuroinflammation in MCAO mice. The best results were obtained 12 h after MCAO and when mice received a single dose of dexamethasone (0.25 mg/kg) intranasally. This treatment significantly reduced mortality, neurological deficits, infarct volume size, blood-brain barrier permeability in the somatosensory cortex, inflammatory cell infiltration, and glial activation. Our results demonstrate that a single low dose of intranasal dexamethasone has neuroprotective therapeutic effects in the MCAO model, showing a better clinical outcome than the intraperitoneal administration. Based on these results, we propose a new therapeutic approach for the treatment of the damage process that accompanies ischemic stroke.
Collapse
Affiliation(s)
- Alejandro Espinosa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Gabriela Meneses
- Departamento de Parasitología, Instituto Nacional de Diagnóstico y Referencia Epidemiológicos, Mexico City, 01480, Mexico
| | - Anahí Chavarría
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 06726, Mexico
| | - Raúl Mancilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Agnes Fleury
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Unidad Periférica del Instituto de Investigaciones Biomédicas en el Instituto Nacional de Neurología y Neurocirugía, Mexico City, 14269, Mexico
| | - Brandon Bárcena
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Ivan N Pérez-Osorio
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Hugo Besedovsky
- The Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University, Marburg, D-35037, Germany
| | - Antonio Arauz
- Stroke Clinic, Instituto Nacional de Neurología y Neurocirugía, Mexico City, 14269, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
21
|
Cuevas-Barragan CE, Buenrostro-Nava MT, Palos-Gómez GM, Ramirez-Padilla EA, Mendoza-Macias BI, Rivas-Caceres RR. Use of Nasoil® via intranasal to control the harmful effects of Covid-19. Microb Pathog 2020; 149:104504. [PMID: 32950636 PMCID: PMC7497547 DOI: 10.1016/j.micpath.2020.104504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
In the absence of vaccines and antiviral drugs available to prevent and treat COVID-19, it becomes imperative to find or use all those products with the potential to fight this virus. This article is an attempt to propose ways to prevent, treat and control the COVID-19 virus, using a product based on plant extracts with the potential to reduce the symptoms caused by the SARS-CoV-2 virus. Nasoil® counts as one of its main components, Asclepias curassavica extracts, and in the present study it has been shown that it is an effective adjuvant in the treatment of Covid-19, increasing the respiratory capacity of the patients (SpO2> 90%) and reducing the symptoms from the first application, improving the patients around the fifth to the eighth application. At a preventive level, the individuals in this study who have applied it (400 individuals) only a 3.15% of these presented symptoms, disappearing when increasing the weekly applications. Nasoil® protects from the appearance of symptoms by 96% due to Covid-19. Modifying lung microenvironments reduces Covid-19 symptoms. Promoting new interactions in the elastic protein decreases the elastase activity of neutrophils. The combination of plant extracts in Nasoil® help in respiratory problems. Nasoil® is an co-adjuvant for the control and prevention of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
| | | | - Gabriela Monserrat Palos-Gómez
- Especialista en Medicina Familiar, Unidad de Medicina Familiar núm, 19, del Instituto Mexicano del Seguro Social, Colima, Colima, Mexico
| | | | | | | |
Collapse
|
22
|
Rassy D, Bárcena B, Pérez-Osorio IN, Espinosa A, Peón AN, Terrazas LI, Meneses G, Besedovsky HO, Fragoso G, Sciutto E. Intranasal Methylprednisolone Effectively Reduces Neuroinflammation in Mice With Experimental Autoimmune Encephalitis. J Neuropathol Exp Neurol 2020; 79:226-237. [PMID: 31886871 DOI: 10.1093/jnen/nlz128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 11/23/2019] [Indexed: 12/29/2022] Open
Abstract
Relapsing-remitting multiple sclerosis, the most common form, is characterized by acute neuroinflammatory episodes. In addition to continuous disease-modifying therapy, these relapses require treatment to prevent lesion accumulation and progression of disability. Intravenous methylprednisolone (1-2 g for 3-5 days) is the standard treatment for relapses. However, this treatment is invasive, requires hospitalization, leads to substantial systemic exposure of glucocorticoids, and can only reach modest concentrations in the central nervous system (CNS). Intranasal delivery may represent an alternative to deliver relapse treatment directly to the CNS with higher concentrations and reducing side effects. Histopathological analysis revealed that intranasal administration of methylprednisolone to mice with experimental autoimmune encephalomyelitis (EAE) suppressed the neuroinflammatory peak, and reduced immune cell infiltration and demyelination in the CNS similarly to intravenous administration. Treatment also downregulated Iba1 and GFAP expression. A similar significant reduction of IL-1β, IL-6, IL-17, IFN-γ, and TNF-α levels in the spinal cord was attained in both intranasal and intravenously treated mice. No damage in the nasal cavity was found after intranasal administration. This study demonstrates that intranasal delivery of methylprednisolone is as efficient as the intravenous route to treat neuroinflammation in EAE.
Collapse
Affiliation(s)
- Dunia Rassy
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Brandon Bárcena
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Iván Nicolás Pérez-Osorio
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Alejandro Espinosa
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | | | - Luis I Terrazas
- Unidad de Biomedicina.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Gabriela Meneses
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Hugo O Besedovsky
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany
| | - Gladis Fragoso
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Edda Sciutto
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| |
Collapse
|
23
|
Assessment of Glial Activation Response in the Progress of Natural Scrapie after Chronic Dexamethasone Treatment. Int J Mol Sci 2020; 21:ijms21093231. [PMID: 32370224 PMCID: PMC7247567 DOI: 10.3390/ijms21093231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation has been correlated with the progress of neurodegeneration in many neuropathologies. Although glial cells have traditionally been considered to be protective, the concept of them as neurotoxic cells has recently emerged. Thus, a major unsolved question is the exact role of astroglia and microglia in neurodegenerative disorders. On the other hand, it is well known that glucocorticoids are the first choice to regulate inflammation and, consequently, neuroglial inflammatory activity. The objective of this study was to determine how chronic dexamethasone treatment influences the host immune response and to characterize the beneficial or detrimental role of glial cells. To date, this has not been examined using a natural neurodegenerative model of scrapie. With this aim, immunohistochemical expression of glial markers, prion protein accumulation, histopathological lesions and clinical evolution were compared with those in a control group. The results demonstrated how the complex interaction between glial populations failed to compensate for brain damage in natural conditions, emphasizing the need for using natural models. Additionally, the data showed that modulation of neuroinflammation by anti-inflammatory drugs might become a research focus as a potential therapeutic target for prion diseases, similar to that considered previously for other neurodegenerative disorders classified as prion-like diseases.
Collapse
|
24
|
Zhou YL, Yan YM, Li SY, He DH, Xiong S, Wei SF, Liu W, Hu L, Wang Q, Pan HF, Cheng YX, Liu YQ. 6-O-angeloylplenolin exerts neuroprotection against lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Acta Pharmacol Sin 2020; 41:10-21. [PMID: 31213669 PMCID: PMC7470812 DOI: 10.1038/s41401-019-0261-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation is one of the critical events in neurodegenerative diseases, whereas microglia play an important role in the pathogenesis of neuroinflammation. In this study, we investigated the effects of a natural sesquiterpene lactone, 6-O-angeloylplenolin (6-OAP), isolated from the traditional Chinese medicine Centipeda minima (L.) A.Br., on neuroinflammation and the underlying mechanisms. We showed that treatment with lipopolysaccharide (LPS) caused activation of BV2 and primary microglial cells and development of neuroinflammation in vitro, evidenced by increased production of inflammatory cytokines TNF-α and IL-1β, the phosphorylation and nuclear translocation of NF-κB, and the transcriptional upregulation of COX-2 and iNOS, leading to increased production of proinflammatory factors NO and PGE2. Moreover, LPS treatment induced oxidative stress through increasing the expression levels of NOX2 and NOX4. Pretreatment with 6-OAP (0.5−4 μM) dose-dependently attenuated LPS-induced NF-κB activation and oxidative stress, thus suppressed neuroinflammation in the cells. In a mouse model of LPS-induced neuroinflammation, 6-OAP (5−20 mg·kg−1·d−1, ip, for 7 days before LPS injection) dose-dependently inhibited the production of inflammatory cytokines, the activation of the NF-κB signaling pathway, and the expression of inflammatory enzymes in brain tissues. 6-OAP pretreatment significantly ameliorated the activation of microglia and astrocytes in the brains. 6-OAP at a high dose caused a much stronger antineuroinflammatory effect than dexamethansone (DEX). Furthermore, we demonstrated that 6-OAP pretreatment could inhibit LPS-induced neurite and synaptic loss in vitro and in vivo. In conclusion, our results demonstrate that 6-OAP exerts antineuroinflammatory effects and can be considered a novel drug candidate for the treatment of neuroinflammatory diseases.
Collapse
|
25
|
Williams S, Ghosh C. Neurovascular glucocorticoid receptors and glucocorticoids: implications in health, neurological disorders and drug therapy. Drug Discov Today 2019; 25:89-106. [PMID: 31541713 DOI: 10.1016/j.drudis.2019.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptors (GRs) are ubiquitous transcription factors widely studied for their role in controlling events related to inflammation, stress and homeostasis. Recently, GRs have reemerged as crucial targets of investigation in neurological disorders, with a focus on pharmacological strategies to direct complex mechanistic GR regulation and improve therapy. In the brain, GRs control functions necessary for neurovascular integrity, including responses to stress, neurological changes mediated by the hypothalamic-pituitary-adrenal axis and brain-specific responses to corticosteroids. Therefore, this review will examine GR regulation at the neurovascular interface in normal and pathological conditions, pharmacological GR modulation and glucocorticoid insensitivity in neurological disorders.
Collapse
Affiliation(s)
- Sherice Williams
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaitali Ghosh
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine and Biomedical Engineering at Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
26
|
Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 2019; 302:19-41. [DOI: 10.1016/j.jconrel.2019.03.020] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
|
27
|
Meneses G, Cárdenas G, Espinosa A, Rassy D, Pérez-Osorio IN, Bárcena B, Fleury A, Besedovsky H, Fragoso G, Sciutto E. Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury. Ann N Y Acad Sci 2018; 1437:43-56. [DOI: 10.1111/nyas.13985] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriela Meneses
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Graciela Cárdenas
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Alejandro Espinosa
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Dunia Rassy
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Ivan Nicolás Pérez-Osorio
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Brandon Bárcena
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Agnes Fleury
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Hugo Besedovsky
- The Institute of Physiology and Pathophysiology, Medical Faculty; Philipps University; Marburg Germany
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|
28
|
Meneses G, Rosetti M, Espinosa A, Florentino A, Bautista M, Díaz G, Olvera G, Bárcena B, Fleury A, Adalid-Peralta L, Lamoyi E, Fragoso G, Sciutto E. Recovery from an acute systemic and central LPS-inflammation challenge is affected by mouse sex and genetic background. PLoS One 2018; 13:e0201375. [PMID: 30133465 PMCID: PMC6104912 DOI: 10.1371/journal.pone.0201375] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Genetic and sexual factors influence the prevalence and the pathogenesis of many inflammatory disorders. In this study their relevance on the peripheral and central inflammatory status induced by a peripheral injection of lipopolysaccharide (LPS) was evaluated. BALB/c and CD-1 male and female mice were intraperitoneally injected with LPS. Spleens and brains were collected 2 and 72 hours later to study the levels of IL-6, TNF-α and IL-1β. Percentage of microglia and astrocytes was determined in the cortex and hippocampus. Locomotor activity was registered before and during the 72 hours after LPS-treatment. Two hours after LPS-injection, a peripheral increase of the three cytokines was found. In brains, LPS increased TNF-α only in males with higher levels in CD-1 than BALB/c. IL-1β increased only in CD-1 males. IL-6 increased in both strains with lower levels in BALB/c females. Peripheral and central levels of cytokines decline 72 hrs after LPS-treatment whilst a significantly increase of Iba-1 expression was detected. A dramatic drop of the locomotor activity was observed immediately after LPS injection. Our results show that acute systemic administration of LPS leads to peripheral and central increase of pro-inflammatory cytokines and microglia activation, in a strain and sex dependent manner.
Collapse
Affiliation(s)
- Gabriela Meneses
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Marcos Rosetti
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Alejandro Espinosa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Alejandra Florentino
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Marcel Bautista
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Georgina Díaz
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Guillermo Olvera
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Brandon Bárcena
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Agnes Fleury
- Departamento de Medicina Genómica y Toxicología Ambiental, Unidad Periférica del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México en el Instituto Nacional de Neurología y Neurocirugía Dr. Manuel Velasco Suárez, Ciudad de México, México
| | - Laura Adalid-Peralta
- Unidad Periférica del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México en el Instituto Nacional de Neurología y Neurocirugía Dr. Manuel Velasco Suárez, Ciudad de México, México
| | - Edmundo Lamoyi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México; Ciudad de México, México
- * E-mail:
| |
Collapse
|
29
|
Alvarez-Ricartes N, Oliveros-Matus P, Mendoza C, Perez-Urrutia N, Echeverria F, Iarkov A, Barreto GE, Echeverria V. Intranasal Cotinine Plus Krill Oil Facilitates Fear Extinction, Decreases Depressive-Like Behavior, and Increases Hippocampal Calcineurin A Levels in Mice. Mol Neurobiol 2018; 55:7949-7960. [PMID: 29488138 DOI: 10.1007/s12035-018-0916-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Failure in fear extinction is one of the more troublesome characteristics of posttraumatic stress disorder (PTSD). Cotinine facilitates fear memory extinction and reduces depressive-like behavior when administered 24 h after fear conditioning in mice. In this study, it was investigated the behavioral and molecular effects of cotinine, and other antidepressant preparations infused intranasally. Intranasal (IN) cotinine, IN krill oil, IN cotinine plus krill oil, and oral sertraline were evaluated on depressive-like behavior and fear retention and extinction after fear conditioning in C57BL/6 mice. Since calcineurin A has been involved in facilitating fear extinction in rodents, we also investigated changes of calcineurin in the hippocampus, a region key on contextual fear extinction. Short-term treatment with cotinine formulations was superior to krill oil and oral sertraline in reducing depressive-like behavior and fear consolidation and enhancing contextual fear memory extinction in mice. IN krill oil slowed the extinction of fear. IN cotinine preparations increased the levels of calcineurin A in the hippocampus of conditioned mice. In the light of the results, the future investigation of the use of IN cotinine preparations for the extinction of contextual fear memory and treatment of treatment-resistant depression (TRD) in PTSD is discussed.
Collapse
Affiliation(s)
- Nathalie Alvarez-Ricartes
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Patricia Oliveros-Matus
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Nelson Perez-Urrutia
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Florencia Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Alexandre Iarkov
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile.
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile. .,Bay Pines VA Healthcare System, Research and Development, Bay Pines VAHCS, 10,000 Bay Pines Blvd., Bldg. 23, Rm123, Bay Pines, FL, 33744, USA.
| |
Collapse
|