1
|
Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, Kuanysh S, Adish Z, Issabekova A, Ogay V. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules 2024; 14:1351. [PMID: 39595528 PMCID: PMC11591958 DOI: 10.3390/biom14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage differentiating stromal cells with extensive immunomodulatory and anti-inflammatory properties. MSC-based therapy is widely used in the treatment of various pathologies, including bone and cartilage diseases, cardiac ischemia, diabetes, and neurological disorders. Along with MSCs, it is promising to study the therapeutic properties of exosomes derived from MSCs (MSC-Exo). A number of studies report that the therapeutic properties of MSC-Exo are superior to those of MSCs. In particular, MSC-Exo are used for tissue regeneration in various diseases, such as healing of skin wounds, cancer, coronary heart disease, lung injury, liver fibrosis, and neurological, autoimmune, and inflammatory diseases. In this regard, it is not surprising that the scientific community is interested in studying the therapeutic properties of MSCs and MSC-Exo in the treatment of psoriasis. This review summarizes the recent advancements from preclinical and clinical studies of MSCs and MSC-Exo in the treatment of psoriasis, and it also discusses their mechanisms of therapeutic action involved in the treatment of this disease.
Collapse
Affiliation(s)
- Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Symbat Alimbek
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Assiya Nurkina
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Miras Shakhatbayev
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Sandugash Kuanysh
- Obstetrics and Gynecology, Astana Medical University, Astana 010000, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
2
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
3
|
Mohseni Meybodi MA, Nilforoushzadeh MA, KhandanDezfully N, Mansouri P. The safety and efficacy of adipose tissue-derived exosomes in treating mild to moderate plaque psoriasis: A clinical study. Life Sci 2024; 353:122915. [PMID: 39013528 DOI: 10.1016/j.lfs.2024.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
AIM This study evaluates the safety and efficacy of autologous adipose-derived mesenchymal stem cell-derived exosomes as a treatment for Psoriasis, a chronic immune-related skin and joint disorder, compared to current treatments like topicals, phototherapy, and systemic. MATERIALS AND METHODS The study isolated exosomes from Mesenchymal Stem Cells(MSCs) of healthy adipose tissue using ultracentrifugation. 12 patients with plaque psoriasis were divided into three groups and given single doses of exosomes. Tissue samples were collected pre- and post-treatment and examined for inflammatory(TNFα, IL23, IL17, IFNγ, CD3) and anti-inflammatory (FOXP3, IL10) markers. The severity of the lesion was also evaluated. KEY FINDINGS In this study, it was found that erythema and induration (P < 0.05) decreased significantly in patients receiving 200 μg. Still, this reduction in scaling was not significant, the thickness was significantly reduced in patients receiving 100 and 200 μg doses (P < 0.05). H&E evaluation showed that the decreasing trend in these patients was not significant (P > 0.05). IHC evaluation in patients receiving doses of 100 and 200 μg showed a decrease in the presence of IL17 (P < 0.05, <0.001) & CD3(P < 0.001, <0.05) and a considerable increase in FOXP3(P ≤ 0.001), in the tissue samples of the patients. Examining the expression of inflammatory factors also shows that dose 200 μg decreased the expression of IL17(P > 0.05), IFNγ(P > 0.05), IL23(P < 0.05), & TNFα(P ≤ 0.05) and increased the expression of the anti-inflammatory factor IL10(P < 0.05). SIGNIFICANCE The study indicates that a 200 μg dose is optimal for patients, but a larger patient population is needed for more reliable results. Additionally, higher doses or multiple injections with specific intervals can increase confidence.
Collapse
Affiliation(s)
| | | | | | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Medical Laser Research Centers, Academic Center of Education - Culture and Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kuang YH, Zhu W, Lin G, Cheng LM, Qin Q, Huang ZJ, Shi YL, Zhang CL, Xu JH, Yan KX, Lv CZ, Li W, Han Q, Stambler I, Lim LW, Chakrabarti S, Ulfhake B, Min KJ, Ellison-Hughes G, Cho WC, Jin K, Yao D, Lu C, Zhao RC, Chen X. Expert Consensus on the Application of Stem Cells in Psoriasis Research and Clinical Trials. Aging Dis 2024:AD.2024.0012. [PMID: 39012666 DOI: 10.14336/ad.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Psoriasis is an immune-mediated, chronic, relapsing, inflammatory, systemic disease induced by individual-environmental interactions, and is often lifelong because of the difficulty of treatment. In recent years, a variety of targeted therapies, including biologics, have improved the lesions and quality of life of most psoriasis patients, but they still do not address the problem of relapse and may be associated with decreased efficacy or adverse events such as infections over time. Therefore, there is an urgent need for breakthroughs in psoriasis treatment and in relapse-delaying and non-pharmacologic strategies, and stem cell therapy for psoriasis has emerged. In recent years, research on stem cell therapy for psoriasis has received a lot of attention, however, there is no reference standard as well as consensus in this field of research. Therefore, according to the latest consensus and guidelines, combined with relevant literature reports, clinical practice experience and the results of discussions with experts, this consensus specifies the types of stem cells commonly used in the treatment of psoriasis, the methods, dosages, and routes of stem cell therapy for psoriasis, as well as the clinical evaluations (efficacy and safety) of stem cell therapy for psoriasis. In addition, this consensus also provides normative standards for the processes of collection, preparation, preservation and quality control of stem cells and their related products, as well as recommendations for the management of stem cells during infusion for the treatment of psoriasis. This consensus provides the latest specific reference standards and practice guidelines for the field of stem cell therapy for psoriasis.
Collapse
Affiliation(s)
- Ye-Hong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cell, Changsha, China
| | - La-Mei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cell, Changsha, China
| | - Qun Qin
- The Office of Drug Clinical Trials Institution, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Jun Huang
- Center for Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yu-Ling Shi
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Shanghai Skin Disease Hospital, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chun-Lei Zhang
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jin-Hua Xu
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Xiang Yan
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Cheng-Zhi Lv
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Dalian Dermatosis Hospital, Dalian, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| | - Qin Han
- International Society on Aging and Disease, Fort Worth, TX, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Ilia Stambler
- International Society on Aging and Disease, Fort Worth, TX, USA
- Department of Science, Technology and Society, Bar Ilan University, Ramat Gan, Israel
| | - Lee Wei Lim
- International Society on Aging and Disease, Fort Worth, TX, USA
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Sasanka Chakrabarti
- International Society on Aging and Disease, Fort Worth, TX, USA
- Maharishi Markandeshwar Deemed University, Mullana-Ambala, India
| | - Brun Ulfhake
- International Society on Aging and Disease, Fort Worth, TX, USA
- Karolinska University Hospital, Stockholm, Sweden
| | - Kyung-Jin Min
- International Society on Aging and Disease, Fort Worth, TX, USA
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Georgina Ellison-Hughes
- International Society on Aging and Disease, Fort Worth, TX, USA
- School of Basic and Medical Biosciences, Faculty of Life Sciences &;amp Medicine, King's College London, London, UK
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Kunlin Jin
- International Society on Aging and Disease, Fort Worth, TX, USA
- University of North Texas Health Science Center, Bryan, TX, USA
| | - Danni Yao
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Robert Chunhua Zhao
- International Society on Aging and Disease, Fort Worth, TX, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| |
Collapse
|
5
|
Zhu ZB, Liu MJ, Wang J, Shu Z, Cao J. Secoemestrin C Ameliorates Psoriasis-like Skin Inflammation in Mice by Suppressing the TNF-α/NF-κB Signaling Pathway. Curr Med Sci 2024; 44:232-240. [PMID: 38393530 DOI: 10.1007/s11596-024-2828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/03/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Secoemestrin C (SC), an epitetrathiodioxopiperazine isolated from Aspergillus nidulans, has been previously reported to have immunomodulatory and hepatoprotective effects against acute autoimmune hepatitis. However, the effect of SC on regulating the inflammation and its underlying mechanisms in the pathogenesis of psoriasis remain unclear. This study aimed to evaluate the effects of SC on inflammatory dermatosis both in vitro and in vivo. METHODS In vitro, HaCaT cells were induced with tumor necrosis factor-alpha (TNF-α, 10 ng/mL) to establish an inflammatory injury model, and the expression of nuclear transcription factor-κB (NF-κB) pathway components was measured using qRT-PCR and Western blotting. An in vivo mouse model of imiquimod (IMQ)-induced psoriasis-like skin inflammation was used to evaluate the effectiveness of SC in alleviating psoriasis. RESULTS SC significantly blocked the activation of NF-κB signaling in TNF-α-stimulated HaCaT cells. In addition, systemic and local administration of SC improved psoriatic dermatitis in the IMQ-induced mouse model. SC reduced skin scale and significantly inhibited the secretion of inflammatory factors in skin lesions. CONCLUSION The protective effect of SC against psoriatic-associated inflammation reveals its potential therapeutic value for treating psoriasis.
Collapse
Affiliation(s)
- Zhi-Bin Zhu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, 610044, China
| | - Meng-Jie Liu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, 610044, China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhou Shu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Cuesta-Gomez N, Medina-Ruiz L, Graham GJ, Campbell JDM. IL-6 and TGF-β-Secreting Adoptively-Transferred Murine Mesenchymal Stromal Cells Accelerate Healing of Psoriasis-like Skin Inflammation and Upregulate IL-17A and TGF-β. Int J Mol Sci 2023; 24:10132. [PMID: 37373278 PMCID: PMC10298958 DOI: 10.3390/ijms241210132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stromal cells (MSC) show promise as cellular therapeutics. Psoriasis is a chronic inflammatory disease affecting the skin and the joints. Injury, trauma, infection and medications can trigger psoriasis by disrupting epidermal keratinocyte proliferation and differentiation, which activates the innate immune system. Pro-inflammatory cytokine secretion drives a T helper 17 response and an imbalance of regulatory T cells. We hypothesized that MSC adoptive cellular therapy could immunomodulate and suppress the effector T cell hyperactivation that underlies the disease. We used the imiquimod-induced psoriasis-like skin inflammation model to study the therapeutic potential of bone marrow and adipose tissue-derived MSC in vivo. We compared the secretome and the in vivo therapeutic potential of MSC with and without cytokine pre-challenge ("licensing"). The infusion of both unlicensed and licensed MSC accelerated the healing of psoriatic lesions, and reduced epidermal thickness and CD3+ T cell infiltration while promoting the upregulation of IL-17A and TGF-β. Concomitantly, the expression of keratinocyte differentiation markers in the skin was decreased. However, unlicensed MSC promoted the resolution of skin inflammation more efficiently. We show that MSC adoptive therapy upregulates the transcription and secretion of pro-regenerative and immunomodulatory molecules in the psoriatic lesion. Accelerated healing is associated with the secretion of TGF-β and IL-6 in the skin and MSC drives the production of IL-17A and restrains T-cell-mediated pathology.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - Laura Medina-Ruiz
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - John D. M. Campbell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Currie EH14 4AP, UK
| |
Collapse
|
8
|
Nikam RV, Gowtham M, More PS, Shinde AS. Current and emerging prospects in the psoriatic treatment. Int Immunopharmacol 2023; 120:110331. [PMID: 37210912 DOI: 10.1016/j.intimp.2023.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Psoriasis is an autoimmune chronic disorder that causes inflammation and a scaly epidermis. The exact pathogenesis of the disease is not known yet. According to the studies, psoriasis is considered an immune-mediated disease. Until now it is believed that genetic and environmental factors are responsible for the disease. There are many comorbidities associated with psoriasis which increases difficulties as patients in some cases get addicted to drugs, alcohol, and smoking which reduces their quality of life. The patient may face social ignorance or suicidal thoughts which may arise in the patient's mind. Due to the undefined trigger of the disease, the treatment is not fully established but by considering the severe impact of the disease researchers are focusing on novel approaches for successful treatment. which has succeeded to a large extent. Here we review pathogenesis, problems faced by psoriatic patients, the need for the development of new treatments over conventional therapies, and the history of psoriatic treatments. We thoroughly focus on emerging treatments like biologics, biosimilars, and small molecules which are now showing more efficacy and safety than conventional treatments. Also, this review article discusses novel approaches which are now in research such as drug repurposing, treatment by stimulation of the vagus nerve, regulation of microbiota, and autophagy for improving disease conditions.
Collapse
Affiliation(s)
- Rutuja Vilas Nikam
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - M Gowtham
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Pratiksha Sanjay More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Anuja Sanjay Shinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| |
Collapse
|
9
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
10
|
Mesenchymal Stem Cells and Psoriasis: Systematic Review. Int J Mol Sci 2022; 23:ijms232315080. [PMID: 36499401 PMCID: PMC9740222 DOI: 10.3390/ijms232315080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.
Collapse
|
11
|
Niu X, Han Q, Li X, Li J, Liu Y, Li Y, Wu Y, Zhang K. EDIL3 influenced the αvβ3-FAK/MEK/ERK axis of endothelial cells in psoriasis. J Cell Mol Med 2022; 26:5202-5212. [PMID: 36065978 PMCID: PMC9575107 DOI: 10.1111/jcmm.17544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
One of the earliest events in the development of psoriatic lesion is a vascular network expansion. The abnormal vascular network is associated with increased endothelial cells (ECs) survival, proliferation, adhesion, migration, angiogenesis and permeability in psoriatic lesion. Our previous study demonstrated that epidermal growth factor‐like repeats and discoidin I‐like domains 3 (EDIL3) derived from psoriatic dermal mesenchymal stem cells (DMSCs) promoted cell–cell adhesion, migration and angiogenesis of ECs, but the molecular mechanism of upstream or downstream has not been explored. So, this study aimed to explore the association between EDIL3 derived from DMSCs (DMSCs‐derived EDIL3) and psoriasis‐associated angiogenesis. We injected recombinant EDIL3 protein to mouse model of psoriasis to confirm the roles of EDIL3 in psoriasis. Besides, we employed both short‐interference RNA (si‐RNA) and lentiviral vectors to explore the molecular mechanism of EDIL3 promoting angiogenesis in psoriasis. In vivo, this research found that after injected recombination EDIL3 protein, the epidermis thickness and microvessel density were both elevated. EDIL3 accelerated the process of psoriasis in the IMQ‐induced psoriasis‐like mouse model. Additionally, we confirmed that in vitro DMSCs‐derived EDIL3 is involved in the tube formation of ECs via αvβ3‐FAK/MEK/ERK signal pathway. This suggested that DMSCs‐derived EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway in ECs play an important role in the pathogenesis of psoriasis. And the modification of DMSCs, EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway will provide a valuable therapeutic target to control the angiogenesis in psoriasis.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qixin Han
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- No. 1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, Key Laboratory of Immunodermatology, Ministry of Education and NHC, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
12
|
Campanati A, Orciani M, Marani A, Di Vincenzo M, Magi S, Gregoriou S, Diotallevi F, Martina E, Radi G, Offidani A. Mesenchymal Stem Cells Profile in Adult Atopic Dermatitis and Effect of IL4-IL13 Inflammatory Pathway Inhibition In Vivo: Prospective Case-Control Study. J Clin Med 2022; 11:jcm11164759. [PMID: 36013001 PMCID: PMC9409772 DOI: 10.3390/jcm11164759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory disease that typically begins in childhood and may persist into adulthood, becoming a lifelong condition. The major inflammatory mediators of AD are known to be interleukin IL4 and IL13, so Dupilumab, which is able to inhibit both interleukins by blocking the shared IL4Rα subunit, has become an attractive option for treating AD. Mesenchymal stem cells (MSCs) are involved in the onset and development of AD by secreting specific interleukins. The aim of this study was to isolate MSCs from healthy controls (C-MSCs) and patients with AD before (AD-MSCs T0) and after 16 weeks of treatment with Dupilumab (AD-MSCs T16); to evaluate the expression mainly of IL4 and IL13 and of other inflammatory cytokines in C-MSCs, AD-MSCs at T0 and at T16; and to evaluate the efficacy of Dupilumab on MSCs immunobiology. C- and AD-MSCs (T0, T16) were isolated from skin specimens and characterized; the expression/secretion of IL4 and IL13 was evaluated using immuno-cytochemistry (ICC), indirect immune-fluorescence (IIF) and an ELISA test; secretion of IL2, IL4, IL5, IL6, IL10, IL12, IL13, IL17A, Interferon gamma (IFNγ), Tumor necrosis factor alpha (TNFα), Granulocyte Colony-Stimulating Factor (G-CSF), and Transforming Growth Factor beta1 (TGFβ1) were measured with ELISA. IL13 and IL6 were over-expressed, while IL4 was down-regulated in AD-MSCs at T0 compared to C-MSCs. IL6 and IL13 expression was restored after 16 weeks of Dupilumab treatment, while no significant effects on IL4 expression were noted. Finally, IL2, IL5, IL10, IL12, IL17A, INFγ, TNFα, G-CSF, and TGFβ1 were similarly secreted by C- and AD-MSCs. Although Dupilumab blocks the IL4Rα subunit shared by IL4 and IL13, it is evident that its real target is IL13, and its ability to target IL13 in MSCs reinforces the evidence, already known in differentiated cells, of the central role IL13 rather than IL4 in the development of AD. The inflammatory cascade in AD begins at the mesenchymal level, so an upstream therapeutic intervention, able to modify the immunobiology of atopic MSCs, could potentially change the natural history of the disease.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Monia Orciani
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Andrea Marani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-5963433
| | - Mariangela Di Vincenzo
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Simona Magi
- Pharmacology, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Stamatios Gregoriou
- Faculty of Medicine, 1st Department of Dermatology-Venereology at Andreas Sygros Hospital, National and Kapodistrian University in Athens, 16121 Athens, Greece
| | - Federico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Emanuela Martina
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Giulia Radi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy
| |
Collapse
|
13
|
Gingiva-Derived Mesenchymal Stem Cells Attenuate Imiquimod- (IMQ-) Induced Murine Psoriasis-Like Skin Inflammation. Stem Cells Int 2022; 2022:6544514. [PMID: 35813890 PMCID: PMC9262573 DOI: 10.1155/2022/6544514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/28/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Human gingiva-derived mesenchymal stem cells (GMSCs) are isolated from the gingival propria with promising regenerative, immunomodulatory, and anti-inflammatory properties. Recently, several studies, including ours, have found that GMSCs have the therapeutic potentials of nerve regeneration and skin disorders in various types such as the cell itself, cell-free conditioned medium, or extracellular vesicles (EVs). However, the mechanobiological behavior of GMSCs is closely related to the culture conditions. Therefore, the purpose of this study was to evaluate the function of human GMSCs on imiquimod- (IMQ-) induced murine psoriasis-like skin inflammation in two-dimensional (2D) and three-dimensional (3D) culture conditions. Here, we isolated and characterized GMSCs in 2D and 3D culture conditions and found that GMSCs in 2D and 3D infusion can significantly ameliorate the IMQ-induced murine psoriasis-like skin inflammation, reduce the levels of Th1- and Th17-related cytokines IFN-γ, TNF-α, IL-6, IL-17A, IL-17F, IL-21, and IL-22, and upregulate the percentage of spleen CD25+CD3+ T cells while downregulate the percentage of spleen IL-17+CD3+ T cells. In summary, our novel findings reveal that GMSCs in 2D and 3D infusion may possess therapeutic effects in the treatment of psoriasis.
Collapse
|
14
|
Naik PP. Stem cell therapy as a potential treatment option for psoriasis: a review. An Bras Dermatol 2022; 97:471-477. [PMID: 35637050 PMCID: PMC9263669 DOI: 10.1016/j.abd.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Psoriasis is a chronic inflammatory dermatological disorder characterized by white scales and clearly demarcated erythematous plaques. The prevalence of psoriasis varies from country to country and can occur at any age, implying that ethnicity, environmental factors, and genetic background all play a role in its onset. According to the World Psoriasis Day Consortium, 125 million people globally and 2%–3% of the overall community have psoriasis. The introduction of biological treatments has revolutionized the treatment of moderate to severe psoriasis. These novel drugs, particularly those targeting interleukin (IL)-17 and IL-23p19, can help most patients with psoriasis achieve clear or virtually clear skin with satisfactory durability. Nevertheless, none of these modern treatments are not entirely remedial in their current form, and alarmingly, a limited but growing proportion of patients with severe psoriasis are not responding satisfactorily to currently available treatments. Stem cell therapy, including regulatory T-cells, hematopoietic stem cell transplantation, and mesenchymal stromal cells, has been used in patients with recalcitrant psoriasis. This review discusses the stem cell treatments available for psoriasis.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospitals and Clinics, Opposite Burj Al Arab, Dubai, United Arab Emirates.
| |
Collapse
|
15
|
Anna C, Andrea M, Melania G, Monia O, Francesco F, Rachele N, Marco A, Primo TE, Annamaria O. Efficacy of calcipotriol plus betamethasone dipropionate foam on psoriatic skin lesions beyond human eyes: An observational study. Health Sci Rep 2022; 5:e597. [PMID: 35509415 PMCID: PMC9059184 DOI: 10.1002/hsr2.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aims Calcipotriol plus betamethasone dipropionate foam has been developed as a new topical therapeutic option for psoriasis, whose effect has been documented mainly on clinical basis. Methods We decided to evaluate its efficacy on 11 patients, not only at the clinical level (by using Psoriasis Area Severity Index [PASI], Dermatology Life Quality Index [DLQI], and Psoriasis Global Assessment [PGA] clinimetric indexes) but especially from a subclinical viewpoint (by using videocapillaroscopy and thermography). Results After 4 weeks of treatment with calcipotriol plus betamethasone dipropionate foam, there was a marked reduction in all three clinimetric indixes PASI, PGA, and DLQI (DLQI mean value decreased from 13.45 ± 3.59 to 6.82 ± 3.31 (p = 0.001), PASI from 7.909 ± 2.857 to 4.582 ± 2.422 (p = 0.001), PGA from 1.8 ± 0.6 to 0.7 ± 0.4 (p = 0.002). From thermographic survey, a significant reduction of mean value of ΔT (temperature difference [°C] between center of the lesions and their periphery [healthy skin]), from 0.28 ± 0.99 to −0.42 ± 0.39 (p = 0.058), was observed. An exceptional reduction of capillaries of psoriatic plaques was detected through videocapillaroscopy (capillary density decreased from 27.91 ± 6.70 capillaries/mm2 to 4.54 ± 2.77 capillaries/mm2 (p = 0.001), with an 83.73% reduction). Conclusion Our results demonstrate both clinical and subclinical efficacy of calcipotriol plus betamethasone dipropionate foam on psoriatic skin lesions. The subclinical improvement detected, not only demonstrates that the therapeutic effect of foam is truly due to a decrease in inflammation, but, being earlier and more effectively detectable than clinical benefit, suggests future applications of thermography and videocapillaroscopy in evaluating the in vivo effect of therapies for psoriasis, and, in general, the course of the disease “beyond human eyes.”
Collapse
Affiliation(s)
- Campanati Anna
- Department of Clinical and Molecular Sciences ‐ Dermatological Clinic Polytechnic Marche University Ancona Italy
| | - Marani Andrea
- Department of Clinical and Molecular Sciences ‐ Dermatological Clinic Polytechnic Marche University Ancona Italy
| | - Giannoni Melania
- Department of Clinical and Molecular Sciences ‐ Dermatological Clinic Polytechnic Marche University Ancona Italy
| | - Orciani Monia
- Department of Clinical and Molecular Sciences ‐ Histology Section Polytechnic Marche University Ancona Italy
| | - Fabiani Francesco
- Department of Industrial Engineering and Mathematical Sciences Polytechnic Marche University Ancona Italy
| | - Napolitano Rachele
- Department of Industrial Engineering and Mathematical Sciences Polytechnic Marche University Ancona Italy
| | - Arnesano Marco
- Dr. Arnesano Marco Università Telematica eCAMPUS Novedrate (CO) Italy
| | - Tomasini Enrico Primo
- Department of Industrial Engineering and Mathematical Sciences Polytechnic Marche University Ancona Italy
| | - Offidani Annamaria
- Department of Clinical and Molecular Sciences ‐ Dermatological Clinic Polytechnic Marche University Ancona Italy
| |
Collapse
|
16
|
Di Vincenzo M, Martino M, Lariccia V, Giancola G, Licini C, Di Benedetto G, Arnaldi G, Orciani M. Mesenchymal Stem Cells Exposed to Persistently High Glucocorticoid Levels Develop Insulin-Resistance and Altered Lipolysis: A Promising In Vitro Model to Study Cushing's Syndrome. Front Endocrinol (Lausanne) 2022; 13:816229. [PMID: 35282448 PMCID: PMC8907420 DOI: 10.3389/fendo.2022.816229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Cushing's syndrome (CS), chronic glucocorticoid excess (GC) and disrupted circadian rhythm lead to insulin resistance (IR), diabetes mellitus, dyslipidaemia and cardiovascular comorbidities. As undifferentiated, self-renewing progenitors of adipocytes, mesenchymal stem cells (MSCs) may display the detrimental effects of excess GC, thus revealing a promising model to study the molecular mechanisms underlying the metabolic complications of CS. METHODS MSCs isolated from the abdominal skin of healthy subjects were treated thrice daily with GCs according to two different regimens: lower, circadian-decreasing (Lower, Decreasing Exposure, LDE) versus persistently higher doses (Higher, Constant Exposure, HCE), aimed at mimicking either the physiological condition or CS, respectively. Subsequently, MSCs were stimulated with insulin and glucose thrice daily, resembling food uptake and both glucose uptake/GLUT-4 translocation and the expression of LIPE, ATGL, IL-6 and TNF-α genes were analyzed at predefined timepoints over three days. RESULTS LDE to GCs did not impair glucose uptake by MSCs, whereas HCE significantly decreased glucose uptake by MSCs only when prolonged. Persistent signs of IR occurred after 30 hours of HCE to GCs. Compared to LDE, MSCs experiencing HCE to GCs showed a downregulation of lipolysis-related genes in the acute period, followed by overexpression once IR was established. CONCLUSIONS Preserving circadian GC rhythmicity is crucial to prevent the occurrence of metabolic alterations. Similar to mature adipocytes, MSCs suffer from IR and impaired lipolysis due to chronic GC excess: MSCs could represent a reliable model to track the mechanisms involved in GC-induced IR throughout cellular differentiation.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Marianna Martino
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Umberto I Hospital, Università Politecnica delle Marche, Ancona, Italy
| | - Vincenzo Lariccia
- Pharmacology, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Giancola
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Umberto I Hospital, Università Politecnica delle Marche, Ancona, Italy
| | - Caterina Licini
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Di Benedetto
- Clinic of Plastic and Reconstructive Surgery, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Arnaldi
- Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Umberto I Hospital, Università Politecnica delle Marche, Ancona, Italy
- *Correspondence: Giorgio Arnaldi,
| | - Monia Orciani
- Histology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
17
|
Cao Y, Liang NN, Chang WJ, Li JQ, Jiao JJ, Hou RX, Li J, Zhang KM. Role of psoriatic keratinocytes in the metabolic reprogramming of dermal mesenchymal stem cells. Int J Dermatol 2021; 61:337-345. [PMID: 34435665 DOI: 10.1111/ijd.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Psoriasis is an immune-mediated inflammatory skin disease, featured by epidermal hyperproliferation. Psoriasis exhibits metabolic abnormalities, which can further aggravate the condition of psoriasis. The present study aimed to investigate the role of psoriatic keratinocytes (KCs) in the metabolic reprogramming of dermal mesenchymal stem cells (DMSCs). METHODS Dermal mesenchymal stem cells were cocultured with primary KCs either from psoriatic lesions or from normal subjects using Transwell plate. Glycolysis and mitochondrial metabolism of DMSCs were detected by Seahorse Metabolic Analyzer. Expression levels of proteins were analyzed by Western blotting. DMSCs proliferation was assessed using 5-ethynyl-2'-deoxyuridine assay and Cell Counting Kit-8. RESULTS In comparison with normal KCs, coculture of psoriatic KCs with DMSCs dramatically increased glycolytic and mitochondrial metabolism, and expression levels of stem cell factor, epidermal growth factor, glucose transporter 1, and c-Myc. Moreover, psoriatic KCs were more potent than normal KCs in the stimulation of DMSC proliferation. CONCLUSIONS In conclusion, psoriatic KCs display a higher potency in metabolic reprogramming and stimulation of DMSC proliferation, possibly contributing to the pathogenesis of psoriasis. However, whether the intervention of metabolic reprogramming of DMSCs can alleviate psoriasis remains to be determined.
Collapse
Affiliation(s)
- Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Nan-Nan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Wen-Juan Chang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun-Qin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Juan-Juan Jiao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Rui-Xia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Kai-Ming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
18
|
Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current Advanced Therapies Based on Human Mesenchymal Stem Cells for Skin Diseases. Front Cell Dev Biol 2021; 9:643125. [PMID: 33768095 PMCID: PMC7985058 DOI: 10.3389/fcell.2021.643125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Skin disease may be related with immunological disorders, external aggressions, or genetic conditions. Injuries or cutaneous diseases such as wounds, burns, psoriasis, and scleroderma among others are common pathologies in dermatology, and in some cases, conventional treatments are ineffective. In recent years, advanced therapies using human mesenchymal stem cells (hMSCs) from different sources has emerged as a promising strategy for the treatment of many pathologies. Due to their properties; regenerative, immunomodulatory and differentiation capacities, they could be applied for the treatment of cutaneous diseases. In this review, a total of thirteen types of hMSCs used as advanced therapy have been analyzed, considering the last 5 years (2015-2020). The most investigated types were those isolated from umbilical cord blood (hUCB-MSCs), adipose tissue (hAT-MSCs) and bone marrow (hBM-MSCs). The most studied diseases were wounds and ulcers, burns and psoriasis. At preclinical level, in vivo studies with mice and rats were the main animal models used, and a wide range of types of hMSCs were used. Clinical studies analyzed revealed that cell therapy by intravenous administration was the advanced therapy preferred except in the case of wounds and burns where tissue engineering was also reported. Although in most of the clinical trials reviewed results have not been posted yet, safety was high and only local slight adverse events (mild nausea or abdominal pain) were reported. In terms of effectiveness, it was difficult to compare the results due to the different doses administered and variables measured, but in general, percentage of wound's size reduction was higher than 80% in wounds, Psoriasis Area and Severity Index and Severity Scoring for Atopic Dermatitis were significantly reduced, for scleroderma, parameters such as Modified Rodnan skin score (MRSC) or European Scleroderma Study Group activity index reported an improvement of the disease and for hypertrophic scars, Vancouver Scar Scale (VSS) score was decreased after applying these therapies. On balance, hMSCs used for the treatment of cutaneous diseases is a promising strategy, however, the different experimental designs and endpoints stablished in each study, makes necessary more research to find the best way to treat each patient and disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sanchez-Diaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
19
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
20
|
The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflamm Res 2020; 70:79-87. [DOI: 10.1007/s00011-020-01412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
|
21
|
How the Pathological Microenvironment Affects the Behavior of Mesenchymal Stem Cells in the Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21218140. [PMID: 33143370 PMCID: PMC7662966 DOI: 10.3390/ijms21218140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by fibroblasts activation, ECM accumulation, and diffused alveolar inflammation. The role of inflammation in IPF is still controversial and its involvement may follow nontraditional mechanisms. It is seen that a pathological microenvironment may affect cells, in particular mesenchymal stem cells (MSCs) that may be able to sustain the inflamed microenvironment and influence the surrounding cells. Here MSCs have been isolated from fibrotic (IPF-MSCs) and control (C-MSCs) lung tissue; first cells were characterized and compared by the expression of molecules related to ECM, inflammation, and other interdependent pathways such as hypoxia and oxidative stress. Subsequently, MSCs were co-cultured between them and with NHLF to test the effects of the cellular crosstalk. Results showed that pathological microenvironment modified the features of MSCs: IPF-MSCs, compared to C-MSCs, express higher level of molecules related to ECM, inflammation, oxidative stress, and hypoxia; notably, when co-cultured with C-MSCs and NHLF, IPF-MSCs are able to induce a pathological phenotype on the surrounding cell types. In conclusion, in IPF the pathological microenvironment affects MSCs that in turn can modulate the behavior of other cell types favoring the progression of IPF.
Collapse
|
22
|
Paganelli A, Tarentini E, Benassi L, Kaleci S, Magnoni C. Mesenchymal stem cells for the treatment of psoriasis: a comprehensive review. Clin Exp Dermatol 2020; 45:824-830. [PMID: 32386432 DOI: 10.1111/ced.14269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently been shown to have not only regenerative capabilities but also immunomodulating properties. For this reason, they are currently under investigation in clinical trials for the treatment of several autoimmune systemic disorders. Psoriasis is a systemic immune-mediated disease for which MSCs could have therapeutic potential. We analysed the existing literature with regard to MSC-based strategies for the treatment of psoriasis, using the MEDLINE, Embase, Scopus and Cochrane Library electronic databases from inception to the date of study. A number of studies confirm the involvement of MSCs in psoriasis pathogenesis and therefore designate MSCs as an important potential therapeutic tool in this setting. Preclinical data are mostly based on imiquimod-induced murine models of psoriasis, and confirm the anti-inflammatory and immunomodulatory action of MSCs in the setting of psoriasis. Six patients affected by psoriasis were described in four clinical studies. Despite significant differences in terms of therapeutic protocols and clinical outcomes, the MSC-based regimens were efficacious in 100% of the cases. Despite more data still being needed, MSCs could be a promising therapy for psoriasis.
Collapse
Affiliation(s)
- A Paganelli
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - E Tarentini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - L Benassi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - S Kaleci
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - C Magnoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Campanati A, Bobyr I, Sorgentoni G, Diotallevi F, Caffarini M, Pellegrino P, Di Primio R, Offidani A, Orciani M. Mesenchymal stem cell profile in actinic keratosis and its modification after topical application of ingenol mebutate. J Eur Acad Dermatol Venereol 2019; 34:e148-e149. [PMID: 31709665 DOI: 10.1111/jdv.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Campanati
- Department of Clinical and Molecular Sciences - Dermatological Clinic, Università Politecnica delle Marche, Ancona, Italy
| | - I Bobyr
- Department of Clinical and Molecular Sciences - Dermatological Clinic, Università Politecnica delle Marche, Ancona, Italy
| | - G Sorgentoni
- Department of Molecular and Clinical Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| | - F Diotallevi
- Department of Clinical and Molecular Sciences - Dermatological Clinic, Università Politecnica delle Marche, Ancona, Italy
| | - M Caffarini
- Department of Molecular and Clinical Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| | - P Pellegrino
- Department of Molecular and Clinical Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| | - R Di Primio
- Department of Molecular and Clinical Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| | - A Offidani
- Department of Clinical and Molecular Sciences - Dermatological Clinic, Università Politecnica delle Marche, Ancona, Italy
| | - M Orciani
- Department of Molecular and Clinical Sciences - Histology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
Campanati A, Paolinelli M, Diotallevi F, Martina E, Molinelli E, Offidani A. Pharmacodynamics OF TNF α inhibitors for the treatment of psoriasis. Expert Opin Drug Metab Toxicol 2019; 15:913-925. [PMID: 31623470 DOI: 10.1080/17425255.2019.1681969] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The treatment of psoriasis with conventional topical therapies and disease-modifying anti-rheumatic drugs (DMARDs) is often linked to unsatisfactory outcomes and the risk of serious adverse events. Over the last decades, research advances in understanding the role of tumor necrosis factor alpha (TNF α) and other cytokines in the pathogenesis of psoriasis have driven the introduction of biologic agents targeting specific immune mediators in everyday clinical practice. TNF α inhibitors are a consolidated treatment option for patients with moderate-to-severe disease with remarkable efficacy and a reassuring safety profile.Areas covered: The PubMed database was searched using combinations of the following keywords: psoriasis, TNF α inhibitors, biologic therapy, pharmacodynamics, adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, adverse effects. The aim of this review is to describe the pharmacodynamic profile of anti-TNF α inhibitors, currently approved by the European Medicines Agency (EMA) for the treatment of psoriasis, focusing on related clinical implications, also in comparison to the new generation biological therapies targeting the interleukin 23/interleukin 17 axis.Expert opinion: Pharmacodynamics of TNF α inhibitors should be fully considered in planning patient's therapy strategies, especially in case of secondary failures, poor adherence to treatment, instable psoriasis, high risk of infection, pregnant or lactating women, metabolic comorbidities, coexistence of other immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Matteo Paolinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Frederico Diotallevi
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Emanuela Martina
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Elisa Molinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
25
|
Caffarini M, Armeni T, Pellegrino P, Cianfruglia L, Martino M, Offidani A, Di Benedetto G, Arnaldi G, Campanati A, Orciani M. Cushing Syndrome: The Role of MSCs in Wound Healing, Immunosuppression, Comorbidities, and Antioxidant Imbalance. Front Cell Dev Biol 2019; 7:227. [PMID: 31649930 PMCID: PMC6794435 DOI: 10.3389/fcell.2019.00227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/25/2019] [Indexed: 11/24/2022] Open
Abstract
Cushing syndrome (CS), caused by glucocorticoid (GCs) excess, is strictly connected to onset of different metabolic diseases and impaired wound healing. The source of excessively high levels of GCs allows the identification of endogenous and exogenous (iatrogenic) CS. Iatrogenic patients usually receive also anti-metabolites serving as the foundation to modern steroid-sparing immunosuppressive therapy. Tissues mainly targeted by CS are bone and fat, both derived from progenitor cells named mesenchymal stem cells (MSCs). In addition, the pathogenic role of MSCs in other diseases sharing common properties with CS, such as an altered inflammatory profile and increased oxidative stress, has been identified. In this light, MSCs isolated from skin of control healthy subjects (C-MSCs), patients affected by endogenous CS (ENDO-MSCs), patients affected by iatrogenic CS (IATRO-MSCs) and patients affected by exogenous CS receiving steroid-sparing drugs (SS-MSCs), respectively, have been isolated and analyzed. ENDO- and IATRO-MSCs showed a reduced differentiative potential toward osteogenic and adipogenic lineages compared to C-MSCs, whereas SS-MSCs re-acquired the ability to differentiate, with a trend similar to control cells. In addition, MSCs from CS groups, compared to control MSCs, displayed a reduction in the secretion of cytokines (immune-suppression), a decreased expression of genes related to wound healing and a dysregulation of the enzymes/genes related to antioxidant capacity. In conclusion, our results suggest that the hallmarks of CS, such as wound healing impairment and immunosuppression, are already detectable in undifferentiated cells, which could be considered a potential therapeutic early target for control of CS.
Collapse
Affiliation(s)
- Miriam Caffarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Armeni
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Pamela Pellegrino
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Section of Biochemistry, Department of Clinical Sciences, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Marianna Martino
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Di Benedetto
- Department of Experimental and Clinical Medicine, Clinic of Plastic and Reconstructive Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Arnaldi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
26
|
Mesenchymal Stem Cells from Cervix and Age: New Insights into CIN Regression Rate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1545784. [PMID: 30622662 PMCID: PMC6304868 DOI: 10.1155/2018/1545784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Cervical intraepithelial neoplasia (CIN) is a precancerous lesion of the uterine cervix that can regress or progress to cervical cancer; interestingly, it has been noted that young women generally seem to have higher rates of spontaneous regression and remission, suggesting a correlation between the patient's age and regression/progression rates of CIN. Even if the underlying mechanisms are still unclear, inflammation seems to play a pivotal role in CIN fate and inflammatory processes are often driven by mesenchymal stem cells (MSCs). This study was aimed at evaluating if age affects the behavior of MSCs from the cervix (C-MSCs) that in turn may modulate inflammation and, finally, regression rate. Fourteen samples of the human cervix were recovered from two groups of patients, "young" (mean age 28 ± 2) and "old" (mean age 45 ± 3), during treatment using the loop electrosurgical excision procedure (LEEP) technique. Progenitor cells were isolated, deeply characterized, and divided into young (yC-MSCs) and old cervixes (oC-MSCs); the senescence, expression/secretion of selected cytokines related to inflammation, and the effects of indirect cocultures with HeLa cells were analyzed. Our results show that isolated cells satisfy the fixed criteria for stemness and display age-related properties; yC-MSCs express a higher level of cytokines related to acute inflammation than oC-MSCs. Finally, in the crosstalk with HeLa cells, MSCs derived from the cervixes of young patients play a stronger antitumoral role than oC-MSCs. In conclusion, the immunobiology of MSCs derived from the cervix is affected by the age of donors and this can correlate with the regression rate of CIN by influencing their paracrine effect. In addition, MSCs from a young cervix drives an antitumoral effect by sustaining an acute inflammatory environment.
Collapse
|