1
|
Lee HJ, Kim DY, Noh HJ, Lee SY, Yoo JA, Won SJ, Jeon YS, Baek JH, Ryu DJ. Elevated IL-6 Expression in Autologous Adipose-Derived Stem Cells Regulates RANKL Mediated Inflammation in Osteoarthritis. Cells 2024; 13:2046. [PMID: 39768138 PMCID: PMC11674629 DOI: 10.3390/cells13242046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Interleukin-6 (IL-6) expression in mesenchymal stem cells (MSCs) has been shown to play a pivotal role in modulating cartilage regeneration and immune responses, particularly in the context of diseases that involve both degenerative processes and inflammation, such as osteoarthritis (OA). However, the precise mechanism through which IL-6 and other immune-regulatory factors influence the therapeutic efficacy of autologous adipose-derived stem cells (ASCs) transplantation in OA treatment remains to be fully elucidated. This study aims to investigate the relationship between IL-6 expression in autologous ASCs isolated from OA patients and their impact on immune modulation, particularly focusing on the regulation of Receptor Activator of Nuclear factor Kappa-Β Ligand (RANKL), a key mediator of immune-driven cartilage degradation in OA. Autologous ASCs were isolated from the stromal vascular fraction (SVF) of adipose tissue obtained from 22 OA patients. The isolated ASCs were cultured and characterized using reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry to the phenotype and immune regulatory factors of MSCs. Based on IL-6 expression levels, ASCs were divided into high and low IL-6 expression groups. These groups were then co-cultured with activated peripheral blood mononuclear cells (PBMCs) to evaluate their immune-modulatory capacity, including the induction of regulatory T cells, inhibition of immune cell proliferation, and regulation of key cytokines, such as interferon-gamma (IFN-γ). Additionally, RANKL expression, a critical factor in osteoclastogenesis and cartilage degradation, was assessed in both ASC groups. High IL-6-expressing ASCs demonstrated a significantly greater capacity to inhibit immune cell proliferation and IFN-γ production compared to their low IL-6-expressing counterparts under co-culture conditions. Moreover, the group of ASCs with high IL-6 expression showed a marked reduction in RANKL expression, suggesting enhanced potential to control osteoclast activity and subsequent cartilage defect in OA. Conclusion: Autologous ASCs with elevated IL-6 expression exhibit enhanced immunomodulatory properties, particularly in regulating over-activated immune response and reducing osteoclastogenesis through RANKL suppression. These findings indicate that selecting ASCs based on IL-6 expression could enhance the therapeutic efficacy of ASC-based treatments for OA by mitigating immune-driven joint inflammation and cartilage degradation, potentially slowing disease progression.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
| | - Dae-Yong Kim
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
- N-BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Republic of Korea
| | - Hyeon jeong Noh
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
- N-BIOTEK, Inc., 402-803, Technopark, 655, Pyeongcheon-ro, Bucheon-si 14502, Republic of Korea
| | - Song Yi Lee
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
| | - Ji Ae Yoo
- Stem Cell R&D Center, N-BIOTEK, Inc., 104-706, Technopark Ssangyong 3Cha, 397, Seokcheon-ro, Bucheon-si 14449, Republic of Korea; (H.-J.L.); (D.-Y.K.); (H.j.N.)
| | - Samuel Jaeyoon Won
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Yoon Sang Jeon
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
- School of Medicine, Inha University, Incheon 22013, Republic of Korea
| | - Ji Hoon Baek
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Dong Jin Ryu
- Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
- School of Medicine, Inha University, Incheon 22013, Republic of Korea
| |
Collapse
|
2
|
Li M, Xiao J, Chen B, Pan Z, Wang F, Chen W, He Q, Li J, Li S, Wang T, Zhang G, Wang H, Chen J. Loganin inhibits the ROS-NLRP3-IL-1β axis by activating the NRF2/HO-1 pathway against osteoarthritis. Chin J Nat Med 2024; 22:977-990. [PMID: 39510640 DOI: 10.1016/s1875-5364(24)60555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 11/15/2024]
Abstract
Loganin (LOG), a bioactive compound derived from Cornus officinalis Siebold & Zucc, has been understudied in the context of osteoarthritis (OA) treatment. In this study, we induced an inflammatory response in chondrocytes using lipopolysaccharide (LPS) and subsequently treated these cells with LOG. We employed fluorescence analysis to quantify reactive oxygen species (ROS) levels and measured the expression of NLRP3 and nuclear factor erythropoietin-2-related factor 2 (NRF2) using real-time quantitative polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence (IF) techniques. Additionally, we developed an OA mouse model by performing medial meniscus destabilization (DMM) surgery and monitored disease progression through micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, safranin O and fast green (S&F) staining, and immunohistochemical (IHC) analysis. Our results indicate that LOG significantly reduced LPS-induced ROS levels in chondrocytes, inhibited the activation of the NLRP3 inflammasome, and enhanced NRF2/heme oxygenase 1 (HO-1) signaling. In vivo, LOG treatment mitigated cartilage degradation and osteophyte formation triggered by DMM surgery, decreased NLRP3 expression, and increased NRF2 expression. These findings suggest that LOG has a protective effect against OA, potentially delaying disease progression by inhibiting the ROS-NLRP3-IL-1β axis and activating the NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- Miao Li
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiacong Xiao
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Baihao Chen
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhaofeng Pan
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fanchen Wang
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Weijian Chen
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi He
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jianliang Li
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shaocong Li
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting Wang
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gangyu Zhang
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianfa Chen
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
3
|
Klyucherev TO, Peshkova MA, Revokatova DP, Serejnikova NB, Fayzullina NM, Fayzullin AL, Ershov BP, Khristidis YI, Vlasova II, Kosheleva NV, Svistunov AA, Timashev PS. The Therapeutic Potential of Exosomes vs. Matrix-Bound Nanovesicles from Human Umbilical Cord Mesenchymal Stromal Cells in Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11564. [PMID: 39519121 PMCID: PMC11545893 DOI: 10.3390/ijms252111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating degenerative processes in the joint. This study evaluated the therapeutic effects for the treatment of OA of two types of EV-exosomes and matrix-bound nanovesicles (MBV)-both derived from the human umbilical cord MSC (UC-MSC) via differential ultracentrifugation. Different phenotypes of human monocyte-derived macrophages (MDM) were used to study the anti-inflammatory properties of EV in vitro, and the medial meniscectomy-induced rat model of knee osteoarthritis (MMx) was used in vivo. The study found that both EV reduced pro-inflammatory cytokines IL-6 and TNF-α in MDM. However, exosomes showed superior results, preserving the extracellular matrix (ECM) of hyaline cartilage, and reducing synovitis more effectively than MBVs. Additionally, exosomes downregulated inflammatory markers (TNF-α, iNOS) and increased Arg-1 expression in macrophages and synovial fibroblasts, indicating a stronger anti-inflammatory effect. These results suggest UC-MSC exosomes as a promising therapeutic option for OA, with the potential for modulating inflammation and promoting joint tissue regeneration.
Collapse
Affiliation(s)
- Timofey O. Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria P. Revokatova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nafisa M. Fayzullina
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yana I. Khristidis
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina I. Vlasova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter S. Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Gaddala P, Choudhary S, Sethi S, Sainaga Jyothi VG, Katta C, Bahuguna D, Singh PK, Pandey M, Madan J. Etodolac utility in osteoarthritis: drug delivery challenges, topical nanotherapeutic strategies and potential synergies. Ther Deliv 2024; 15:977-995. [PMID: 39345034 PMCID: PMC11583675 DOI: 10.1080/20415990.2024.2405456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoarthritis (OSA) is a prevalent joint disorder characterized by losing articular cartilage, primarily affecting the hip, knee and spine joints. The impact of OSA offers a major challenge to health systems globally. Therapeutic approaches encompass surgical interventions, non-pharmacological therapies (exercise, rehabilitation, behavioral interventions) and pharmacological treatments. Inflammatory processes within OSA joints are regulated by pro-inflammatory and anti-inflammatory cytokines. Etodolac, a COX-2-selective inhibitor, is the gold standard for OSA management and uniquely does not inhibit gastric prostaglandins. This comprehensive review offers insights into OSA's pathophysiology, genetic factors and biological determinants influencing disease progression. Emphasis is placed on the pivotal role of etodolac in OSA management, supported by both preclinical and clinical evidences in topical drug delivery. Notably, in-silico docking studies suggested potential synergies between etodolac and baicalein, considering ADAMTS-4, COX-2, MMP-3 and MMP-13 as essential therapeutic targets. Integration of artificial neural network (ANN) techniques with nanotechnology approaches emerges as a promising strategy for optimizing and personalizing topical etodolac delivery. Furthermore, the synergistic potential of etodolac and baicalein warrants in-depth exploration. Hence, by embracing cutting-edge technologies like ANN and nanomedicine, the optimization of topical etodolac delivery could guide a new era of OSA treatment.
Collapse
Affiliation(s)
- Pavani Gaddala
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Shalki Choudhary
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sheshank Sethi
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, India
| | - Vaskuri Gs Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Chantibabu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Deepankar Bahuguna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana, 123031, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Zhang Z, Shao Z, Xu Z, Wang J. Similarities and differences between osteoarthritis and rheumatoid arthritis: insights from Mendelian randomization and transcriptome analysis. J Transl Med 2024; 22:851. [PMID: 39304950 DOI: 10.1186/s12967-024-05643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) and rheumatoid arthritis (RA) are often difficult to distinguish in the early stage of the disease. The purpose of this study was to explore the similarities and differences between the two diseases through Mendelian randomization (MR) and transcriptome analysis. METHODS We first performed a correlation analysis of phenotypic data from genome-wide association studies (GWAS) of OA and RA. Then, we performed functional and pathway enrichment of differentially expressed genes in OA, RA, and normal patients. The infiltration of immune cells in arthritis was analyzed according to gene expression. Finally, MR analysis was performed with inflammatory cytokines and immune cells as exposures and arthritis as the outcome. The same and different key cytokines and immune cells were obtained by the two analysis methods. RESULTS GWAS indicated that there was a genetic correlation between OA and RA. The common function of OA and RA is enriched in their response to cytokines, while the difference is enriched in lymphocyte activation. T cells are the main immune cells that differentiate between OA and RA. MR analysis further revealed that OA is associated with more protective cytokines, and most of the cytokines in RA are pathogenic. In addition, CCR7 on naive CD4 + T cell was positively correlated with OA. SSC-A on CD4 + T cell was negatively correlated with RA, while HLA DR on CD33- HLA DR + was positively correlated with RA. CONCLUSION Our study demonstrated the similarities and differences of immune inflammation between OA and RA, allowing us to better understand these two diseases.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Department of Orthopedic, Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, The First People's Hospital of Yancheng, Yancheng, 224000, China
| | - Zhiqiang Shao
- Department of Orthopedic, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215008, China
| | - Zonghan Xu
- Department of Orthopedic, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215008, China.
| | - Jiaqian Wang
- Department of Orthopedic, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Wang Q, Qi B, Shi S, Jiang W, Li D, Jiang X, Yi C. Melatonin Alleviates Osteoarthritis by Regulating NADPH Oxidase 4-Induced Ferroptosis and Mitigating Mitochondrial Dysfunction. J Pineal Res 2024; 76:e12992. [PMID: 39228264 DOI: 10.1111/jpi.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 09/05/2024]
Abstract
Recent evidence indicates that the damaged regions in osteoarthritis are accompanied by the accumulation of iron ions. Ferroptosis, as an iron-dependent form of cell death, holds significant implications in osteoarthritis. Melatonin, a natural product with strong scavenging abilities against reactive oxygen species and lipid peroxidation, plays a crucial role in the treatment of osteoarthritis. This study aims to demonstrate the existence of ferroptosis in osteoarthritis and explore the specific mechanism of melatonin in suppressing ferroptosis and alleviating osteoarthritis. Our findings reveal that melatonin reverses inflammation-induced oxidative stress and lipid peroxidation while promoting the expression of extracellular matrix components in chondrocytes, safeguarding the cells. Our research has revealed that NADPH oxidase 4 (NOX4) serves as a crucial molecule in the ferroptosis process of osteoarthritis. Specifically, NOX4 is located on mitochondria in chondrocytes, which can induce disorders in mitochondrial energy metabolism and dysfunction, thereby intensifying oxidative stress and lipid peroxidation. LC-MS analysis further uncovered that GRP78 is a downstream binding protein of NOX4. NOX4 induces ferroptosis by weakening GRP78's protective effect on GPX4 and reducing its expression. Melatonin can inhibit the upregulation of NOX4 on mitochondria and mitigate mitochondrial dysfunction, effectively suppressing ferroptosis and alleviating osteoarthritis. This suggests that melatonin therapy represents a promising new approach for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, Pudong, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, Pudong, China
| | - Shi Shi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, Pudong, China
| | - Weihao Jiang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, Pudong, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, Pudong, China
| | - Xinhua Jiang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, Pudong, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, Pudong, China
| |
Collapse
|
7
|
Wilson JM, Yoon J, Mun CJ, Meints SM, Campbell CM, Haythornthwaite JA, Smith MT, Edwards RR, Schreiber KL. The association between changes in clinical pain severity and IL-6 reactivity among patients undergoing total knee Arthroplasty: The moderating role of change in insomnia. Brain Behav Immun 2024; 120:199-207. [PMID: 38838835 PMCID: PMC11269019 DOI: 10.1016/j.bbi.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024] Open
Abstract
Knee osteoarthritis (KOA) is linked to an enhanced release of interleukin-6 (IL-6). Increased levels of IL-6 are associated with greater pain and insomnia. While total knee arthroplasty (TKA) typically results in the reduction of pain, for a subgroup of patients, pain does not improve. Understanding patients' propensity to upregulate IL-6 may provide insight into variation in the clinical success of TKA for improving pain, and insomnia may play an important modulatory role. We investigated the association between pre- and post-surgical changes in clinical pain and IL-6 reactivity, and whether change in insomnia moderated this association. Patients (n = 39) with KOA came in-person before and 3-months after TKA. At both visits, patients completed validated measures of clinical pain and insomnia, as well as underwent quantitative sensory testing (QST). Blood samples were collected to analyze IL-expression both before and after QST procedures to assess changes in IL-6 in response to QST (IL-6 reactivity). Patients were categorized into two groups based on change in clinical pain from pre- to post-surgery: 1) pain decreased > 2 points (pain improved) and 2) pain did not decrease > 2 points (pain did not improve). Based on this definition, 49 % of patients had improved pain at 3-months. Among patients with improved pain, IL-6 reactivity significantly decreased from pre- to post-surgery, whereas there was no significant change in IL-6 reactivity among those whose pain did not improve. There was also a significant interaction between pain status and change in insomnia, such that among patients whose insomnia decreased over time, improved pain was significantly associated with a reduction in IL-6 reactivity. However, among patients whose insomnia increased over time, pain status and change in IL-6 reactivity were not significantly associated. Our findings suggest that the resolution of clinical pain after TKA may be associated with discernible alterations in pro-inflammatory responses that can be measured under controlled laboratory conditions, and this association may be moderated by perioperative changes in insomnia. Randomized controlled trials which carefully characterize the phenotypic features of patients are needed to understand how and for whom behavioral interventions may be beneficial in modulating inflammation, pain, and insomnia.
Collapse
Affiliation(s)
- Jenna M Wilson
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - JiHee Yoon
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chung Jung Mun
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Samantha M Meints
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia M Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer A Haythornthwaite
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristin L Schreiber
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Fan Y, Bian X, Meng X, Li L, Fu L, Zhang Y, Wang L, Zhang Y, Gao D, Guo X, Lammi MJ, Peng G, Sun S. Unveiling inflammatory and prehypertrophic cell populations as key contributors to knee cartilage degeneration in osteoarthritis using multi-omics data integration. Ann Rheum Dis 2024; 83:926-944. [PMID: 38325908 PMCID: PMC11187367 DOI: 10.1136/ard-2023-224420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Single-cell and spatial transcriptomics analysis of human knee articular cartilage tissue to present a comprehensive transcriptome landscape and osteoarthritis (OA)-critical cell populations. METHODS Single-cell RNA sequencing and spatially resolved transcriptomic technology have been applied to characterise the cellular heterogeneity of human knee articular cartilage which were collected from 8 OA donors, and 3 non-OA control donors, and a total of 19 samples. The novel chondrocyte population and marker genes of interest were validated by immunohistochemistry staining, quantitative real-time PCR, etc. The OA-critical cell populations were validated through integrative analyses of publicly available bulk RNA sequencing data and large-scale genome-wide association studies. RESULTS We identified 33 cell population-specific marker genes that define 11 chondrocyte populations, including 9 known populations and 2 new populations, that is, pre-inflammatory chondrocyte population (preInfC) and inflammatory chondrocyte population (InfC). The novel findings that make this an important addition to the literature include: (1) the novel InfC activates the mediator MIF-CD74; (2) the prehypertrophic chondrocyte (preHTC) and hypertrophic chondrocyte (HTC) are potentially OA-critical cell populations; (3) most OA-associated differentially expressed genes reside in the articular surface and superficial zone; (4) the prefibrocartilage chondrocyte (preFC) population is a major contributor to the stratification of patients with OA, resulting in both an inflammatory-related subtype and a non-inflammatory-related subtype. CONCLUSIONS Our results highlight InfC, preHTC, preFC and HTC as potential cell populations to target for therapy. Also, we conclude that profiling of those cell populations in patients might be used to stratify patient populations for defining cohorts for clinical trials and precision medicine.
Collapse
Affiliation(s)
- Yue Fan
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Shaanxi Province; Key Laboratory of Trace Elements and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuzhao Bian
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaogao Meng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lei Li
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Laiyi Fu
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanan Zhang
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Long Wang
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Zhang
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Department of Orthopaedics, Honghui Hospital, Xi'an, Shaanxi, China
| | - Dalong Gao
- Department of Orthopaedics, The Central Hospital of Xianyang, Xianyang, China
| | - Xiong Guo
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Shaanxi Province; Key Laboratory of Trace Elements and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mikko Juhani Lammi
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Guangdun Peng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiquan Sun
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Shaanxi Province; Key Laboratory of Trace Elements and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Fan Y, Guastaldi FPS, Runyan G, Wang Y, Farinelli WA, Randolph MA, Redmond RW. Laser Ablation Facilitates Implantation of Dynamic Self-Regenerating Cartilage for Articular Cartilage Regeneration. J Funct Biomater 2024; 15:148. [PMID: 38921522 PMCID: PMC11204995 DOI: 10.3390/jfb15060148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES This study investigated a novel strategy for improving regenerative cartilage outcomes. It combines fractional laser treatment with the implantation of neocartilage generated from autologous dynamic Self-Regenerating Cartilage (dSRC). METHODS dSRC was generated in vitro from harvested autologous swine chondrocytes. Culture was performed for 2, 4, 8, 10, and 12 weeks to study matrix maturation. Matrix formation and implant integration were also studied in vitro in swine cartilage discs using dSRC or cultured chondrocytes injected into CO2 laser-ablated or mechanically punched holes. Cartilage discs were cultured for up to 8 weeks, harvested, and evaluated histologically and immunohistochemically. RESULTS The dSRC matrix was injectable by week 2, and matrices grew larger and more solid with time, generating a contiguous neocartilage matrix by week 8. Hypercellular density in dSRC at week 2 decreased over time and approached that of native cartilage by week 8. All dSRC groups exhibited high glycosaminoglycan (GAG) production, and immunohistochemical staining confirmed that the matrix was typical of normal hyaline cartilage, being rich in collagen type II. After 8 weeks in cartilage lesions in vitro, dSRC constructs generated a contiguous cartilage matrix, while isolated cultured chondrocytes exhibited only a sparse pericellular matrix. dSRC-treated lesions exhibited high GAG production compared to those treated with isolated chondrocytes. CONCLUSIONS Isolated dSRC exhibits hyaline cartilage formation, matures over time, and generates contiguous articular cartilage matrix in fractional laser-created microenvironments in vitro, being well integrated with native cartilage.
Collapse
Affiliation(s)
- Yingfang Fan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; (Y.F.); (G.R.); (Y.W.); (W.A.F.)
- Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Fernando P. S. Guastaldi
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02114, USA;
| | - Gem Runyan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; (Y.F.); (G.R.); (Y.W.); (W.A.F.)
- Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; (Y.F.); (G.R.); (Y.W.); (W.A.F.)
| | - William A. Farinelli
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; (Y.F.); (G.R.); (Y.W.); (W.A.F.)
| | - Mark A. Randolph
- Plastic Surgery Research Laboratory, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Robert W. Redmond
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA; (Y.F.); (G.R.); (Y.W.); (W.A.F.)
| |
Collapse
|
10
|
Alcantara KP, Malabanan JWT, Nalinratana N, Thitikornpong W, Rojsitthisak P, Rojsitthisak P. Cannabidiol-Loaded Solid Lipid Nanoparticles Ameliorate the Inhibition of Proinflammatory Cytokines and Free Radicals in an In Vitro Inflammation-Induced Cell Model. Int J Mol Sci 2024; 25:4744. [PMID: 38731964 PMCID: PMC11083812 DOI: 10.3390/ijms25094744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - John Wilfred T. Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worathat Thitikornpong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (K.P.A.); (J.W.T.M.); (N.N.); (W.T.); (P.R.)
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Duvančić T, Vukasović Barišić A, Čizmić A, Plečko M, Bohaček I, Delimar D. Specificities in the Structure of the Cartilage of Patients with Advanced Stages of Developmental Dysplasia of the Hip. Diagnostics (Basel) 2024; 14:779. [PMID: 38611693 PMCID: PMC11011320 DOI: 10.3390/diagnostics14070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Developmental dysplasia of the hip (DDH) presents varying degrees of femoral head dislocation, with severe cases leading to the formation of a new articular surface on the external side of the iliac bone-the neoacetabulum. Despite conventional understanding suggesting otherwise, a tissue resembling hyaline cartilage is found in the neoacetabulum and acetabulum of Crowe III and IV patients, indicating a potential for hyaline cartilage development without mechanical pressure. To test this theory, acetabular and femoral head cartilage obtained from patients with DDH was stained with hematoxylin-eosin and toluidine blue. The immunohistochemical analysis for collagen types II and VI and aggrecan was performed, as well as delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) analysis on a 7.0 T micro-MRI machine. The results obtained from DDH patients were compared to those of the control groups. Hyaline cartilage was found in the neoacetabulum and the acetabulum of patients with DDH. The nature of the tissue was confirmed with both the histological and the MRI analyses. The results of this study proved the presence of hyaline cartilage in patients with DDH at anatomical regions genetically predisposed to be bone tissue and at regions that are not subjected to mechanical stress. This is the first time that the neoacetabular cartilage of patients with advanced stages of DDH has been characterized in detail.
Collapse
Affiliation(s)
- Tea Duvančić
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, 10000 Zagreb, Croatia;
| | | | - Ana Čizmić
- Sestre Milosrdnice University Hospital Centre, Clinic for Traumatology, 10000 Zagreb, Croatia;
| | - Mihovil Plečko
- Department of Orthopaedic Surgery, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.P.); (I.B.)
| | - Ivan Bohaček
- Department of Orthopaedic Surgery, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.P.); (I.B.)
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Delimar
- Department of Orthopaedic Surgery, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.P.); (I.B.)
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Chen KT, Yeh CT, Yadav VK, Pikatan NW, Fong IH, Lee WH, Chiu YS. Notopterol mitigates IL-1β-triggered pyroptosis by blocking NLRP3 inflammasome via the JAK2/NF-kB/hsa-miR-4282 route in osteoarthritis. Heliyon 2024; 10:e28094. [PMID: 38532994 PMCID: PMC10963379 DOI: 10.1016/j.heliyon.2024.e28094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.
Collapse
Affiliation(s)
- Ko-Ta Chen
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yen-Shuo Chiu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
13
|
Guillem-Llobat P, Marín M, Rouleau M, Silvestre A, Blin-Wakkach C, Ferrándiz ML, Guillén MI, Ibáñez L. New Insights into the Pro-Inflammatory and Osteoclastogenic Profile of Circulating Monocytes in Osteoarthritis Patients. Int J Mol Sci 2024; 25:1710. [PMID: 38338988 PMCID: PMC10855447 DOI: 10.3390/ijms25031710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative condition of the articular cartilage with chronic low-grade inflammation. Monocytes have a fundamental role in the progression of OA, given their implication in inflammatory responses and their capacity to differentiate into bone-resorbing osteoclasts (OCLs). This observational-experimental study attempted to better understand the molecular pathogenesis of OA through the examination of osteoclast progenitor (OCP) cells from both OA patients and healthy individuals (25 OA patients and healthy samples). The expression of osteoclastogenic and inflammatory genes was analyzed using RT-PCR. The OA monocytes expressed significantly higher levels of CD16, CD115, TLR2, Mincle, Dentin-1, and CCR2 mRNAs. Moreover, a flow cytometry analysis showed a significantly higher surface expression of the CD16 and CD115 receptors in OA vs. healthy monocytes, as well as a difference in the distribution of monocyte subsets. Additionally, the OA monocytes showed a greater osteoclast differentiation capacity and an enhanced response to an inflammatory stimulus. The results of this study demonstrate the existence of significant differences between the OCPs of OA patients and those of healthy subjects. These differences could contribute to a greater understanding of the molecular pathogenesis of OA and to the identification of new biomarkers and potential drug targets for OA.
Collapse
Affiliation(s)
- Paloma Guillem-Llobat
- Department of Biomedical Science, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| | - Marta Marín
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| | - Matthieu Rouleau
- Laboratory of Molecular PhysioMedicine, UMR 7370, National Centre for Scientific Research, Côte d’Azur University, 06107 Nice, France; (M.R.); (C.B.-W.)
| | - Antonio Silvestre
- Service of Orthopedic Surgery and Traumatology, University Clinical Hospital, 46010 Valencia, Spain;
| | - Claudine Blin-Wakkach
- Laboratory of Molecular PhysioMedicine, UMR 7370, National Centre for Scientific Research, Côte d’Azur University, 06107 Nice, France; (M.R.); (C.B.-W.)
| | - María Luisa Ferrándiz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, 46022 Valencia, Spain;
| | - María Isabel Guillén
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, 46022 Valencia, Spain;
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Valencia, Spain;
| |
Collapse
|
14
|
Liu ZF, Zhang Y, Liu J, Wang YY, Chen M, Liu EY, Guo JM, Wang YH, Weng ZW, Liu CX, Yu CH, Wang XY. Effect of Traditional Chinese Non-Pharmacological Therapies on Knee Osteoarthritis: A Narrative Review of Clinical Application and Mechanism. Orthop Res Rev 2024; 16:21-33. [PMID: 38292459 PMCID: PMC10826518 DOI: 10.2147/orr.s442025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Knee osteoarthritis (KOA) stands as a degenerative ailment with a substantial and escalating prevalence. The practice of traditional Chinese non-pharmacological therapy has become a prevalent complementary and adjunctive approach. A mounting body of evidence suggests its efficacy in addressing KOA. Recent investigations have delved into its underlying mechanism, yielding some headway. Consequently, this comprehensive analysis seeks to encapsulate the clinical application and molecular mechanism of traditional Chinese non-pharmacological therapy in KOA treatment. The review reveals that various therapies, such as acupuncture, electroacupuncture, warm needle acupuncture, tuina, and acupotomy, primarily target localized knee components like cartilage, subchondral bone, and synovium. Moreover, their impact extends to the central nervous system and intestinal flora. More perfect experimental design and more comprehensive research remain a promising avenue in the future.
Collapse
Affiliation(s)
- Zhi-Feng Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Yang Zhang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Jing Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Yu-Yan Wang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Mo Chen
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Er-Yang Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Jun-Ming Guo
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Yan-Hua Wang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Zhi-Wen Weng
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Chang-Xin Liu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Chang-He Yu
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| | - Xi-You Wang
- Tuina and Pain Management Department, Beijing University of Chinese Medicine Affilliated Dongzhimen Hospital, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Stefik D, Vranic V, Ivkovic N, Bozic-Nedeljkovic B, Supic G. Genetic variants in the retinoid X receptor gene contribute to osteoarthritis susceptibility. ARCH BIOL SCI 2024; 76:151-160. [DOI: 10.2298/abs240306010s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Osteoarthritis (OA) is a progressive disease of the joints that causes a gradual loss of function, resulting in limited mobility. Chronic inflammation is the main molecular process that triggers and propagates this disease. The retinoid X receptor (RXR), a member of the nuclear receptor family, is involved in modulating inflammatory pathways by influencing key procatabolic inflammatory cytokines, chemokines, and enzymes responsible for instigating and sustaining chronic joint inflammation. We evaluated the association between OA risk and genetic variants in the RXR? isoform. Compared to control individuals, a statistically significant difference in genotype distribution was detected for the rs7864987 polymorphism (P=0.008), while a positive inclination toward association was noted for rs3118523 (P=0.077). According to our findings based on the additive model, it appears that RXR? rs7864987 is linked to a higher risk of OA (adjusted odds ratio (OR)=1.846, P=0.012), whereas rs3118523 is associated with decreased risk of OA (adjusted OR=0.569, P=0.030). These results suggest that RXR? could be a significant inflammation-related gene involved in the complex network underlying the immunopathology of osteoarthritis. RXR? polymorphisms could potentially drive individualized retinoid therapy for OA based on genetic profile.
Collapse
Affiliation(s)
- Debora Stefik
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Vladimir Vranic
- Clinic for Orthopedic Surgery and Traumatology, Military Medical Academy, Belgrade, Serbia
| | - Nemanja Ivkovic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | | | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia + Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| |
Collapse
|
16
|
Li C, Ouyang Z, Huang Y, Lin S, Li S, Xu J, Liu T, Wu J, Guo P, Chen Z, Wu H, Ding Y. NOD2 attenuates osteoarthritis via reprogramming the activation of synovial macrophages. Arthritis Res Ther 2023; 25:249. [PMID: 38124066 PMCID: PMC10731717 DOI: 10.1186/s13075-023-03230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Synovial inflammation, which precedes other pathological changes in osteoarthritis (OA), is primarily initiated by activation and M1 polarization of macrophages. While macrophages play a pivotal role in the inflammatory process of OA, the mechanisms underlying their activation and polarization remain incompletely elucidated. This study aims to investigate the role of NOD2 as a reciprocal modulator of HMGB1/TLR4 signaling in macrophage activation and polarization during OA pathogenesis. DESIGN We examined NOD2 expression in the synovium and determined the impact of NOD2 on macrophage activation and polarization by knockdown and overexpression models in vitro. Paracrine effect of macrophages on fibroblast-like synoviocytes (FLS) and chondrocytes was evaluated under conditions of NOD2 overexpression. Additionally, the in vivo effect of NOD2 was assessed using collagenase VII induced OA model in mice. RESULTS Expression of NOD2 was elevated in osteoarthritic synovium. In vitro experiments demonstrated that NOD2 serves as a negative regulator of HMGB1/TLR4 signaling pathway. Furthermore, NOD2 overexpression hampered the inflammatory paracrine effect of macrophages on FLS and chondrocytes. In vivo experiments revealed that NOD2 overexpression mitigated OA in mice. CONCLUSIONS Supported by convincing evidence on the inhibitory role of NOD2 in modulating the activation and M1 polarization of synovial macrophages, this study provided novel insights into the involvement of innate immunity in OA pathogenesis and highlighted NOD2 as a potential target for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Changchuan Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhuji Ouyang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhsi Huang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Sipeng Lin
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shixun Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Xu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Taihe Liu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jionglin Wu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Peidong Guo
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhong Chen
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haoyu Wu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Ding
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
17
|
Horváth E, Sólyom Á, Székely J, Nagy EE, Popoviciu H. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int J Mol Sci 2023; 24:16468. [PMID: 38003658 PMCID: PMC10671750 DOI: 10.3390/ijms242216468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is a complex disease of whole joints with progressive cartilage matrix degradation and chondrocyte transformation. The inflammatory features of OA are reflected in increased synovial levels of IL-1β, IL-6 and VEGF, higher levels of TLR-4 binding plasma proteins and increased expression of IL-15, IL-18, IL-10 and Cox2, in cartilage. Chondrocytes in OA undergo hypertrophic and senescent transition; in these states, the expression of Sox-9, Acan and Col2a1 is suppressed, whereas the expression of RunX2, HIF-2α and MMP-13 is significantly increased. NF-kB, which triggers many pro-inflammatory cytokines, works with BMP, Wnt and HIF-2α to link hypertrophy and inflammation. Altered carbohydrate metabolism and the upregulation of GLUT-1 contribute to the formation of end-glycation products that trigger inflammation via the RAGE pathway. In addition, a glycolytic shift, increased rates of oxidative phosphorylation and mitochondrial dysfunction generate reactive oxygen species with deleterious effects. An important surveyor mechanism, the YAP/TAZ signaling system, controls chondrocyte differentiation, inhibits ageing by protecting the nuclear envelope and suppressing NF-kB, MMP-13 and aggrecanases. The inflammatory microenvironment and synthesis of key matrix components are also controlled by SIRT1 and mTORc. Senescent chondrocytes represent the functional end stage of hypertrophic differentiation and characteristically upregulate p16 and p21, but also a variety of inflammatory cytokines, chemokines and metalloproteinases, developing the senescence-associated secretory phenotype. Senolysis with dendrobin, miR29b-5p and other agents has been shown to be efficient under experimental conditions, and appears to be a promising tool for the treatment of OA, as it restores COL2A1 and aggrecan synthesis, suppressing NF-kB and destructive metalloproteinases.
Collapse
Affiliation(s)
- Emőke Horváth
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania;
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania
| | - Árpád Sólyom
- Department of Orthopedics-Traumatology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu Street, 540142 Targu Mures, Romania;
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - János Székely
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 6 Bernády György Square, 540394 Targu Mures, Romania
| | - Horațiu Popoviciu
- Department of Rheumatology, Physical and Medical Rehabilitation, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
| |
Collapse
|
18
|
Tsukahara T, Imamura S, Morohoshi T. A Review of Cyclic Phosphatidic Acid and Other Potential Therapeutic Targets for Treating Osteoarthritis. Biomedicines 2023; 11:2790. [PMID: 37893163 PMCID: PMC10603845 DOI: 10.3390/biomedicines11102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is the most common form of arthritis. OA occurs when the protective cartilage that cushions the ends of bones gradually breaks down. This leads to the rubbing of bones against each other, resulting in pain and stiffness. Cyclic phosphatidic acid (cPA) shows promise as a treatment for OA. In this article, we review the most recent findings regarding the biological functions of cPA signaling in mammalian systems, specifically in relation to OA. cPA is a naturally occurring phospholipid mediator with unique cyclic phosphate rings at the sn-2 and sn-3 positions in the glycerol backbone. cPA promotes various responses, including cell proliferation, migration, and survival. cPA possesses physiological activities that are distinct from those elicited by lysophosphatidic acid; however, its biochemical origin has rarely been studied. Although there is currently no cure for OA, advances in medical research may lead to new therapies or strategies in the future, and cPA has potential therapeutic applications.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | | | | |
Collapse
|
19
|
Thompson CL, Hopkins T, Bevan C, Screen HRC, Wright KT, Knight MM. Human vascularised synovium-on-a-chip: a mechanically stimulated, microfluidic model to investigate synovial inflammation and monocyte recruitment. Biomed Mater 2023; 18:065013. [PMID: 37703884 DOI: 10.1088/1748-605x/acf976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Healthy synovium is critical for joint homeostasis. Synovial inflammation (synovitis) is implicated in the onset, progression and symptomatic presentation of arthritic joint diseases such as rheumatoid arthritis and osteoarthritis. Thus, the synovium is a promising target for the development of novel, disease-modifying therapeutics. However, target exploration is hampered by a lack of good pre-clinical models that accurately replicate human physiology and that are developed in a way that allows for widespread uptake. The current study presents a multi-channel, microfluidic, organ-on-a-chip (OOAC) model, comprising a 3D configuration of the human synovium and its associated vasculature, with biomechanical and inflammatory stimulation, built upon a commercially available OOAC platform. Healthy human fibroblast-like synoviocytes (hFLS) were co-cultured with human umbilical vein endothelial cells (HUVECs) with appropriate matrix proteins, separated by a flexible, porous membrane. The model was developed within the Emulate organ-chip platform enabling the application of physiological biomechanical stimulation in the form of fluid shear and cyclic tensile strain. The hFLS exhibited characteristic morphology, cytoskeletal architecture and matrix protein deposition. Synovial inflammation was initiated through the addition of interleukin-1β(IL-1β) into the synovium channel resulting in the increased secretion of inflammatory and catabolic mediators, interleukin-6 (IL-6), prostaglandin E2 (PGE2), matrix metalloproteinase 1 (MMP-1), as well as the synovial fluid constituent protein, hyaluronan. Enhanced expression of the inflammatory marker, intercellular adhesion molecule-1 (ICAM-1), was observed in HUVECs in the vascular channel, accompanied by increased attachment of circulating monocytes. This vascularised human synovium-on-a-chip model recapitulates a number of the functional characteristics of both healthy and inflamed human synovium. Thus, this model offers the first human synovium organ-chip suitable for widespread adoption to understand synovial joint disease mechanisms, permit the identification of novel therapeutic targets and support pre-clinical testing of therapies.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Timothy Hopkins
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire, United Kingdom
| | - Catrin Bevan
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Hazel R C Screen
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Karina T Wright
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire, United Kingdom
| | - Martin M Knight
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
20
|
Huang X, Liu J, Huang W. Identification of S100A8 as a common diagnostic biomarkers and exploring potential pathogenesis for osteoarthritis and metabolic syndrome. Front Immunol 2023; 14:1185275. [PMID: 37497233 PMCID: PMC10366475 DOI: 10.3389/fimmu.2023.1185275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Background Osteoarthritis (OA) is the most frequent musculoskeletal disease and the major contributor to disability worldwide. Metabolic syndrome (MetS) has been recognized as being associated with the pathogenesis of osteoarthritis. However, the exact mechanisms and links between the two are not clear. Methods We downloaded clinical information data and gene expression profiles for OA and MetS from the database of Gene Expression Omnibus (GEO), and immune related gene (IRG) from the database of Immunology Database and Analysis Portal (IMMPORT). After screening OA-DEG and MetS-DEG, we identified the common immune hub gene by screening the overlapping genes between OA-DEG, MetS-DEG and IRG. Then we conducted single-gene analysis of S100A8, assessed the correlation of S100A8 with immune cell infiltration, and verified the diagnostic value of S100A8 in OA and MetS database respectively. Results 323 OA-DEGs,101 MetS-DEGs and an immune-related hub gene, S100A8, were identified. In single gene analysis of S100A8 in OA samples, GSEA suggested that immune-related biological processes were more significantly enriched. The results of immune cell infiltration analysis showed that the enrichment fraction of M2 macrophages was significantly higher in the high S100A8-expressing group, and the level of S100A8 expression was positively correlated with M2 macrophage infiltration. The results of the dataset validation showed that S100A8 expression levels were significantly upregulated in the OA group and performed well in the diagnosis of OA. In single gene analysis of S100A8 in MetS samples, immune cell infiltration analysis showed that monocyte infiltration was higher in the S100A8 high expression samples and that there was a positive correlation between the two. Dataset validation showed that S100A8 is of high value for the diagnosis of MetS. In the validation of the dataset for the four metabolism-related diseases (obesity, diabetes, hypertension and hyperlipidaemia), S100A8 was expressed at higher levels in the disease group and also had a higher diagnostic value for the four metabolism-related diseases. Conclusion S100A8 is a common hub gene and diagnostic biomarker for OA and MetS, and the immune regulation involved in S100A8 may play a central role in the pathogenesis of OA and MetS.
Collapse
Affiliation(s)
- Xu Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, Martin I. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat Rev Rheumatol 2023:10.1038/s41584-023-00979-5. [PMID: 37296196 DOI: 10.1038/s41584-023-00979-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Osteoarthritis (OA) is a disabling condition that affects billions of people worldwide and places a considerable burden on patients and on society owing to its prevalence and economic cost. As cartilage injuries are generally associated with the progressive onset of OA, robustly effective approaches for cartilage regeneration are necessary. Despite extensive research, technical development and clinical experimentation, no current surgery-based, material-based, cell-based or drug-based treatment can reliably restore the structure and function of hyaline cartilage. This paucity of effective treatment is partly caused by a lack of fundamental understanding of why articular cartilage fails to spontaneously regenerate. Thus, research studies that investigate the mechanisms behind the cartilage regeneration processes and the failure of these processes are critical to instruct decisions about patient treatment or to support the development of next-generation therapies for cartilage repair and OA prevention. This Review provides a synoptic and structured analysis of the current hypotheses about failure in cartilage regeneration, and the accompanying therapeutic strategies to overcome these hurdles, including some current or potential approaches to OA therapy.
Collapse
Affiliation(s)
- Sathish Muthu
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, New Delhi, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Jasmijn V Korpershoek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Emanuel J Novais
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gwenllian F Tawy
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, Manchester, UK
| | - Anthony P Hollander
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Dainese P, Mahieu H, De Mits S, Wittoek R, Stautemas J, Calders P. Associations between markers of inflammation and altered pain perception mechanisms in people with knee osteoarthritis: a systematic review. RMD Open 2023; 9:rmdopen-2022-002945. [PMID: 37225282 DOI: 10.1136/rmdopen-2022-002945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/01/2023] [Indexed: 05/26/2023] Open
Abstract
To provide an extensive review on the associations between knee inflammation and altered pain perception mechanisms in people with knee osteoarthritis (OA). MEDLINE, Web of Science, EMBASE and Scopus were searched up to 13 December 2022. We included articles reporting associations between knee inflammation (measured by effusion, synovitis, bone marrow lesions (BMLs) and cytokines) and signs of altered pain processing (assessed by quantitative sensory testing and/or questionnaire for neuropathic-like pain) in people with knee OA. Methodological quality was evaluated using the National Heart, Lung and Blood Institute Study Quality Assessment Tool. Level of evidence and strength of conclusion were determined using the Evidence-Based Guideline Development method. Nine studies were included, comprising of 1889 people with knee OA. Signs of greater effusion/synovitis may be positively associated with lower knee pain pressure threshold (PPT) and neuropathic-like pain. Current evidence could not establish an association between BMLs and pain sensitivity. Evidence on associations between inflammatory cytokines and pain sensitivity or neuropathic-like pain was conflicting. There are indications of a positive association between higher serum C reactive protein (CRP) levels and lower PPT and presence of temporal summation. Methodological quality varied from level C to A2. Signs of effusion/synovitis may be positively associated with neuropathic-like pain and pain sensitivity. There are indications of a possible positive association between serum CRP levels and pain sensitivity. Given the quality and the small amount of included studies, uncertainty remains. Future studies with adequate sample size and follow-up are needed to strengthen the level of evidence.PROSPERO registration number: CRD42022329245.
Collapse
Affiliation(s)
- Paolo Dainese
- Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Hanne Mahieu
- Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Sophie De Mits
- Rheumatology, University Hospital Ghent, Ghent, Belgium
- Smart Space, University Hospital Ghent, Ghent, Belgium
| | - Ruth Wittoek
- Rheumatology, University Hospital Ghent, Ghent, Belgium
- Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jan Stautemas
- Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
23
|
Tavasolian F, Inman RD. Biology and therapeutic potential of mesenchymal stem cell extracellular vesicles in axial spondyloarthritis. Commun Biol 2023; 6:413. [PMID: 37059822 PMCID: PMC10104809 DOI: 10.1038/s42003-023-04743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
Axial spondyloarthritis (AxSpA) is a chronic, inflammatory, autoimmune disease that predominantly affects the joints of the spine, causes chronic pain, and, in advanced stages, may result in spinal fusion. Recent developments in understanding the immunomodulatory and tissue-differentiating properties of mesenchymal stem cell (MSC) therapy have raised the possibility of applying such treatment to AxSpA. The therapeutic effectiveness of MSCs has been shown in numerous studies spanning a range of diseases. Several studies have been conducted examining acellular therapy based on MSC secretome. Extracellular vesicles (EVs) generated by MSCs have been proven to reproduce the impact of MSCs on target cells. These EVs are associated with immunological regulation, tissue remodeling, and cellular homeostasis. EVs' biological effects rely on their cargo, with microRNAs (miRNAs) integrated into EVs playing a particularly important role in gene expression regulation. In this article, we will discuss the impact of MSCs and EVs generated by MSCs on target cells and how these may be used as unique treatment strategies for AxSpA.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Motta F, Barone E, Sica A, Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol 2023; 64:222-238. [PMID: 35716253 DOI: 10.1007/s12016-022-08941-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Elisa Barone
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Antonio Sica
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
25
|
Wang H, Yan Y, Pathak JL, Hong W, Zeng J, Qian D, Hao B, Li H, Gu J, Jaspers RT, Wu G, Shao M, Peng G, Lan H. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J Cell Mol Med 2023; 27:515-528. [PMID: 36722313 PMCID: PMC9930437 DOI: 10.1111/jcmm.17672] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 02/02/2023] Open
Abstract
Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.
Collapse
Affiliation(s)
- Haiyan Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Yongyong Yan
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Jing Zeng
- Liwan Central Hospital of GuangzhouGuangzhouChina
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated HospitalGuangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Binwei Hao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Department of Pulmonary and Critical Care Medicine, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTaiyuanChina
| | - Haiqing Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jinlan Gu
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Richard T. Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam, Amsterdam Movement ScienceAmsterdamThe Netherlands
| | - Ming Shao
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Haifeng Lan
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
26
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
From Low-Grade Inflammation in Osteoarthritis to Neuropsychiatric Sequelae: A Narrative Review. Int J Mol Sci 2022; 23:ijms232416031. [PMID: 36555670 PMCID: PMC9784931 DOI: 10.3390/ijms232416031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, osteoarthritis (OA), a common, multifactorial musculoskeletal disease, is considered to have a low-grade inflammatory pathogenetic component. Lately, neuropsychiatric sequelae of the disease have gained recognition. However, a link between the peripheral inflammatory process of OA and the development of neuropsychiatric pathology is not completely understood. In this review, we provide a narrative that explores the development of neuropsychiatric disease in the presence of chronic peripheral low-grade inflammation with a focus on its signaling to the brain. We describe the development of a pro-inflammatory environment in the OA-affected joint. We discuss inflammation-signaling pathways that link the affected joint to the central nervous system, mainly using primary sensory afferents and blood circulation via circumventricular organs and cerebral endothelium. The review describes molecular and cellular changes in the brain, recognized in the presence of chronic peripheral inflammation. In addition, changes in the volume of gray matter and alterations of connectivity important for the assessment of the efficacy of treatment in OA are discussed in the given review. Finally, the narrative considers the importance of the use of neuropsychiatric diagnostic tools for a disease with an inflammatory component in the clinical setting.
Collapse
|
28
|
Peshkova M, Kosheleva N, Shpichka A, Radenska-Lopovok S, Telyshev D, Lychagin A, Li F, Timashev P, Liang XJ. Targeting Inflammation and Regeneration: Scaffolds, Extracellular Vesicles, and Nanotechnologies as Cell-Free Dual-Target Therapeutic Strategies. Int J Mol Sci 2022; 23:13796. [PMID: 36430272 PMCID: PMC9694395 DOI: 10.3390/ijms232213796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Osteoarthritis (OA) affects over 250 million people worldwide and despite various existing treatment strategies still has no cure. It is a multifactorial disease characterized by cartilage loss and low-grade synovial inflammation. Focusing on these two targets together could be the key to developing currently missing disease-modifying OA drugs (DMOADs). This review aims to discuss the latest cell-free techniques applied in cartilage tissue regeneration, since they can provide a more controllable approach to inflammation management than the cell-based ones. Scaffolds, extracellular vesicles, and nanocarriers can be used to suppress inflammation, but they can also act as immunomodulatory agents. This is consistent with the latest tissue engineering paradigm, postulating a moderate, controllable inflammatory reaction to be beneficial for tissue remodeling and successful regeneration.
Collapse
Affiliation(s)
- Maria Peshkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stefka Radenska-Lopovok
- Institute for Clinical Morphology and Digital Pathology, Sechenov University, 119991 Moscow, Russia
| | - Dmitry Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
- Institute of Bionic Technologies and Engineering, Sechenov University, 119991 Moscow, Russia
| | - Alexey Lychagin
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, 119991 Moscow, Russia
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xing-Jie Liang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Feng SY, Lei J, Li YX, Shi WG, Wang RR, Yap AU, Wang YX, Fu KY. Increased joint loading induces subchondral bone loss of the temporomandibular joint via the RANTES-CCRs-Akt2 axis. JCI Insight 2022; 7:158874. [PMID: 36173680 PMCID: PMC9675482 DOI: 10.1172/jci.insight.158874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement with a capacitance-based force-sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, IHC staining, and Western blot were used to assess pathological changes and underlying mechanisms of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on the articular surface, which caused rapid subchondral bone loss via activation of the RANTES-chemokine receptors-Akt2 (RANTES-CCRs-Akt2) axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating the Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of the RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.
Collapse
Affiliation(s)
- Shi-Yang Feng
- Center for Temporomandibular Disorders & Orofacial Pain, and,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jie Lei
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yu-Xiang Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Ge Shi
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ran-Ran Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Adrian Ujin Yap
- Center for Temporomandibular Disorders & Orofacial Pain, and,Department of Dentistry, Ng Teng Fong General Hospital and Faculty of Dentistry, National University Health System, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore and Duke-NUS Medical School, Singapore Health Services, Singapore, Singapore
| | - Yi-Xiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai-Yuan Fu
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
30
|
Leale DM, Li L, Settles M, Mitchell K, Froenicke L, Yik JH, Haudenschild DR. A two-stage digestion of whole murine knee joints for single-cell RNA sequencing. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100321. [DOI: 10.1016/j.ocarto.2022.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
|
31
|
Corciulo C, Scheffler JM, Humeniuk P, Del Carpio Pons A, Stubelius A, Von Mentzer U, Drevinge C, Barrett A, Wüstenhagen S, Poutanen M, Ohlsson C, Lagerquist MK, Islander U. Physiological levels of estradiol limit murine osteoarthritis progression. J Endocrinol 2022; 255:39-51. [PMID: 35993439 PMCID: PMC9513658 DOI: 10.1530/joe-22-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.
Collapse
Affiliation(s)
- Carmen Corciulo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Julia M Scheffler
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Piotr Humeniuk
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Alicia Del Carpio Pons
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Stubelius
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ula Von Mentzer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Christina Drevinge
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Aidan Barrett
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sofia Wüstenhagen
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci 2022; 23:13016. [PMID: 36361805 PMCID: PMC9658630 DOI: 10.3390/ijms232113016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a low-grade inflammatory disorder of the joints that causes deterioration of the cartilage, bone remodeling, formation of osteophytes, meniscal damage, and synovial inflammation (synovitis). The synovium is the primary site of inflammation in OA and is frequently characterized by hyperplasia of the synovial lining and infiltration of inflammatory cells, primarily macrophages. Macrophages play a crucial role in the early inflammatory response through the production of several inflammatory cytokines, chemokines, growth factors, and proteinases. These pro-inflammatory mediators are activators of numerous signaling pathways that trigger other cytokines to further recruit more macrophages to the joint, ultimately leading to pain and disease progression. Very few therapeutic alternatives are available for treating inflammation in OA due to the condition's low self-healing capacity and the lack of clear diagnostic biomarkers. In this review, we opted to explore the immunomodulatory properties of mesenchymal stem cells (MSCs) and their paracrine mediators-dependent as a therapeutic intervention for OA, with a primary focus on the practicality of polarizing macrophages as suppression of M1 macrophages and enhancement of M2 macrophages can significantly reduce OA symptoms.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
33
|
Arra M, Swarnkar G, Adapala NS, Naqvi SK, Cai L, Rai MF, Singamaneni S, Mbalaviele G, Brophy R, Abu-Amer Y. Glutamine metabolism modulates chondrocyte inflammatory response. eLife 2022; 11:e80725. [PMID: 35916374 PMCID: PMC9371604 DOI: 10.7554/elife.80725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis is the most common joint disease in the world with significant societal consequences but lacks effective disease-modifying interventions. The pathophysiology consists of a prominent inflammatory component that can be targeted to prevent cartilage degradation and structural defects. Intracellular metabolism has emerged as a culprit of the inflammatory response in chondrocytes, with both processes co-regulating each other. The role of glutamine metabolism in chondrocytes, especially in the context of inflammation, lacks a thorough understanding and is the focus of this work. We display that mouse chondrocytes utilize glutamine for energy production and anabolic processes. Furthermore, we show that glutamine deprivation itself causes metabolic reprogramming and decreases the inflammatory response of chondrocytes through inhibition of NF-κB activity. Finally, we display that glutamine deprivation promotes autophagy and that ammonia is an inhibitor of autophagy. Overall, we identify a relationship between glutamine metabolism and inflammatory signaling and display the need for increased study of chondrocyte metabolic systems.
Collapse
Affiliation(s)
- Manoj Arra
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
| | - Gaurav Swarnkar
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
| | - Naga Suresh Adapala
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
| | - Syeda Kanwal Naqvi
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
| | - Lei Cai
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Material Sciences, Washington University School of Medicine, St Louis, United States
| | - Gabriel Mbalaviele
- Bone and Mineral Division, Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Robert Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, United States
- Shriners Hospital for Children, Saint Louis, United States
| |
Collapse
|
34
|
Yang Y, Huang JJ, Zhu GS, Hu W. Hyperoside attenuates osteoarthritis progression by targeting PI3K/Akt/NF-κB signaling pathway: In vitro and in vivo studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
35
|
Rong G, Zhang T, Xu Y, Zhang Z, Gui B, Hu K, Zhang J, Tang Z, Shen C. High levels of TDO2 in relation to pro-inflammatory cytokines in synovium and synovial fluid of patients with osteoarthritis. BMC Musculoskelet Disord 2022; 23:604. [PMID: 35733134 PMCID: PMC9214984 DOI: 10.1186/s12891-022-05567-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Background Tryptophan 2,3-dioxygenase (TDO2) is the primary enzyme that catabolizes tryptophan to kynurenine. Numerous studies have suggested that TDO2 is involved in inflammation-related diseases. However, its role in osteoarthritis (OA) has not yet been investigated. The aim of the present study was to explore the levels of TDO2 in the synovium and synovial fluid (SF) of patients with OA and its correlation with clinical manifestations and levels of pro-inflammatory cytokines. Methods Synovium and SF samples were collected from patients with OA and patients with joint trauma (controls) during surgery. An enzyme-linked immunosorbent assay (ELISA) was used to measure TDO2, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in the synovium and SF. Diagnostic performance of TDO2 in the synovium to discriminate between controls and OA patients was assessed using receiver operating characteristic (ROC) curve analysis. Correlations between TDO2 levels, OA clinical features, and pro-inflammatory cytokines were evaluated using Pearson correlation analysis. Effects of IL-1β or TNF-α stimulation on TDO2 expression in OA-fibroblast-like synoviocytes (OA-FLS) were also examined. Results The levels of TDO2, IL-1β, and TNF-α in the synovium of patients with OA were found to be significantly higher than those in controls. ROC curve analysis revealed an area under the curve (AUC) of 0.800 with 64.3% sensitivity and 85.0% specificity of TOD2 in the synovium, which enabled discriminating patients with OA from controls. Moreover, protein expression of TDO2 was upregulated to a greater extent in OA-FLS than in normal synovial fibroblasts (NSF). Furthermore, the levels of TDO2 showed significantly positive correlation with IL-1β and TNF-α levels in the synovium and SF. TDO2 levels in the synovium were also positively correlated with the Kellgren-Lawrence score. Additionally, TDO2 protein expression was significantly increased in IL-1β‒ or TNF-α‒stimulated OA-FLS than in control FLS. Conclusion These data indicate that highTDO2 levels in the synovium can be correlated with pro-inflammatory cytokines and severity of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05567-4.
Collapse
Affiliation(s)
- Genxiang Rong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui, 230022, Hefei, China
| | - Tao Zhang
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yayun Xu
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zhenyu Zhang
- The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Binjie Gui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui, 230022, Hefei, China
| | - Kongzu Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui, 230022, Hefei, China
| | - Jinling Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui, 230022, Hefei, China
| | - Zhi Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui, 230022, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui, 230022, Hefei, China.
| |
Collapse
|
36
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
37
|
Zhang Y, Liu T, Yang H, He F, Zhu X. Melatonin: A novel candidate for the treatment of osteoarthritis. Ageing Res Rev 2022; 78:101635. [PMID: 35483626 DOI: 10.1016/j.arr.2022.101635] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Osteoarthritis (OA), characterized by cartilage erosion, synovium inflammation, and subchondral bone remodeling, is a common joint degenerative disease worldwide. OA pathogenesis is regulated by multiple predisposing factors, including imbalanced matrix metabolism, aberrant inflammatory response, and excessive oxidative stress. Moreover, melatonin has been implicated in development of several degenerative disorders owing to its potent biological functions. With regards to OA, melatonin reportedly promotes synthesis of cartilage matrix, inhibition of chondrocyte apoptosis, attenuation of inflammatory response, and suppression of matrix degradation by regulating the TGF-β, MAPK, or NF-κB signaling pathways. Notably, melatonin has been associated with amelioration of oxidative damage by restoring the OA-impaired intracellular antioxidant defense system in articular cartilage. Findings from preliminary application of melatonin or melatonin-loaded biomaterials in animal models have affirmed its potential anti-arthritic effects. Herein, we summarize the anti-arthritic effects of melatonin on OA cartilage and demonstrate that melatonin has potential therapeutic efficacy in treating OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| |
Collapse
|
38
|
Lei J, Chen S, Jing J, Guo T, Feng J, Ho T, Chai Y. Inhibiting Hh Signaling in Gli1 + Osteogenic Progenitors Alleviates TMJOA. J Dent Res 2022; 101:664-674. [PMID: 35045740 PMCID: PMC9124909 DOI: 10.1177/00220345211059079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
The increased prevalence of temporomandibular joint osteoarthritis (TMJOA) in children and adolescents has drawn considerable attention as it may interfere with mandibular condyle growth, resulting in dento-maxillofacial deformities. However, treatments for osteoarthritis have been ineffective at restoring the damaged bone and cartilage structures due to poor understanding of the underlying degenerative mechanism. In this study, we demonstrate that Gli1+ cells residing in the subchondral bone contribute to bone formation and homeostasis in the mandibular condyle, identifying them as osteogenic progenitors in vivo. Furthermore, we show that, in a TMJOA mouse model, derivatives of Gli1+ cells undergo excessive expansion along with increased but uneven distribution of osteogenic differentiation in the subchondral bone, which leads to abnormal subchondral bone remodeling via Hedgehog (Hh) signaling activation and to the development of TMJOA. The selective pharmacological inhibition and specific genetic inhibition of Hh signaling in Gli1+ osteogenic progenitors result in improved subchondral bone microstructure, attenuated local immune inflammatory response in the subchondral bone, and reduced degeneration of the articular cartilage, providing in vivo functional evidence that targeting Hh signaling in Gli1+ osteogenic progenitors can modulate bone homeostasis in osteoarthritis and provide a potential approach for treating TMJOA.
Collapse
Affiliation(s)
- J. Lei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - S. Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J. Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - T. Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J. Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - T.V. Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Y. Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Terkawi MA, Ebata T, Yokota S, Takahashi D, Endo T, Matsumae G, Shimizu T, Kadoya K, Iwasaki N. Low-Grade Inflammation in the Pathogenesis of Osteoarthritis: Cellular and Molecular Mechanisms and Strategies for Future Therapeutic Intervention. Biomedicines 2022; 10:biomedicines10051109. [PMID: 35625846 PMCID: PMC9139060 DOI: 10.3390/biomedicines10051109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by cartilage degeneration and stiffness, with chronic pain in the affected joint. It has been proposed that OA progression is associated with the development of low-grade inflammation (LGI) in the joint. In support of this principle, LGI is now recognized as the major contributor to the pathogenesis of obesity, aging, and metabolic syndromes, which have been documented as among the most significant risk factors for developing OA. These discoveries have led to a new definition of the disease, and OA has recently been recognized as a low-grade inflammatory disease of the joint. Damage-associated molecular patterns (DAMPs)/alarmin molecules, the major cellular components that facilitate the interplay between cells in the cartilage and synovium, activate various molecular pathways involved in the initiation and maintenance of LGI in the joint, which, in turn, drives OA progression. A better understanding of the pathological mechanisms initiated by LGI in the joint represents a decisive step toward discovering therapeutic strategies for the treatment of OA. Recent findings and discoveries regarding the involvement of LGI mediated by DAMPs in OA pathogenesis are discussed. Modulating communication between cells in the joint to decrease inflammation represents an attractive approach for the treatment of OA.
Collapse
|
40
|
Seidel MF, Netzer C, Chobaz V, Hügle T, Geurts J. Localization of Nerve Growth Factor Expression to Structurally Damaged Cartilaginous Tissues in Human Lumbar Facet Joint Osteoarthritis. Front Immunol 2022; 13:783076. [PMID: 35300334 PMCID: PMC8921992 DOI: 10.3389/fimmu.2022.783076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/04/2022] [Indexed: 01/25/2023] Open
Abstract
Purpose Nerve Growth Factor (NGF) is a pivotal mediator of chronic pain and plays a role in bone remodelling. Through its high affinity receptor TrkA, NGF induces substance P (SP) as key downstream mediator of pain and local inflammation. Here we analysed NGF, TrkA and SP tissue distribution in facet joint osteoarthritis (FJOA), a major cause of chronic low back pain. Methods FJOA specimens (n=19) were harvested from patients undergoing intervertebral fusion surgery. Radiologic grading of FJOA and spinal stenosis, followed by immunohistochemistry for NGF, TrkA and SP on consecutive tissue sections, was performed in ten specimens. Explant cultures (n=9) were used to assess secretion of NGF, IL-6, and SP by FJOA osteochondral tissues under basal and inflammatory conditions. Results NGF was predominantly expressed in damaged cartilaginous tissues (80%), occasionally in bone marrow (20%), but not in osteochondral vascular channels. NGF area fraction in cartilage was not associated with the extent of proteoglycan loss or radiologic FJOA severity. Consecutive sections showed that NGF and SP expression was localized at structurally damaged cartilage, in absence of TrkA expression. SP and TrkA were expressed in subchondral bone marrow in both presence and absence of NGF. Low level NGF, but not SP secretion, was detected in four out of eighteen FJOA explants under both basal or inflammatory conditions (n=2 each). Conclusion NGF is associated with SP expression and structural cartilage damage in osteoarthritic facet joints, but not with radiologic disease severity. NGF tissue distribution in FJOA differs from predominant subchondral bone expression reported for knee OA.
Collapse
Affiliation(s)
- Matthias F Seidel
- Department of Rheumatology, Spitalzentrum-Centre Hospitalier, Biel-Bienne, Switzerland
| | - Cordula Netzer
- Spine Surgery, Department of Biomedical Engineering, University Hospital of Basel, Basel, Switzerland
| | - Véronique Chobaz
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Thomas Hügle
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
41
|
Kong H, Wang XQ, Zhang XA. Exercise for Osteoarthritis: A Literature Review of Pathology and Mechanism. Front Aging Neurosci 2022; 14:854026. [PMID: 35592699 PMCID: PMC9110817 DOI: 10.3389/fnagi.2022.854026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) has a very high incidence worldwide and has become a very common joint disease in the elderly. Currently, the treatment methods for OA include surgery, drug therapy, and exercise therapy. In recent years, the treatment of certain diseases by exercise has received increasing research and attention. Proper exercise can improve the physiological function of various organs of the body. At present, the treatment of OA is usually symptomatic. Limited methods are available for the treatment of OA according to its pathogenesis, and effective intervention has not been developed to slow down the progress of OA from the molecular level. Only by clarifying the mechanism of exercise treatment of OA and the influence of different exercise intensities on OA patients can we choose the appropriate exercise prescription to prevent and treat OA. This review mainly expounds the mechanism that exercise alleviates the pathological changes of OA by affecting the degradation of the ECM, apoptosis, inflammatory response, autophagy, and changes of ncRNA, and summarizes the effects of different exercise types on OA patients. Finally, it is found that different exercise types, exercise intensity, exercise time and exercise frequency have different effects on OA patients. At the same time, suitable exercise prescriptions are recommended for OA patients.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang,
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Xue-Qiang Wang,
| |
Collapse
|
42
|
Mosley C, Edwards T, Romano L, Truchetti G, Dunbar L, Schiller T, Gibson T, Bruce C, Troncy E. Proposed Canadian Consensus Guidelines on Osteoarthritis Treatment Based on OA-COAST Stages 1–4. Front Vet Sci 2022; 9:830098. [PMID: 35558892 PMCID: PMC9088681 DOI: 10.3389/fvets.2022.830098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The Canadian consensus guidelines on OA treatment were created from a diverse group of experts, with a strong clinical and/or academic background in treating OA in dogs. The document is a summary of the treatment recommendations made by the group, with treatments being divided into either a core or secondary recommendation. Each treatment or modality is then summarized in the context of available research based support and clinical experience, as the treatment of OA continues to be a multimodal and commonly a multidisciplinary as well as individualized approach. The guidelines aim to help clinicians by providing clear and clinically relevant information about treatment options based on COAST defined OA stages 1–4.
Collapse
Affiliation(s)
- Conny Mosley
- Elanco Animal Health, Mississauga, ON, Canada
- VCA Canada, 404 Veterinary Emergency and Referral Hospital, Newmarket, ON, Canada
- *Correspondence: Conny Mosley
| | - Tara Edwards
- VCA Canada, Central Victoria Veterinary Hospital, Victoria, BC, Canada
| | - Laura Romano
- VCA Canada, Centra Victoria Veterinary Hospital, Victoria, BC, Canada
| | | | | | - Teresa Schiller
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tom Gibson
- Grand River Veterinary Surgical Services; Adjunct Faculty OVC, Mississauga, ON, Canada
| | - Charles Bruce
- Pulse Veterinary Specialists and Emergency, Sherwood Park, AB, Canada
| | - Eric Troncy
- Faculté de médecine vétérinaire, Université de Montréal, Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Montreal, QC, Canada
| |
Collapse
|
43
|
Hu W, Mao C, Sheng W. The protective effect of kirenol in osteoarthritis: an in vitro and in vivo study. J Orthop Surg Res 2022; 17:195. [PMID: 35365162 PMCID: PMC8974005 DOI: 10.1186/s13018-022-03063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease, its main characteristic involves articular cartilage destruction and inflammation response, absent of effective medical treatment. Our current research aimed to explore anti-inflammatory effect of kirenol, a diterpenoid natural product compound, in the development of OA and its potential molecular mechanism through in vitro and in vivo study. METHODS In vitro, chondrocytes were pretreated with kirenol for 2 h before IL-1β stimulation. Production of NO, PGE2, TNF-α, IL-6, aggrecan, collagen-II, MMP13and ADAMTS5 were evaluated by the Griess reaction and ELISAs. The mRNA (aggrecan and collagen-II) and protein expression (COX-2, iNOS, P65, IκB, PI3K, AKT) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and P65. The in vivo effect of kirenol was evaluated in mice OA models induced by destabilization of the medial meniscus (DMM). RESULTS We found that kirenol inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, ADAMTS-5. Besides, kirenol remarkably decreased IL-1β-induced degradation of aggrecan and collagen-II. Furthermore, kirenol significantly inhibited IL-1β-induced phosphorylation of PI3K/Akt and NF-κB signaling. In vivo, the cartilage in kirenol-treated mice exhibited less cartilage degradation and lower OARSI scores. CONCLUSIONS Taken together, the results of this study provide potent evidence that kirenol could be utilized as a potentially therapeutic agent in prevention and treatment of OA.
Collapse
Affiliation(s)
- Wei Hu
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Chao Mao
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Weibin Sheng
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| |
Collapse
|
44
|
Chavda D, Shukla A, Soni T. Enhancement of drug penetration rate by enriching skin hydration: a novel amalgamation of microemulsion and supersaturation. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220330141528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The evolving need and facilitation of topical formulations have risen in the present era. Topical industries are continually striving to satisfy patients with newer and innovative products. However, dry skin is the critical factor contributing to drug penetration into the skin.
Objective:
The current research aimed to develop cost-effective and commercially feasible industrial scale microemulsion of wheat germ oil to enrich skin hydration, enhancing the drug permeation rate.
Methods:
The Pseudo-ternary phase diagram was constructed for screening of microemulsion components. Wheat germ oil containing O/W microemulsion was prepared and evaluated for physicochemical parameters, thermodynamic stability study, globule size determination, enhancement of skin hydration, and skin permeation rate by ex vivo study.
Results:
The wheat germ oil containing microemulsion was prepared by incorporating tween 20 [surfactant] and ethanol [co-surfactant]. All physicochemical parameters were in the ideal range. Following the thermodynamic stability study, the TEM study showed globule size of optimized microemulsions in the range of 69.64 nm to 84.42 nm. The skin moisture tester showed a high hydration level for more than eight hours. An Ex vivo study revealed higher drug flux [Jss] of Pomegranate peel Extract [17.99 μg/cm2/h] with an enhancement ratio of 1.69.
Conclusion:
The topical formulation application has become challenging for researchers due to the skin's dryness and lower water content. However, the developed WGO microemulsion aids more penetration and is helpful to achieve higher drug flux. In addition, it is a cost-effective, easy to prepare, and patient-friendly drug delivery system.
Collapse
Affiliation(s)
- Dipika Chavda
- Department of Pharmaceutics, Anand Pharmacy College, Anand, [Gujarat] 388001, India
| | - Atindra Shukla
- Shah-Schulman Center for Surface Science and Nanotechnology, Dharmsinh Desai University, Nadiad [Gujarat] 387001, India
| | - Tejal Soni
- Faculty of Pharmacy, Dharmsinh Desai University, Nadiad [Gujarat] 387001, India
| |
Collapse
|
45
|
Ferreira NDR, Sanz CK, Raybolt A, Pereira CM, DosSantos MF. Action of Hyaluronic Acid as a Damage-Associated Molecular Pattern Molecule and Its Function on the Treatment of Temporomandibular Disorders. FRONTIERS IN PAIN RESEARCH 2022; 3:852249. [PMID: 35369538 PMCID: PMC8971669 DOI: 10.3389/fpain.2022.852249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The temporomandibular joint is responsible for fundamental functions. However, mechanical overload or microtraumas can cause temporomandibular disorders (TMD). In addition to external factors, it is known that these conditions are involved in complex biological mechanisms, such as activation of the immune system, activation of the inflammatory process, and degradation of extracellular matrix (ECM) components. The ECM is a non-cellular three-dimensional macromolecular network; its most studied components is hyaluronic acid (HA). HA is naturally found in many tissues, and most of it has a high molecular weight. HA has attributed an essential role in the viscoelastic properties of the synovial fluid and other tissues. Additionally, it has been shown that HA molecules can contribute to other mechanisms in the processes of injury and healing. It has been speculated that the degradation product of high molecular weight HA in healthy tissues during injury, a low molecular weight HA, may act as damage-associated molecular patterns (DAMPs). DAMPs are multifunctional and structurally diverse molecules that play critical intracellular roles in the absence of injury or infection. However, after cellular damage or stress, these molecules promote the activation of the immune response. Fragments from the degradation of HA can also act as immune response activators. Low molecular weight HA would have the ability to act as a pro-inflammatory marker, promoting the activation and maturation of dendritic cells, the release of pro-inflammatory cytokines such as interleukin 1 beta (IL-1β), and tumor necrosis factor α (TNF-α). It also increases the expression of chemokines and cell proliferation. Many of the pro-inflammatory effects of low molecular weight HA are attributed to its interactions with the activation of toll-like receptors (TLRs 2 and 4). In contrast, the high molecular weight HA found in healthy tissues would act as an anti-inflammatory, inhibiting cell growth and differentiation, decreasing the production of inflammatory cytokines, and reducing phagocytosis by macrophages. These anti-inflammatory effects are mainly attributed to the interaction of high-weight HA with the CD44 receptor. In this study, we review the action of the HA as a DAMP and its functions on pain control, more specifically in orofacial origin (e.g., TMD).
Collapse
Affiliation(s)
- Natália dos Reis Ferreira
- Faculty of Medicine, Institute of Occlusion and Orofacial Pain, University of Coimbra, Coimbra, Portugal
| | - Carolina Kaminski Sanz
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Engenharia Metalúrgica e de Materiais, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline Raybolt
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cláudia Maria Pereira
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Odontologia (PPGO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Marcos Fabio DosSantos ;
| |
Collapse
|
46
|
Ali N, Turkiewicz A, Hughes V, Folkesson E, Tjörnstand J, Neuman P, Önnerfjord P, Englund M. Proteomics profiling of human synovial fluid suggests increased protein interplay in early-osteoarthritis (OA) that is lost in late-stage OA. Mol Cell Proteomics 2022; 21:100200. [PMID: 35074580 PMCID: PMC8941261 DOI: 10.1016/j.mcpro.2022.100200] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/04/2021] [Accepted: 01/15/2022] [Indexed: 11/28/2022] Open
Abstract
The underlying molecular mechanisms in osteoarthritis (OA) development are largely unknown. This study explores the proteome and the pairwise interplay of proteins in synovial fluid from patients with late-stage knee OA (arthroplasty), early knee OA (arthroscopy due to degenerative meniscal tear), and from deceased controls without knee OA. Synovial fluid samples were analyzed using state-of-the-art mass spectrometry with data-independent acquisition. The differential expression of the proteins detected was clustered and evaluated with data mining strategies and a multilevel model. Group-specific slopes of associations were estimated between expressions of each pair of identified proteins to assess the co-expression (i.e., interplay) between the proteins in each group. More proteins were increased in early-OA versus controls than late-stage OA versus controls. For most of these proteins, the fold changes between late-stage OA versus controls and early-stage OA versus controls were remarkably similar suggesting potential involvement in the OA process. Further, for the first time, this study illustrated distinct patterns in protein co-expression suggesting that the interplay between the protein machinery is increased in early-OA and lost in late-stage OA. Further efforts should focus on earlier stages of the disease than previously considered. Synovial fluid proteomics study of different stages of osteoarthritis (OA). Higher catabolic activity is found in both early- and late-stage OA. Imbalance of the metabolic homeostasis in late-stage OA. Understanding early-stage OA may lead to finding better effective therapies.
Collapse
|
47
|
Mobasheri A, Kapoor M, Ali SA, Lang A, Madry H. The future of deep phenotyping in osteoarthritis: How can high throughput omics technologies advance our understanding of the cellular and molecular taxonomy of the disease? OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100144. [PMID: 36474763 PMCID: PMC9718223 DOI: 10.1016/j.ocarto.2021.100144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of musculoskeletal disease with significant healthcare costs and unmet needs in terms of early diagnosis and treatment. Many of the drugs that have been developed to treat OA failed in phase 2 and phase 3 clinical trials or produced inconclusive and ambiguous results. High throughput omics technologies are a powerful tool to better understand the mechanisms of the development of OA and other arthritic diseases. In this paper we outline the strategic reasons for increasingly applying deep phenotyping in OA for the benefit of gaining a better understanding of disease mechanisms and developing targeted treatments. This editorial is intended to launch a special themed issue of Osteoarthritis and Cartilage Open addressing the timely topic of "Advances in omics technologies for deep phenotyping in osteoarthritis". High throughput omics technologies are increasingly being applied in mechanistic studies of OA and other arthritic diseases. Applying multi-omics approaches in OA is a high priority and will allow us to gather new information on disease pathogenesis at the cellular level, and integrate data from diverse omics technology platforms to enable deep phenotyping. We anticipate that new knowledge in this area will allow us to harness the power of Big Data Analytics and resolve the extremely complex and overlapping clinical phenotypes into molecular endotypes, revealing new information about the cellular taxonomy of OA and "druggable pathways", thus facilitating future drug development.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shabana Amanda Ali
- Bone and Joint Center, Henry Ford Health System, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Annemarie Lang
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| |
Collapse
|
48
|
Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10111660. [PMID: 34829531 PMCID: PMC8614813 DOI: 10.3390/antiox10111660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2−/−) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2−/− macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.
Collapse
|
49
|
Ruan A, Wang Q, Ma Y, Zhang D, Yang L, Wang Z, Xie Q, Yin Y. Efficacy and Mechanism of Electroacupuncture Treatment of Rabbits With Different Degrees of Knee Osteoarthritis: A Study Based on Synovial Innate Immune Response. Front Physiol 2021; 12:642178. [PMID: 34421630 PMCID: PMC8375319 DOI: 10.3389/fphys.2021.642178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/04/2021] [Indexed: 01/15/2023] Open
Abstract
Knee osteoarthritis (KOA) is a chronic degenerative bone and joint disease, which is often clinically manifested as pain, joint swelling, and deformity. Its pathological manifestations are mainly synovial inflammation and cartilage degeneration. This study aims to investigate the efficacy of electro-acupuncture (EA) on model rabbits with varying degrees of KOA and to study the mechanism of EA on KOA based on the innate immune response. Mild and moderate rabbit KOA models were established using a modified Hluth method, and EA was given to both the mild and moderate model groups. The Lequesne-MG index was used to evaluate the behavioral changes in the rabbits before and after EA treatment. Morphological changes in the synovial membrane and cartilage of each group were observed by H&E staining. The Mankin scoring standard and the Krenn scoring standard were used to score the pathology of the cartilage tissue and synovial tissue, respectively. The inflammatory factors and metalloproteinases were detected in the serum of each group by ELISA. The protein and messenger RNA (mRNA) expressions of important elements related to Toll-like receptors (TLRs)-mediated innate immune response in the synovial tissue were detected by Western blot and quantitative PCR (qPCR). The Lequesne-MG index score of the rabbits gradually increased with the modeling prolonged but decreased significantly after EA treatment, indicating that EA has a better effect on alleviating the pain and improving the dysfunction. The morphological analysis showed that the inflammation of and the damage to the synovial membrane and the cartilage tissue gradually deteriorated with the modeling prolonged. However, the synovial membrane inflammation was significantly relieved after EA treatment, and the cartilage injury showed signs of repair. The ELISA analysis showed that, with the modeling prolonged, the serum-related inflammatory factors and mechanism of metalloproteinases gradually increased but decreased after EA treatment. The tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and matrix metalloproteinase3 (MMP3) of EA1 group were significantly lower than those of EA2 group. Both Western blot and qPCR results showed that the protein and mRNA expressions of the elements related to the innate immune response in the synovial membrane increased gradually with the modeling prolonged, but decreased significantly after EA treatment. Additionally, the expression of some components in EA1 group was significantly lower than that in EA2 group. These results confirm that synovial inflammation gradually aggravated with time from the early to mid-stage of KOA. EA alleviated the inflammation and histological changes in KOA rabbits by inhibiting the TLRs-mediated innate synovial immune response. This suggests that using EA in the early stage of KOA may achieve a desirable efficacy.
Collapse
Affiliation(s)
- Anmin Ruan
- Department of Orthopedics, Beijing Longfu Hospital, Beijing, China
| | - Qingfu Wang
- Department of Tendon and Injury, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yufeng Ma
- Department of Tendon and Injury, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Zhang
- Department of General Surgery, The Second Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lili Yang
- Department of Orthopedics, Beijing Longfu Hospital, Beijing, China
| | - Zhongpeng Wang
- Acupuncture and Moxibustion Department, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qi Xie
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yueshan Yin
- Acupuncture and Moxibustion Department, The Third Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Zhang TM, Yang K, Liang SX, Tian YY, Xu ZY, Liu H, Yan YB. Microarray Analysis of Differential Gene Expression Between Traumatic Temporomandibular Joint Fibrous and Bony Ankylosis in a Sheep Model. Med Sci Monit 2021; 27:e932545. [PMID: 34400603 PMCID: PMC8379999 DOI: 10.12659/msm.932545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The type of traumatic temporomandibular joint (TMJ) ankylosis depends on the degree of severity of TMJ trauma. Here, we performed comprehensive differential molecular profiling between TMJ fibrous and bony ankylosis. Material/Methods Six sheep were used and a bilateral different degree of TMJ trauma was performed to induce fibrous ankylosis in one side and bony ankylosis in the other side. The ankylosed calluses were harvested at days 14 and 28 postoperatively and analyzed by Affymetrix OviGene-1_0-ST microarrays. DAVID was used to perform the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis for the different expression genes (DEGs). The DEGs were also typed into protein–protein interaction (PPI) networks to get the interaction data. Ten DEGs, including 7 hub genes from PPI analysis, were confirmed by real-time PCR. Results We found 90 and 323 DEGs at least 2-fold at days 14 and 28, respectively. At day 14, bony ankylosis showed upregulated DEGs, such as TLR8, SYK, NFKBIA, PTPRC, CD86, ITGAM, and ITGAL, indicating a stronger immune and inflammatory response and cell adhesion, while genes associated with anti-adhesion (PRG4) and inhibition of osteoblast differentiation (SFRP1) had higher expression in fibrous ankylosis. At day 28, bony ankylosis showed increased biological process related to new bone formation, while fibrous ankylosis was characterized by a prolonged immune and inflammatory reaction. Conclusions This study provides a differential gene expression profile between TMJ fibrous and bony ankylosis. Further study of these key genes may provide new ideas for future treatment of TMJ bony ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Kun Yang
- Tianjin Medical University, Tianjin, China (mainland)
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Yuan-Yuan Tian
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Hao Liu
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| | - Ying-Bin Yan
- Department of Oromaxillofacial - Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin, China (mainland)
| |
Collapse
|