1
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
2
|
Ma D, Zhang M, Feng J. Gut Microbiota Alleviates Intestinal Injury Induced by Extended Exposure to Light via Inhibiting the Activation of NLRP3 Inflammasome in Broiler Chickens. Int J Mol Sci 2024; 25:6695. [PMID: 38928401 PMCID: PMC11203690 DOI: 10.3390/ijms25126695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Light pollution is a potential risk for intestinal health in humans and animals. The gut microbiota is associated with the development of intestinal inflammation induced by extended exposure to light, but the underlying mechanism is not yet clear. The results of this study showed that extended exposure to light (18L:6D) damaged intestinal morphology, downregulated the expression of tight junction proteins, and upregulated the expression of the NLRP3 inflammasome and the concentration of pro-inflammatory cytokines. In addition, extended exposure to light significantly decreased the abundance of Lactobacillus, Butyricicoccus, and Sellimonas and increased the abundance of Bifidobacterium, unclassified Oscillospirales, Family_XIII_UCG-001, norank_f__norank_o__Clostridia_vadinBB60_group, and Defluviitaleaceae_UCG-01. Spearman correlation analysis indicated that gut microbiota dysbiosis positively correlated with the activation of the NLRP3 inflammasome. The above results indicated that extended exposure to light induced intestinal injury by NLRP3 inflammasome activation and gut microbiota dysbiosis. Antibiotic depletion intestinal microbiota treatment and cecal microbiota transplantation (CMT) from the 12L:12D group to 18L:6D group indicated that the gut microbiota alleviated intestinal inflammatory injury induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome. In conclusion, our findings indicated that the gut microbiota can alleviate intestinal inflammation induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (D.M.); (J.F.)
| | | |
Collapse
|
3
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tanya Marie Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sepideh Pakpour
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ed J Kuijper
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sukanya Neupane
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sadeghi
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Estello Nap-Hill
- Department of Medicine, Division of Gastroenterology, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Shin J, Baek GH, Cha B, Park SH, Lee JH, Kim JS, Kwon KS. Complementary Therapeutic Effect of Fecal Microbiota Transplantation in Ulcerative Colitis after the Response to Anti-Tumor Necrosis Factor Alpha Agent Was Lost: A Case Report. Biomedicines 2024; 12:800. [PMID: 38672155 PMCID: PMC11048579 DOI: 10.3390/biomedicines12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In patients with ulcerative colitis (UC), the development of an antidrug antibody (ADA) to anti-tumor necrosis factor (TNF)α agent is a crucial problem which aggravates the clinical course of the disease, being cited as one of the most common causes for discontinuing anti-TNFα treatment. This is due to ADA eventually causing secondary LOR, leading to discontinuation of anti-TNFα treatment. Recently, research on the microbiome and relationship between worsening UC and dysbiosis has been conducted. Further, investigations on the association between the microbiome and secondary LOR are increasing. Here, we present the therapeutic effect of fecal microbiota transplantation (FMT) on a 42-year-old man with secondary LOR and high ADA levels. FMT has recently been used for the treatment of, and for overcoming, drug resistance through microbiome modification. Stool samples were collected from the patient before and 4 weeks after FMT. Symptoms, including hematochezia and Mayo endoscopy sub-scores, improved after FMT, while ADA levels decreased by one-third to less than half the value (29 ng/mL) compared to before FMT (79 ng/mL). Additionally, the trough level of infliximab became measurable, which reflects the improvement in the area under the concentration (AUC). Butyricicoccus, Faecalibacterium, Bifidobacterium, Ligilactobacillus, Alistipes, and Odoribacter, which regulate immune responses and alleviate inflammation, also increased after FMT. We report a case in which microbiome modification by FMT increased the AUC of anti-TNFα in a patient who developed secondary LOR during anti-TNFα treatment, thereby improving symptoms and mucosal inflammation.
Collapse
Affiliation(s)
- Jongbeom Shin
- Department of Internal Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; (J.S.); (B.C.)
| | - Ga Hyeon Baek
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Boram Cha
- Department of Internal Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; (J.S.); (B.C.)
| | - Soo-Hyun Park
- Department of Neurology, Soon Chun Hyang University Hospital Seoul, Seoul 04401, Republic of Korea;
| | - Jung-Hwan Lee
- Division of Gastroenterology, Department of Hospital Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Kye Sook Kwon
- Department of Internal Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; (J.S.); (B.C.)
| |
Collapse
|
5
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
6
|
Chechushkov A, Desyukevich P, Yakovlev T, Al Allaf L, Shrainer E, Morozov V, Tikunova N. Sterile Fecal Microbiota Transplantation Boosts Anti-Inflammatory T-Cell Response in Ulcerative Colitis Patients. Int J Mol Sci 2024; 25:1886. [PMID: 38339169 PMCID: PMC10856413 DOI: 10.3390/ijms25031886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Ulcerative colitis is a chronic immune-mediated disease of unclear etiology, affecting people of different ages and significantly reducing the quality of life. Modern methods of therapy are mainly represented by anti-inflammatory drugs and are not aimed at a specific pathogenetic factor. In this study, we investigated the effect of transplantation of sterile stool filtrate from healthy donors on the induction of anti-inflammatory immune mechanisms. It was shown that performing such a procedure in patients with ulcerative colitis caused the appearance of T helper cells in the blood, which reacted to the content of sterile stool filtrates in an antigen-specific manner and produced IL-10. At the same time, cells of the same patients before therapy in response to the addition of sterile stool filtrates were less reactive and predominantly produced IL-4, indicating its pro-inflammatory skewing. The obtained data demonstrated the effect of an anti-inflammatory shift in the T-helper response after transplantation of sterile stool filtrate, which increased and persisted for at least three months after the procedure.
Collapse
Affiliation(s)
- Anton Chechushkov
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Advanced Engineering School, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Desyukevich
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Timir Yakovlev
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Lina Al Allaf
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Evgeniya Shrainer
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Autonomous Non-Commercial Organization “Center of New Medical Technologies in Akademgorodok”, 630090 Novosibirsk, Russia
| | - Vitalyi Morozov
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Nina Tikunova
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Hussan E, Kroemer A, Elsabbagh AM, Khan KM, Yazigi NA, Ekong UD, Subramanian S, Ghobrial SS, Guerra JF, Fishbein TM, Matsumoto CS, Kaufman SS. Idiopathic Ileal Ulceration After Intestinal Transplantation. Transplant Direct 2023; 9:e1529. [PMID: 37899780 PMCID: PMC10602531 DOI: 10.1097/txd.0000000000001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 10/31/2023] Open
Abstract
Background Idiopathic ileal ulceration after intestinal transplantation (ITx) has been discussed infrequently and has an uncertain natural history and relation to graft rejection. Herein, we review our experience with this pathology. Methods We retrospectively reviewed 225 ITx in 217 patients with minimum 1 y graft survival. Routine graft endoscopy was conducted up to twice weekly within the first 90 d after ITx, gradually decreasing to once yearly. Risks for ulceration over time were evaluated using Cox regression. Results Of 93 (41%) patients with ulcers, 50 were found within 90 d after ITx mostly via ileoscopy; delayed healing after biopsy appeared causal in the majority. Of the remaining 43 patients with ulcers found >90 d after ITx, 36 were after ileostomy closure. Multivariable modeling demonstrated within 90-d ulcer associations with increasing patient age (hazard ratio [HR], 1.027; P < 0.001) and loop ileostomy (versus Santulli ileostomy; HR, 0.271; P < 0.001). For ulcers appearing after ileostomy closure, their sole association was with absence of graft colon (HR, 7.232; P < 0.001). For ulcers requiring extended anti-microbial and anti-inflammatory therapy, associations included de novo donor-specific antibodies (HR, 3.222; P < 0.007) and nucleotide oligomerization domain mutations (HR, 2.772; P < 0.016). Whole-cohort post-ITx ulceration was not associated with either graft rejection (P = 0.161) or graft failure (P = 0.410). Conclusions Idiopathic ulceration after ITx is relatively common but has little independent influence on outcome; risks include ileostomy construction, colon-free ITx, immunologic mutation, and donor sensitization.
Collapse
Affiliation(s)
- Elsadig Hussan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | - Ahmed M. Elsabbagh
- Gastroenterology Surgical Center, Department of Surgery, Mansoura University, Mansoura, Egypt
| | - Khalid M. Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | - Nada A. Yazigi
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | - Udeme D. Ekong
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | - Sukanya Subramanian
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | | | - Juan-Francisco Guerra
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | - Cal S. Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| | - Stuart S. Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC
- Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
8
|
Diwan B, Yadav R, Singh A, Kumar D, Sharma R. Murine sterile fecal filtrate is a potent pharmacological agent that exerts age-independent immunomodulatory effects in RAW264.7 macrophages. BMC Complement Med Ther 2023; 23:362. [PMID: 37833682 PMCID: PMC10576334 DOI: 10.1186/s12906-023-04193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Sterile fecal filtrate (SFF) is being considered a safer alternative to fecal microbiota transplantation (FMT) therapy; however, its bioactive potency is very little understood. The present study thus assessed the age-dependent immunostimulatory and immunomodulatory attributes of murine SFF in vitro. METHODS SFF from young (Y-SFF) and old (O-SFF) Swiss albino mice were prepared. Immunostimulatory and immunomodulatory effects of SFF were evaluated in resting and lipopolysaccharide (LPS) stimulated macrophage cells by measuring intracellular reactive oxygen species (ROS), nitric oxide (NO) production, inflammatory cytokines profile, as well as gene expression of oxidative and inflammatory transcription factors. SFF were also evaluated for native antioxidant capacity by measuring DPPH and ABTS free radical scavenging activity. Bioactive components present in SFF were also determined by GC/MS analysis. RESULTS Both Y-SFF and O-SFF induced potent immunostimulatory effects characterized by changes in cell morphology, a significant increase in NO production, ROS levels, and an increased ratio of pro-inflammatory (IL-6, TNF-α, IL-1β) to anti-inflammatory (IL-10) secretory proteins although no significant aggravation in the transcription of NF-κB and Nrf-2 could be observed. Application of LPS to cells significantly augmented a pro-oxidative and pro-inflammatory response which was much higher in comparison to Y-SFF or O-SFF application alone and mediated by strong suppression of Nrf-2 gene expression. Pre-treatment of macrophages with both Y-SFF and O-SFF robustly attenuated cellular hyperresponsiveness to LPS characterized by significantly decreased levels of NO, ROS, and inflammatory cytokines while a concomitant increase in anti-inflammatory protein (IL-10) was observed. Further, both Y-SFF and O-SFF strongly resisted LPS-induced downregulation of Nrf-2 expression although O-SFF appeared to protect cells slightly better from the overall LPS threat. Neat SFF samples exhibited moderate antioxidant capacity and GC/MS analysis of SFF revealed diverse volatile organic compounds characterized by alkanes, organosulphur compounds, furans, amides, amino acids, and antimicrobial elements. CONCLUSION Our results indicate that SFF is a potent stimulant of macrophages and confers strong anti-inflammatory effects regardless of donor age thereby suggesting its therapeutic efficacy in lieu of FMT therapy.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rahul Yadav
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Anamika Singh
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Dinesh Kumar
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
9
|
Zhu MZ, Yang MF, Song Y, Xu HM, Xu J, Yue NN, Zhang Y, Tian CM, Shi RY, Liang YJ, Yao J, Wang LS, Nie YQ, Li DF. Exploring the efficacy of herbal medicinal products as oral therapy for inflammatory bowel disease. Biomed Pharmacother 2023; 165:115266. [PMID: 37541177 DOI: 10.1016/j.biopha.2023.115266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.
Collapse
Affiliation(s)
- Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yang Song
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
10
|
Ma Z, Akhtar M, Pan H, Liu Q, Chen Y, Zhou X, You Y, Shi D, Liu H. Fecal microbiota transplantation improves chicken growth performance by balancing jejunal Th17/Treg cells. MICROBIOME 2023; 11:137. [PMID: 37344888 DOI: 10.1186/s40168-023-01569-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Intestinal inflammation has become a threatening concern in chicken production worldwide and is closely associated with Th17/Treg cell imbalance. Several studies described that gut microbiota is significantly implicated in chicken growth by modulating intestinal immune homeostasis and immune cell differentiation. Whether reshaping gut microbiota by fecal microbiota transplantation (FMT) could improve chicken growth by balancing Th17/Treg cells is an interesting question. RESULTS Here, the chickens with significantly different body weight from three different breeds (Turpan cockfighting × White Leghorn chickens, white feather chickens, and yellow feather chickens) were used to compare Th17 and Treg cells. qPCR and IHC staining results indicated that Th17 cell-associated transcriptional factors Stat3 and rorγt and cytokines IL-6, IL-17A, and IL-21 were significantly (P < 0.05) higher in the jejunum of low body weight chickens, while Treg cell-associated transcriptional factor foxp3 and cytokines TGF-β and IL-10 were significantly (P < 0.05) lower in the jejunum of low body weight chickens, indicating imbalanced Th17/Treg cells were closely related to chicken growth performance. Transferring fecal microbiota from the healthy donor with better growth performance and abundant Lactobacillus in feces to 1-day-old chicks markedly increased growth performance (P < 0.001), significantly decreased Th17 cell-associated transcriptional factors and cytokines, and increased Treg cell-associated transcriptional factors and cytokines in the jejunum (P < 0.05). Furthermore, FMT increased the abundance of Lactobacillus (FMT vs Con; 84.98% vs 66.94%). Besides, the metabolites of tryptophan including serotonin, indole, and 5-methoxyindoleacetate were increased as well, which activated their receptor aryl-hydrocarbon-receptor (AhR) and expressed more CYP1A2 and IL-22 to maintain Th17/Treg cell balance and immune homeostasis. CONCLUSION These findings suggested that imbalanced Th17/Treg cells decreased chicken growth performance, while FMT-reshaped gut microbiota, i.e., higher Lactobacilli, increased chicken growth performance by balancing Th17/Treg cells. Video Abstract.
Collapse
Affiliation(s)
- Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinxin Zhou
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingting You
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
11
|
Tian D, Xu W, Pan W, Zheng B, Yang W, Jia W, Liu Y, Garstka MA, Gao Y, Yu H. Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA-induced MEK1/2 signaling pathway. EMBO J 2023; 42:e111139. [PMID: 36382711 PMCID: PMC9811615 DOI: 10.15252/embj.2022111139] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest-derived cell (ENCC) transplantation is a potential therapeutic strategy; however, so far with poor efficacy. Here, we assessed whether and how fecal microbiota transplantation (FMT) could improve ENCC transplantation in a rat model of hypoganglionosis; a condition similar to HSCR, with less intestinal innervation. We found that the hypoganglionosis intestinal microenvironment negatively influenced the ENCC functional phenotype in vitro and in vivo. Combining 16S rDNA sequencing and targeted mass spectrometry revealed microbial dysbiosis and reduced short-chain fatty acid (SCFA) production in the hypoganglionic gut. FMT increased the abundance of Bacteroides and Clostridium, SCFA production, and improved outcomes following ENCC transplantation. SCFAs alone stimulated ENCC proliferation, migration, and supported ENCC transplantation. Transcriptome-wide mRNA sequencing identified MAPK signaling as the top differentially regulated pathway in response to SCFA exposure, and inhibition of MEK1/2 signaling abrogated the SCFA-mediated effects on ENCC. This study demonstrates that FMT improves cell therapy for hypoganglionosis via short-chain fatty acid metabolism-induced MEK1/2 signaling.
Collapse
Affiliation(s)
- Donghao Tian
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| | - Wenyao Xu
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| | - Weikang Pan
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Baijun Zheng
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Weili Yang
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Wanying Jia
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| | - Malgorzata A Garstka
- Core Research Laboratory, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Hui Yu
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
12
|
Xu W, Wan S, Xie B, Song X. Novel potential therapeutic targets of alopecia areata. Front Immunol 2023; 14:1148359. [PMID: 37153617 PMCID: PMC10154608 DOI: 10.3389/fimmu.2023.1148359] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity. The immune collapse of the hair follicle, where interferon-gamma (IFN-γ) and CD8+ T cells accumulate, is a key factor in AA. However, the exact functional mechanism remains unclear. Therefore, AA treatment has poor efficacy maintenance and high relapse rate after drug withdrawal. Recent studies show that immune-related cells and molecules affect AA. These cells communicate through autocrine and paracrine signals. Various cytokines, chemokines and growth factors mediate this crosstalk. In addition, adipose-derived stem cells (ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific regulatory factors have crucial roles in intercellular communication without a clear cause, suggesting potential new targets for AA therapy. This review discusses the latest research on the possible pathogenesis and therapeutic targets of AA.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiuzu Song,
| |
Collapse
|
13
|
Kim KH, Chung Y, Huh JW, Park DJ, Cho Y, Oh Y, Jeong H, Yoon J, Kang JH, Shin HS, Kim HC, Kwon SK, Seo KY, Oh SH, Seong JK, Ha SJ, Nam KT, Kim JF. Gut microbiota of the young ameliorates physical fitness of the aged in mice. MICROBIOME 2022; 10:238. [PMID: 36567320 PMCID: PMC9791737 DOI: 10.1186/s40168-022-01386-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/06/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Aging is a natural process that an organism gradually loses its physical fitness and functionality. Great efforts have been made to understand and intervene in this deteriorating process. The gut microbiota affects host physiology, and dysbiosis of the microbial community often underlies the pathogenesis of host disorders. The commensal microbiota also changes with aging; however, the interplay between the microbiota and host aging remains largely unexplored. Here, we systematically examined the ameliorating effects of the gut microbiota derived from the young on the physiology and phenotypes of the aged. RESULTS As the fecal microbiota was transplanted from young mice at 5 weeks after birth into 12-month-old ones, the thickness of the muscle fiber and grip strength were increased, and the water retention ability of the skin was enhanced with thickened stratum corneum. Muscle thickness was also marginally increased in 25-month-old mice after transferring the gut microbiota from the young. Bacteria enriched in 12-month-old mice that received the young-derived microbiota significantly correlated with the improved host fitness and altered gene expression. In the dermis of these mice, transcription of Dbn1 was most upregulated and DBN1-expressing cells increased twice. Dbn1-heterozygous mice exhibited impaired skin barrier function and hydration. CONCLUSIONS We revealed that the young-derived gut microbiota rejuvenates the physical fitness of the aged by altering the microbial composition of the gut and gene expression in muscle and skin. Dbn1, for the first time, was found to be induced by the young microbiota and to modulate skin hydration. Our results provide solid evidence that the gut microbiota from the young improves the vitality of the aged. Video Abstract.
Collapse
Affiliation(s)
- Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yusook Chung
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Ji-Won Huh
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Dong Jin Park
- Department of Biochemistry and Division of Life Sciences, Yonsei University, Seoul, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yeseul Oh
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jaekyung Yoon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Hae-Sol Shin
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Division of Bioinfrastructure, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Soon-Kyeong Kwon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Division of Applied Life Science (Brain Korea 21), Gyeongsang National University, Jinju, Korea
| | - Kyoung Yul Seo
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Korea
| | - Sang-Jun Ha
- Department of Biochemistry and Division of Life Sciences, Yonsei University, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Korea.
- Microbiome Initiative and Strategic Initiative for Microbiomes in Agriculture and Food (iMAF), Yonsei University, Seoul, Korea.
| |
Collapse
|
14
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
15
|
Zeng L, Deng Y, Yang K, Chen J, He Q, Chen H. Safety and efficacy of fecal microbiota transplantation for autoimmune diseases and autoinflammatory diseases: A systematic review and meta-analysis. Front Immunol 2022; 13:944387. [PMID: 36248877 PMCID: PMC9562921 DOI: 10.3389/fimmu.2022.944387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the safety and efficacy of fecal microbiota transplantation for autoimmune diseases and autoinflammatory diseases. Methods Relevant literature was retrieved from the PubMed database, Embase database, Cochrane Library database, etc. The search period is from the establishment of the database to January 2022. The outcomes include clinical symptoms, improvement in biochemistry, improvement in intestinal microbiota, improvement in the immune system, and adverse events. Literature screening and data extraction were independently carried out by two researchers according to the inclusion and exclusion criteria, and RevMan 5.3 software was used for statistics and analysis. Results Overall, a total of 14 randomized controlled trials (RCTs) involving six types of autoimmune diseases were included. The results showed the following. 1) Type 1 diabetes mellitus (T1DM): compared with the autologous fecal microbiota transplantation (FMT) group (control group), the fasting plasma C peptide in the allogenic FMT group at 12 months was lower. 2) Systemic sclerosis: at week 4, compared with one of two placebo controls, three patients in the experimental group reported a major improvement in fecal incontinence. 3) Ulcerative colitis, pediatric ulcerative colitis, and Crohn's disease: FMT may increase clinical remission, clinical response, and endoscopic remission for patients with ulcerative colitis and increase clinical remission for patients with Crohn's disease. 4) Psoriatic arthritis: there was no difference in the ratio of ACR20 between the two groups. Conclusion Based on current evidence, the application of FMT in the treatment of autoimmune diseases is effective and relatively safe, and it is expected to be used as a method to induce remission of active autoimmune diseases. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021235055, identifier CRD42021235055.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ying Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Junpeng Chen
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
16
|
Yang H, Qu Y, Gao Y, Sun S, Wu R, Wu J. Research Progress on the Correlation between the Intestinal Microbiota and Food Allergy. Foods 2022; 11:foods11182913. [PMID: 36141041 PMCID: PMC9498665 DOI: 10.3390/foods11182913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The increasing incidence of food allergy is becoming a substantial public health concern. Increasing evidence suggests that alterations in the composition of the intestinal microbiota play a part in the development of food allergy. Additionally, the application of probiotics to correct gut microbiota imbalances and regulate food allergy has become a research hotspot. However, the mechanism by which the gut microbiota regulates food allergy and the efficacy of probiotics are still in the preliminary exploration stage, and there are no clear and specific conclusions. The aim of this review is to provide information regarding the immune mechanism underlying food allergy, the correlation between the intestinal microbiota and food allergy, a detailed description of causation, and mechanisms by which the intestinal microbiota regulates food allergy. Subsequently, we highlight how probiotics modulate the gut microbiome–immune axis to alleviate food allergy. This study will contribute to the dovetailing of bacterial therapeutics with immune system in allergic individuals to prevent food allergy and ameliorate food allergy symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Rina Wu
- Correspondence: or ; Tel./Fax: +86-24-88487161
| | | |
Collapse
|
17
|
Zaytsoff SJM, Montina T, Boras VF, Brassard J, Moote PE, Uwiera RRE, Inglis GD. Microbiota Transplantation in Day-Old Broiler Chickens Ameliorates Necrotic Enteritis via Modulation of the Intestinal Microbiota and Host Immune Responses. Pathogens 2022; 11:pathogens11090972. [PMID: 36145404 PMCID: PMC9503007 DOI: 10.3390/pathogens11090972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A microbiota transplant (MT) originating from mature adult chicken ceca and propagated in bioreactors was administered to day-old broiler chicks to ascertain the degree to which, and how, the MT affects Clostridium perfringens (Cp)-incited necrotic enteritis (NE). Using a stress predisposition model of NE, birds administered the MT and challenged with Cp showed fewer necrotic lesions, and exhibited a substantially higher α- and β-diversity of bacteria in their jejunum and ceca. Birds challenged with Cp and not administered the MT showed decreased Lactobacillus and increased Clostridium sensu strico 1 in the jejunum. In ceca, Megamonas, a genus containing butyrate-producing bacteria, was only present in birds administered the MT, and densities of this genus were increased in birds challenged with Cp. Metabolite profiles in cecal digesta were altered in birds administered the MT and challenged with the pathogen; 59 metabolites were differentially abundant following MT treatment, and the relative levels of short chain fatty acids, butyrate, valerate, and propionate, were decreased in birds with NE. Birds administered the MT and challenged with Cp showed evidence of enhanced restoration of intestinal barrier functions, including elevated mRNA of MUC2B, MUC13, and TJP1. Likewise, birds administered the MT exhibited higher mRNA of IL2, IL17A, and IL22 at 2-days post-inoculation with Cp, indicating that these birds were better immunologically equipped to respond to pathogen challenge. Collectively, study findings demonstrated that administering a MT containing a diverse mixture of microorganisms to day-old birds ameliorated NE in broilers by increasing bacterial diversity and promoting positive immune responses.
Collapse
Affiliation(s)
- Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Paul E. Moote
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
18
|
Nguyen HH, Fritzler MJ, Swain MG. A Review on Biomarkers for the Evaluation of Autoimmune Cholestatic Liver Diseases and Their Overlap Syndromes. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:914505. [PMID: 39086971 PMCID: PMC11285550 DOI: 10.3389/fmmed.2022.914505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/30/2022] [Indexed: 08/02/2024]
Abstract
Autoimmune cholestatic liver disease includes both Primary Biliary Cholangitis (PBC) and Primary Sclerosing Cholangitis (PSC). Both conditions result in impairment of hepatic bile flow ultimately leading to chronic liver injury, liver fibrosis and eventually end stage cirrhosis. Early and accurate diagnosis are important for the risk stratification, follow up and management of these patients. The underlying pathogenesis of these conditions have not been completely resolved and poses a barrier for the development of new diagnostic and prognostics tools. Current research work suggests that the pathogenesis of autoimmune cholestatic liver disease results from environmental, genetic, and a large component of underlying immune dysfunction. While the current available serum biomarkers and imaging modalities showcases progression in precision medicine for the management of autoimmune cholestatic liver disease, development of new biomarkers are still an area of need in this field. In this review, we will discuss the current and emerging biomarkers in patients with PBC, PSC, and a special population that exhibit overlap syndrome with autoimmune hepatitis (AIH). The use of these biomarkers for diagnosis and prognosis of these patients will be reviewed through the lens of the current understanding of the complex immune pathophysiology of these conditions.
Collapse
Affiliation(s)
- Henry H. Nguyen
- University of Calgary Liver Unit, Department of Medicine & Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marvin J. Fritzler
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G. Swain
- University of Calgary Liver Unit, Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Rees NP, Shaheen W, Quince C, Tselepis C, Horniblow RD, Sharma N, Beggs AD, Iqbal TH, Quraishi MN. Systematic review of donor and recipient predictive biomarkers of response to faecal microbiota transplantation in patients with ulcerative colitis. EBioMedicine 2022; 81:104088. [PMID: 35660786 PMCID: PMC9163485 DOI: 10.1016/j.ebiom.2022.104088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nia Paddison Rees
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Walaa Shaheen
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | | | - Chris Tselepis
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Clinical Sciences, School of Biomedical Sciences, University of Birmingham, UK
| | - Richard D Horniblow
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Clinical Sciences, School of Biomedical Sciences, University of Birmingham, UK
| | - Naveen Sharma
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Andrew D Beggs
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq H Iqbal
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Microbiology and Infection, University of Birmingham, UK
| | - Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
20
|
Facciotti F. Modulation of intestinal immune cell responses by eubiotic or dysbiotic microbiota in inflammatory bowel diseases. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Manzoor R, Ahmed W, Afify N, Memon M, Yasin M, Memon H, Rustom M, Al Akeel M, Alhajri N. Trust Your Gut: The Association of Gut Microbiota and Liver Disease. Microorganisms 2022; 10:1045. [PMID: 35630487 PMCID: PMC9146349 DOI: 10.3390/microorganisms10051045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota composition is important for nutrient metabolism, mucosal barrier function, immunomodulation, and defense against pathogens. Alterations in the gut microbiome can disturb the gut ecosystem. These changes may lead to the loss of beneficial bacteria or an increase in potentially pathogenic bacteria. Furthermore, these have been shown to contribute to the pathophysiology of gastrointestinal and extra-intestinal diseases. Pathologies of the liver, such as non-alcoholic liver disease, alcoholic liver disease, cirrhosis, hepatocellular carcinoma, autoimmune hepatitis, viral hepatitis, and primary sclerosing cholangitis have all been linked to changes in the gut microbiome composition. There is substantial evidence that links gut dysbiosis to the progression and complications of these pathologies. This review article aimed to describe the changes seen in the gut microbiome in liver diseases and the association between gut dysbiosis and liver disease, and finally, explore treatment options that may improve gut dysbiosis in patients with liver disease.
Collapse
Affiliation(s)
- Ridda Manzoor
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Weshah Ahmed
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Nariman Afify
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mashal Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Maryam Yasin
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohammad Rustom
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohannad Al Akeel
- Division of Family Medicine, Department of Health, Abu Dhabi P.O. Box 5674, United Arab Emirates;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 11001, United Arab Emirates
| |
Collapse
|
22
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
23
|
Abuqwider J, Altamimi M, Mauriello G. Limosilactobacillus reuteri in Health and Disease. Microorganisms 2022; 10:microorganisms10030522. [PMID: 35336098 PMCID: PMC8953724 DOI: 10.3390/microorganisms10030522] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Limosilactobacillus reuteri is a microorganism with valuable probiotic qualities that has been widely employed in humans to promote health. It is a well-studied probiotic bacterium that exerts beneficial health effects due to several metabolic mechanisms that enhance the production of anti-inflammatory cytochines and modulate the gut microbiota by the production of antimicrobial molecules, including reuterin. This review provides an overview of the data that support the role of probiotic properties, and the antimicrobial and immunomodulatory effects of some L. reuteri strains in relation to their metabolite production profile on the amelioration of many diseases and disorders. Although the results discussed in this paper are strain dependent, they show that L. reuteri, by different mechanisms and various metabolites, may control body weight and obesity, improve insulin sensitivity and glucose homeostasis, increase gut integrity and immunomodulation, and attenuate hepatic disorders. Gut microbiota modulation by ingesting probiotic L. reuteri strains could be a promising preventative and therapeutic approach against many diseases and disorders.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
- Correspondence: ; Tel.: +39-081-2539452
| |
Collapse
|
24
|
Bilsen MP, Lambregts MM, van Prehn J, Kuijper EJ. Faecal microbiota replacement to eradicate antimicrobial resistant bacteria in the intestinal tract - a systematic review. Curr Opin Gastroenterol 2022; 38:15-25. [PMID: 34636363 PMCID: PMC8654246 DOI: 10.1097/mog.0000000000000792] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance is a rising threat to global health and is associated with increased mortality. Intestinal colonisation with multidrug-resistant organisms (MDRO) can precede invasive infection and facilitates spread within communities and hospitals. Novel decolonisation strategies, such as faecal microbiota transplantation (FMT), are being explored. The purpose of this review is to provide an update on how the field of FMT for MDRO decolonisation has developed during the past year and to assess the efficacy of FMT for intestinal MDRO decolonisation. RECENT FINDINGS Since 2020, seven highly heterogenous, small, nonrandomised cohort studies and five case reports have been published. In line with previous literature, decolonisation rates ranged from 20 to 90% between studies and were slightly higher for carbapenem-resistant Enterobacteriaceae than vancomycin-resistant Enterococcus. Despite moderate decolonisation rates in two studies, a reduction in MDRO bloodstream and urinary tract infections was observed. SUMMARY AND IMPLICATIONS Although a number of smaller cohort studies show some effect of FMT for MDRO decolonisation, questions remain regarding the true efficacy of FMT (taking spontaneous decolonisation into account), the optimal route of administration, the role of antibiotics pre and post-FMT and the efficacy in different patient populations. The observed decrease in MDRO infections post-FMT warrants further research.
Collapse
Affiliation(s)
| | | | - Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden
| | - Ed J. Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
25
|
Allegretti JR, Kelly CR, Grinspan A, Mullish BH, Hurtado J, Carrellas M, Marcus J, Marchesi JR, McDonald JAK, Gerardin Y, Silverstein M, Pechlivanis A, Barker GF, Miguens Blanco J, Alexander JL, Gallagher KI, Pettee W, Phelps E, Nemes S, Sagi SV, Bohm M, Kassam Z, Fischer M. Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent C. difficile Infection. Inflamm Bowel Dis 2021; 27:1371-1378. [PMID: 33155639 PMCID: PMC8376126 DOI: 10.1093/ibd/izaa283] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recurrent Clostridioides difficile infection (CDI) in patients with inflammatory bowel disease (IBD) is a clinical challenge. Fecal microbiota transplantation (FMT) has emerged as a recurrent CDI therapy. Anecdotal concerns exist regarding worsening of IBD activity; however, prospective data among IBD patients are limited. METHODS Secondary analysis from an open-label, prospective, multicenter cohort study among IBD patients with 2 or more CDI episodes was performed. Participants underwent a single FMT by colonoscopy (250 mL, healthy universal donor). Secondary IBD-related outcomes included rate of de novo IBD flares, worsening IBD, and IBD improvement-all based on Mayo or Harvey-Bradshaw index (HBI) scores. Stool samples were collected for microbiome and targeted metabolomic profiling. RESULTS Fifty patients enrolled in the study, among which 15 had Crohn's disease (mean HBI, 5.8 ± 3.4) and 35 had ulcerative colitis (mean partial Mayo score, 4.2 ± 2.1). Overall, 49 patients received treatment. Among the Crohn's disease cohort, 73.3% (11 of 15) had IBD improvement, and 4 (26.6%) had no disease activity change. Among the ulcerative colitis cohort, 62% (22 of 34) had IBD improvement, 29.4% (11 of 34) had no change, and 4% (1 of 34) experienced a de novo flare. Alpha diversity significantly increased post-FMT, and ulcerative colitis patients became more similar to the donor than Crohn's disease patients (P = 0.04). CONCLUSION This prospective trial assessing FMT in IBD-CDI patients suggests IBD outcomes are better than reported in retrospective studies.
Collapse
Affiliation(s)
- Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Colleen R Kelly
- Division of Gastroenterology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ari Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jonathan Hurtado
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Madeline Carrellas
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jenna Marcus
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Julie A K McDonald
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | | | - Alexandros Pechlivanis
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Center for Interdisciplinary Research and Innovation, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Grace F Barker
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jesus Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James L Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kate I Gallagher
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | | - Emmalee Phelps
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara Nemes
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sashidhar V Sagi
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Bohm
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Monika Fischer
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
26
|
Abstract
Despite identification of numerous associations between microbiomes and diseases, the complexity of the human microbiome has hindered identification of individual species and strains that are causative in host phenotype or disease. Uncovering causative microbes is vital to fully understand disease processes and to harness the potential therapeutic benefits of microbiota manipulation. Developments in sequencing technology, animal models, and bacterial culturing have facilitated the discovery of specific microbes that impact the host and are beginning to advance the characterization of host-microbiome interaction mechanisms. We summarize the historical and contemporary experimental approaches taken to uncover microbes from the microbiota that affect host biology and describe examples of commensals that have specific effects on the immune system, inflammation, and metabolism. There is still much to learn, and we lay out challenges faced by the field and suggest potential remedies for common pitfalls encountered in the hunt for causative commensal microbes. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Ngo VL, Gewirtz AT. Microbiota as a potentially-modifiable factor influencing COVID-19. Curr Opin Virol 2021; 49:21-26. [PMID: 34000641 PMCID: PMC8059947 DOI: 10.1016/j.coviro.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Impacts of respiratory tract viruses have long been appreciated to highly heterogeneous both between and within various populations. The SARS-CoV-2 pandemic, which is the first time that a pathogen's spread across the globe has been extensively monitored by direct detection of the pathogen itself rather just than the morbidity left in its wake, indicates such heterogeneity is not limited to outcomes of infections but whether infection of a particular host occurs at all. This suggests an important role for yet to be discovered environmental (i.e. non-genetic) factors that influence whether an exposure to the virus initiates a productive infection and, moreover, the severity of disease that results. This article discusses the emerging hypothesis that the composition of a host's commensal microbial communities, that is, its 'microbiome', may be one such determinant that influences outcomes following encounters with respiratory viral pathogens in general and SARS-CoV-2 in particular. Specifically, we will review the rationales and evidence that supports this hypothesis and, moreover, speculate as to possible approaches to manipulate microbiota to ameliorate disease induced by respiratory viral pathogens.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
28
|
The Role of Microbiota in Primary Sclerosing Cholangitis and Related Biliary Malignancies. Int J Mol Sci 2021; 22:ijms22136975. [PMID: 34203536 PMCID: PMC8268159 DOI: 10.3390/ijms22136975] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an immune-related cholangiopathy characterized by biliary inflammation, cholestasis, and multifocal bile duct strictures. It is associated with high rates of progression to end-stage liver disease as well as a significant risk of cholangiocarcinoma (CCA), gallbladder cancer, and colorectal carcinoma. Currently, no effective medical treatment with an impact on the overall survival is available, and liver transplantation is the only curative treatment option. Emerging evidence indicates that gut microbiota is associated with disease pathogenesis. Several studies analyzing fecal and mucosal samples demonstrate a distinct gut microbiome in individuals with PSC compared to healthy controls and individuals with inflammatory bowel disease (IBD) without PSC. Experimental mouse and observational human data suggest that a diverse set of microbial functions may be relevant, including microbial metabolites and bacterial processing of pharmacological agents, bile acids, or dietary compounds, altogether driving the intrahepatic inflammation. Despite critical progress in this field over the past years, further functional characterization of the role of the microbiota in PSC and related malignancies is needed. In this review, we discuss the available data on the role of the gut microbiome and elucidate important insights into underlying pathogenic mechanisms and possible microbe-altering interventions.
Collapse
|
29
|
Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021; 12:642166. [PMID: 34163468 PMCID: PMC8215716 DOI: 10.3389/fimmu.2021.642166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota. The standard available therapies for chronic inflammatory disorders in children largely aim to treat symptoms. Although constant efforts are being made to maximize the quality of life for children in the long-term, sustained improvements are still difficult to achieve. Additional challenges are the changing physiology associated with growth and development of children, a population that is particularly susceptible to medication-related adverse effects. In this review, we explore new promising therapeutic approaches aimed at modulation of either gut microbiota or the activity of the immune system to induce a long-lasting remission of chronic inflammatory disorders. Recent preclinical studies and clinical trials have evaluated new approaches, for instance the adoptive transfer of immune cells, with genetically engineered regulatory T cells expressing antigen-specific chimeric antigen receptors. These approaches have revolutionized cancer treatments and have the potential for the protection of high-risk children from developing autoimmune diseases and effective management of inflammatory disorders. The review also focuses on the findings of studies that indicate that the responses to a variety of immunotherapies can be enhanced by strategic manipulation of gut microbiota, thus emphasizing on the importance of proper interaction between the gut microbiota and immune system for sustained health benefits and improvement of the quality of life of pediatric patients.
Collapse
Affiliation(s)
- Anna Torun
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hupalowska
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Zhang W, Chen X, Wong KC. Noninvasive early diagnosis of intestinal diseases based on artificial intelligence in genomics and microbiome. J Gastroenterol Hepatol 2021; 36:823-831. [PMID: 33880763 DOI: 10.1111/jgh.15500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The maturing development in artificial intelligence (AI) and genomics has propelled the advances in intestinal diseases including intestinal cancer, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). On the other hand, colorectal cancer is the second most deadly and the third most common type of cancer in the world according to GLOBOCAN 2020 data. The mechanisms behind IBD and IBS are still speculative. The conventional methods to identify colorectal cancer, IBD, and IBS are based on endoscopy or colonoscopy to identify lesions. However, it is invasive, demanding, and time-consuming for early-stage intestinal diseases. To address those problems, new strategies based on blood and/or human microbiome in gut, colon, or even feces were developed; those methods took advantage of high-throughput sequencing and machine learning approaches. In this review, we summarize the recent research and methods to diagnose intestinal diseases with machine learning technologies based on cell-free DNA and microbiome data generated by amplicon sequencing or whole-genome sequencing. Those methods play an important role in not only intestinal disease diagnosis but also therapy development in the near future.
Collapse
Affiliation(s)
- Weitong Zhang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.,Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| |
Collapse
|
31
|
Zhou G, Zeng J, Peng L, Wang L, Zheng W, Yang Y. Fecal microbiota transplantation for membranous nephropathy. CEN Case Rep 2021; 10:261-264. [PMID: 33387212 DOI: 10.1007/s13730-020-00560-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Membranous nephropathy is a pathological type of nephrotic syndrome. Current treatments including supportive therapy, corticosteroids, immunosuppressive agents are not effective for all patients. New therapies are needed to treat the disease safely and effectively. Gut microbiota may contribute to the pathogenesis of this disease. Fecal microbiota transplantation (FMT) has made achievements in many diseases. Here, we report a case in which FMT is used to treat a patient with membranous nephropathy and chronic diarrhea, whose symptoms ameliorated and renal function improved.
Collapse
Affiliation(s)
- Guanzhou Zhou
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical College of Nankai University, Tianjin, 300071, China
| | - Jiaqi Zeng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical College of Nankai University, Tianjin, 300071, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lei Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Zheng
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
32
|
Cococcioni L, Panelli S, Varotto-Boccazzi I, Carlo DD, Pistone D, Leccese G, Zuccotti GV, Comandatore F. IBDs and the pediatric age: Their peculiarities and the involvement of the microbiota. Dig Liver Dis 2021; 53:17-25. [PMID: 33189590 DOI: 10.1016/j.dld.2020.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory Bowel Diseases (IBDs) are gastrointestinal disorders characterized by chronic, relapsing inflammation, with growing incidence worldwide over the last decades and distinctive features in the pediatric age. An increasing body of evidence indicates that gut microbiota plays a major role in inflammatory disorders, including IBDs. In this review we will discuss the most recent evidences on dysbiotic changes associated with gut inflammation, as well as environmental and genetic factors contributing to IBD pathogenesis, with a focus on the peculiarities of the pediatric age.
Collapse
Affiliation(s)
- Lucia Cococcioni
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Università di Milano, Italy
| | - Simona Panelli
- "L. Sacco" Department of Biomedical and Clinical Sciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy.
| | | | - Domenico Di Carlo
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy
| | - Dario Pistone
- Department of Biomedical Sciences for Health, University di Milano, Italy
| | | | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Università di Milano, Italy; "L. Sacco" Department of Biomedical and Clinical Sciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy
| |
Collapse
|
33
|
Basson AR, Zhou Y, Seo B, Rodriguez-Palacios A, Cominelli F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl Res 2020; 226:1-11. [PMID: 32585148 PMCID: PMC7308243 DOI: 10.1016/j.trsl.2020.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
The term autologous fecal microbiota transplantation (a-FMT) refers herein to the use of one's feces during a healthy state for later use to restore gut microbial communities after perturbations. Generally, heterologous fecal microbiota transplantation (h-FMT), where feces from a ``healthy" donor is transplanted into a person with illness, has been used to treat infectious diseases such as recurrent Clostridioides difficile infection (CDI), with cure rates of up to 90%. In humans, due to limited response to medicines, h-FMT has become a hallmark intervention to treat CDI. Extrapolating the benefits from CDI, h-FMT has been attempted in various diseases, including inflammatory bowel disease (IBD), but clinical response has been variable and less effective (ranging between 24% and 50%). Differences in h-FMT clinical response could be because CDI is caused by a Clostridial infection, whereas IBD is a complex, microbiome-driven immunological inflammatory disorder that presents predominantly within the gut wall of genetically-susceptible hosts. FMT response variability could also be due to differences in microbiome composition between donors, recipients, and within individuals, which vary with diet, and environments, across regions. While donor selection has emerged as a key factor in FMT success, the use of heterologous donor stool still places the recipient at risk of exposure to infectious/pathogenic microorganisms. As an implementable solution, herein we review the available literature on a-FMT, and list some considerations on the benefits of a-FMT for IBD.
Collapse
Key Words
- a-fmt, autologous fecal microbiota transplantation
- cd, crohn's disease
- cdi, clostridium difficile infection
- ci, confidence interval
- fmt, fecal microbiota transplantation
- hgm, human gut microbiota
- h-fmt, heterologous fecal microbiota transplantation
- ibd, inflammatory bowel disease
- ibs, irritable bowel syndrome
- rct, randomized controlled trial
- uc, ulcerative colitis
Collapse
Affiliation(s)
- Abigail R Basson
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Yibing Zhou
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brian Seo
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
34
|
Abstract
In people, fecal microbiota transplantation is recognized as the best treatment modality for recurrent Clostridioides difficile infection in people, and its value is currently investigated in the treatment of other diseases associated with an abnormal gut microbiome. In dogs, intestinal dysbiosis has been documented in many acute and chronic digestive diseases as well as in diseases of other organ systems. There are only few published studies evaluating the benefits of fecal microbiota transplantation (FMT) in canine gastrointestinal disorders. They provide evidence that FMT may be beneficial in the treatment of acute intestinal diseases and hope that the technique might also be useful for the management of chronic enteropathies.
Collapse
|
35
|
Segal JP, Mullish BH, Quraishi MN, Iqbal T, Marchesi JR, Sokol H. Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therap Adv Gastroenterol 2020; 13:1756284820946904. [PMID: 32952613 PMCID: PMC7475788 DOI: 10.1177/1756284820946904] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023] Open
Abstract
Faecal microbiota transplantation (FMT) is currently a recommended therapy for recurrent/refractory Clostridioides difficile infection (CDI). The success of FMT for CDI has led to interest in its therapeutic potential in many other disorders. The mechanisms that underpin the efficacy of FMT are not fully understood. Importantly, FMT remains a crucial treatment in managing CDI and understanding the mechanisms that underpin its success will be critical to improve its clinical efficacy, safety and usability. Furthermore, a deeper understanding of this may allow us to expose FMT's full potential as a therapeutic tool for other disease states. This review will explore the current understanding of the mechanisms underlying the efficacy of FMT across a variety of diseases.
Collapse
Affiliation(s)
- Jonathan P. Segal
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, South Wharf Rd, London W2 1NY, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Benjamin H. Mullish
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, UK
| | - Mohammed N. Quraishi
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq Iqbal
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Harry Sokol
- Gastroenterology Department, INSERM, Centre de Recherche Saint Antoine, CRSA, AP-HP, Sorbonne Université, Saint Antoine Hospital, Paris, France
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
36
|
McIlroy JR, Mullish BH, Goldenberg SD, Ianiro G, Marchesi JR. Intestinal microbiome transfer, a novel therapeutic strategy for COVID-19 induced hyperinflammation?: In reply to, 'COVID-19: Immunology and treatment options', Felsenstein, Herbert McNamara et al. 2020'. Clin Immunol 2020; 218:108542. [PMID: 32663514 PMCID: PMC7354373 DOI: 10.1016/j.clim.2020.108542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- James R McIlroy
- EnteroBiotix Limited, Aberdeen Blood Transfusion Centre, Foresterhill, Aberdeen, United Kingdom; School of Medicine, Medical Science & Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom; School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
37
|
Little R, Wine E, Kamath BM, Griffiths AM, Ricciuto A. Gut microbiome in primary sclerosing cholangitis: A review. World J Gastroenterol 2020; 26:2768-2780. [PMID: 32550753 PMCID: PMC7284173 DOI: 10.3748/wjg.v26.i21.2768] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and stricturing. Exploration of the pathogenesis of PSC in light of its association with inflammatory bowel disease (IBD) and the “gut-liver” axis is an emerging area of interest. A growing number of studies have begun to elucidate the role of the gut microbiota, its metabolites and its influence on host immune responses in the development of PSC and PSC-IBD. Studies of the fecal microbiota have highlighted enriched levels of certain species, including Veillonella, Streptococcus and Enterococcus, among others. A heightened immune response to enteric dysbiosis and bacterial translocation have also been implicated. For example, Klebsiella pneumoniae strains derived from gnotobiotic mice transplanted with PSC-IBD microbiota were found to induce pore formation in human intestinal epithelial cells and enhanced Th17 responses. Gut microbes have additionally been hypothesized to be implicated in PSC pathogenesis through their role in the synthesis of various metabolites, including bile acids (BAs), which function as signaling molecules with important gut and hepatic effects. An expanded knowledge of the gut microbiome as it relates to PSC offers critical insight into the development of microbe-altering therapeutic interventions, such as antibiotics, nutritional interventions and fecal microbial transplantation. Some of these have already shown some preliminary evidence of benefit. Despite exciting progress in the field, much work remains to be done; areas that are particularly lacking include functional characterization of the microbiome and examination of pediatric populations. In this review, we summarize studies that have investigated the microbiome in PSC and PSC-IBD as well as putative mechanisms, including the potential role of metabolites, such as BAs. We then briefly review the evidence for interventions with microbe-altering properties for treating PSC.
Collapse
Affiliation(s)
- Rebecca Little
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, 7-142H Katz Group – Rexall Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Anne M Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Amanda Ricciuto
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
38
|
Ricciuto A, Sherman PM, Laxer RM. Gut microbiota in chronic inflammatory disorders: A focus on pediatric inflammatory bowel diseases and juvenile idiopathic arthritis. Clin Immunol 2020; 215:108415. [DOI: 10.1016/j.clim.2020.108415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
|
39
|
Amoroso C, Perillo F, Strati F, Fantini M, Caprioli F, Facciotti F. The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells 2020; 9:cells9051234. [PMID: 32429359 PMCID: PMC7291275 DOI: 10.3390/cells9051234] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations of the gut microbiota may cause dysregulated mucosal immune responses leading to the onset of inflammatory bowel diseases (IBD) in genetically susceptible hosts. Restoring immune homeostasis through the normalization of the gut microbiota is now considered a valuable therapeutic approach to treat IBD patients. The customization of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics and faecal microbiota transplantation, is therefore considered to support current therapies in IBD management. In this review, we will discuss recent advancements in the understanding of host−microbe interactions in IBD and the basis to promote homeostatic immune responses through microbe-targeted therapies. By considering gut microbiota dysbiosis as a key feature for the establishment of chronic inflammatory events, in the near future it will be suitable to design new cost-effective, physiologic, and patient-oriented therapeutic strategies for the treatment of IBD that can be applied in a personalized manner.
Collapse
Affiliation(s)
- Chiara Amoroso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
| | - Federica Perillo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
| | - Massimo Fantini
- Gastroenterology Unit, Duilio Casula Hospital, AOU Cagliari, 09042 Cagliari, Italy;
- Department of Medical Science and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Flavio Caprioli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20135 Milan, Italy;
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
- Correspondence:
| |
Collapse
|
40
|
Wang H, Zhou C, Huang J, Kuai X, Shao X. The potential therapeutic role of Lactobacillus reuteri for treatment of inflammatory bowel disease. Am J Transl Res 2020; 12:1569-1583. [PMID: 32509162 PMCID: PMC7270012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease of unknown etiology. However, recent studies have established a pathological role of disordered intestinal microbiota and immune dysregulation. Clinical studies have suggested that the reconstruction of the normal intestinal flora in patients with IBD can reverse the dysbiosis caused by genetic, environmental, dietary, or antibiotic factors to ameliorate the symptoms of IBD. Lactobacillus reuteri is widely present in the intestines of healthy individuals and regulates the intestinal immune system, reducing inflammation through multiple mechanisms. This review summarizes the current knowledge of the role of L. reuteri in maintaining intestinal homeostasis and considers its possible value as a new therapeutic agent for patients with IBD.
Collapse
Affiliation(s)
- Huiyu Wang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Junxiang Huang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| |
Collapse
|
41
|
Kaur A, Goggolidou P. Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies. JOURNAL OF INFLAMMATION-LONDON 2020; 17:15. [PMID: 32336953 PMCID: PMC7175540 DOI: 10.1186/s12950-020-00246-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Dynamic interactions between the gastrointestinal epithelium and the mucosal immune system normally contribute to ensuring intestinal homeostasis and optimal immunosurveillance, but destabilisation of these interactions in genetically predisposed individuals can lead to the development of chronic inflammatory diseases. Ulcerative colitis is one of the main types of inflammatory diseases that affect the bowel, but its pathogenesis has yet to be completely defined. Several genetic factors and other inflammation-related genes are implicated in mediating the inflammation and development of the disease. Some susceptibility loci associated with increased risk of ulcerative colitis are found to be implicated in mucosal barrier function. Different biomarkers that cause damage to the colonic mucosa can be detected in patients, including perinuclear ANCA, which is also useful in distinguishing ulcerative colitis from other colitides. The choice of treatment for ulcerative colitis depends on disease severity. Therapeutic strategies include anti-tumour necrosis factor alpha (TNF-α) monoclonal antibodies used to block the production of TNF-α that mediates intestinal tract inflammation, an anti-adhesion drug that prevents lymphocyte infiltration from the blood into the inflamed gut, inhibitors of JAK1 and JAK3 that suppress the innate immune cell signalling and interferons α/β which stimulate the production of anti-inflammatory cytokines, as well as faecal microbiota transplantation. Although further research is still required to fully dissect the pathophysiology of ulcerative colitis, understanding its cellular pathology and molecular mechanisms has already proven beneficial and it has got the potential to identify further novel, effective targets for therapy and reduce the burden of this chronic disease.
Collapse
Affiliation(s)
- Amandip Kaur
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| | - Paraskevi Goggolidou
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| |
Collapse
|
42
|
Abstract
The field of mucosal immunology has, for the last 10 years, been largely dominated by advances in our understanding of the commensal microbiota. Developments of novel experimental methodologies and analysis techniques have provided unparalleled insight into the profound impact the microbiota has on the development and function of the immune system. In this cross-journal review series published in Immunology and Clinical and Experimental Immunology, we aim to summarize the current state of research concerning the interplay between the microbiota and mucosal immunity. In addition, the series examines how the increased understanding of the microbiota is changing the nature of immunological research, both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Calum C. Bain
- Centre for Inflammation ResearchUniversity of EdinburghEdinburghUK
| | - Vuk Cerovic
- Institute of Molecular MedicineRWTH Aachen UniversityAachenGermany
| |
Collapse
|
43
|
Abstract
The field of mucosal immunology has, for the last 10 years, been largely dominated by advances in our understanding of the commensal microbiota. Developments of novel experimental methodologies and analysis techniques have provided unparalleled insight into the profound impact the microbiota has on the development and function of the immune system. In this cross-journal review series published in Immunology and Clinical and Experimental Immunology, we aim to summarize the current state of research concerning the interplay between the microbiota and mucosal immunity. In addition, the series examines how the increased understanding of the microbiota is changing the nature of immunological research, both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- C. C. Bain
- University of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | - V. Cerovic
- Institute of Molecular MedicineRWTH Aachen UniversityAachenGermany
| |
Collapse
|