1
|
Abdelghaffar M, Güell JL, Moura-Coelho N. Topical losartan ophthalmic drops - a review of corneal wound healing and topical losartan for managing corneal haze and potential future indications. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06710-8. [PMID: 39665995 DOI: 10.1007/s00417-024-06710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024] Open
Abstract
Corneal haze, a consequence of pathological wound healing, manifests as opacity and sometimes irregularity impairing vision. This condition arises from breaches in the epithelial barrier, triggering an inflammatory cascade culminating in myofibroblasts formation. Surgical procedures such as photorefractive keratectomy (PRK), laser in situ keratomileusis (LASIK) and corneal cross-linking (CXL) are major contributors, alongside non-surgical causes like trauma and infections. Research has extensively explored post-surgical corneal haze, focusing on the transforming growth factor beta (TGFβ) pathway, inflammation management, and extracellular matrix remodeling. Losartan, traditionally an antihypertensive, has gained attention in ophthalmology for its anti-fibrotic and anti-inflammatory properties. Studies have supported its efficacy in reducing corneal fibrosis post-descemetorhexis, alkali burn, and PRK injuries in animal models, and human case reports. This review aims to examine the topical use of losartan 0.08% in ophthalmology, assessing its effectiveness against post-surgical corneal haze and exploring its pharmacological profile and potential future applications. We provide a systematic review of all published in-human studies of the use of topical losartan in corneal disease.
Collapse
Affiliation(s)
- Mariam Abdelghaffar
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - José Luis Güell
- Instituto de Microcirugía Ocular (IMO) Barcelona Grupo Miranza, Barcelona, Spain
- Universidad Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Nuno Moura-Coelho
- Instituto de Microcirugía Ocular (IMO) Barcelona Grupo Miranza, Barcelona, Spain.
- NOVA Medical School, Universidade Nova de Lisboa (NMS-UNL), Lisbon, Portugal.
| |
Collapse
|
2
|
Kumar NG, Grosser MR, Wan S, Schator D, Ahn E, Jedel E, Nieto V, Evans DJ, Fleiszig SMJ. Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626720. [PMID: 39677621 PMCID: PMC11643048 DOI: 10.1101/2024.12.03.626720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Purpose Healthy corneas resist colonization by virtually all microbes yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. Methods Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 h. After lens removal, corneas were immediately challenged for 4 h with P. aeruginosa. A separate group of naïve mice were similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naive controls as was lens wear alone. Total RNA-sequencing determined corneal epithelium and bacterial gene expression. Results Prior lens wear profoundly altered the corneal response to P. aeruginosa, including: upregulated pattern-recognition receptors (tlr3, nod1), downregulated lectin pathway of complement activation (masp1), amplified upregulation of tcf7, gpr55, ifi205, wfdc2 (immune defense) and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, gpr55 (immune defense) and downregulated Ca2+-dependent genes necab1, snx31 and npr3. P. aeruginosa exposure to prior lens wearing vs. naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226) and antimicrobial resistance (arnB, oprR). Conclusion Prior lens wear impacts corneal epithelium gene expression altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis.
Collapse
Affiliation(s)
- Naren G. Kumar
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Melinda R Grosser
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Stephanie Wan
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Daniel Schator
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Eugene Ahn
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Eric Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Program in Infectious Diseases and Immunity, University of California, Berkeley, CA USA
| | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- College of Pharmacy, Touro University California, Vallejo, CA USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Groups in Vision Science and Microbiology, University of California, Berkeley, CA USA
| |
Collapse
|
3
|
Bourcier T, Koestel E, Bertret C, Yaïci R, Borderie V, Bouheraoua N. [Bacterial keratitis: Retrospective and prospective 2024]. J Fr Ophtalmol 2024; 47:104335. [PMID: 39454484 DOI: 10.1016/j.jfo.2024.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/28/2024]
Abstract
Bacterial keratitis (BK) is an infection of the cornea caused by one or more bacteria. Contact lens wear is the main risk factor. Staphylococcus and Pseudomonas are the most frequently isolated pathogens in developed countries. BK requires a standardized work-up to avoid diagnostic and therapeutic delays that may negatively affect visual prognosis. Corneal signs, the speed at which lesions progress and the presence of risk factors allow the clinician to presume an empirical microbiological diagnosis, but corneal scraping, which allows the isolation and identification of the bacteria involved in the infection, is the only way to confirm the diagnosis. The type of antibiotic treatment depends on the severity of the lesions, the risk factors involved, and the bacteria identified. Corticosteroids have been shown to be effective as adjuvant therapy and may be used under certain well-defined circumstances. Surgical treatment is sometimes necessary.
Collapse
Affiliation(s)
- T Bourcier
- Service d'ophtalmologie, hôpitaux universitaires de Strasbourg, université de Strasbourg, Strasbourg, France; Gepromed, The Medical Hub for Patient Safety, Strasbourg, France.
| | - E Koestel
- Service d'ophtalmologie, hôpitaux universitaires de Strasbourg, université de Strasbourg, Strasbourg, France; Gepromed, The Medical Hub for Patient Safety, Strasbourg, France; IHU ForeSight, Inserm-DGOS CIC 1423, Institut de la vision, Paris, France
| | - C Bertret
- Service d'ophtalmologie 5, Hôpital national de la vision des 1520, Paris, France
| | - R Yaïci
- Service d'ophtalmologie, hôpitaux universitaires de Strasbourg, université de Strasbourg, Strasbourg, France; Gepromed, The Medical Hub for Patient Safety, Strasbourg, France
| | - V Borderie
- Service d'ophtalmologie 5, Hôpital national de la vision des 1520, Paris, France; IHU ForeSight, Inserm-DGOS CIC 1423, Institut de la vision, Paris, France
| | - N Bouheraoua
- Service d'ophtalmologie 5, Hôpital national de la vision des 1520, Paris, France; IHU ForeSight, Inserm-DGOS CIC 1423, Institut de la vision, Paris, France
| |
Collapse
|
4
|
Ferreres G, Pérez-Rafael S, Guaus E, Palacios Ò, Ivanov I, Torrent-Burgués J, Tzanov T. Antimicrobial and antifouling hyaluronic acid-cobalt nanogel coatings built sonochemically on contact lenses. ULTRASONICS SONOCHEMISTRY 2024; 111:107131. [PMID: 39476555 PMCID: PMC11554631 DOI: 10.1016/j.ultsonch.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
The wearing of contact lenses (CLs) may cause bacterial infections, leading in turn to more serious complications and ultimately vision impairment. In this scenario, the first step is the adhesion of tear proteins, which provide anchoring points for bacterial colonization. A possible solution is the functionalization with an antimicrobial coating, though the latter may also lead to sight obstruction and user discomfort. In this study, adipic acid dihydrazide-modified hyaluronic acid-cobalt (II) (HA-ADH-Co) nanogels (NGs) were synthesized and deposited onto commercial CLs in a single-step sonochemical process. The coating hindered up to 60 % the protein adsorption and endowed the CLs with strong antibacterial activity against major ocular pathogens like Staphylococcus aureus and Pseudomonas aeruginosa, reducing their concentration by around 3 logs. Cytotoxicity assessment with human corneal cells demonstrated viabilities above 95 %. The nanocomposite coating did not affect the optical power and the light transmission of the CLs and provided enhanced wettability, important for the wearer comfort.
Collapse
Affiliation(s)
- Guillem Ferreres
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Sílvia Pérez-Rafael
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ester Guaus
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Bellaterra, Spain
| | - Ivan Ivanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Juan Torrent-Burgués
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain.
| |
Collapse
|
5
|
Norman FF, González-López JJ, Gayoso-Cantero D, Vicente-Antolin M, Corbacho-Loarte MD, López-Vélez R, González-Sanz M. Ocular infections in international travelers. Travel Med Infect Dis 2024; 63:102789. [PMID: 39603311 DOI: 10.1016/j.tmaid.2024.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Ophthalmological conditions in international travelers may be associated with low mortality but high morbidity. Eye involvement in travelers is less frequently reported than febrile, gastrointestinal and respiratory infections, but data probably represent a degree of under-notification. METHODS an extensive narrative review of the main viral, bacterial, fungal and parasitic infections affecting the eye in travelers was performed. MAIN FINDINGS Common respiratory tract viral infections may cause ocular complications in travelers, human influenza viruses have been associated with conjunctivitis and emerging avian influenza subtypes may also affect the eye. Vector-borne viral infections may affect travelers, usually with systemic symptoms, but eye disease may be the first presenting feature. A spectrum of manifestations have been described with dengue, chikungunya and Zika infections, including conjunctivitis, anterior uveitis, posterior uveitis with chorioretinitis and macular involvement. Staphylococcus spp, Streptococcus spp, and Pseudomonas spp (especially associated with use of contact lenses) are common causes of keratitis, however, resistance patterns to antimicrobials might vary depending on area of travel. Less frequent infections, such as Burkholderia pseudomallei, associated with environmental exposure, and Bartonella spp. may rarely present with ophthalmological involvement in travelers. Fungal ocular infections, especially after ocular trauma caused by plants and contact lens use, should be considered in patients with stromal keratitis not improving with antibiotic eye drops. Parasitic eye infections tend to occur in tropical areas, but some, such as acanthamoebic keratitis or Toxoplasma spp retinitis, are found worldwide. Increasing exposure to animals, undercooked food consumption or poor hygiene during international travels might be leading to the emergence of certain parasitic eye diseases. CONCLUSIONS Clinical features, with identification of risk factors and geographical region of exposure, can assist in the definitive diagnosis of imported ophthalmological infections. Management of imported eye infections requires a multi-disciplinary approach involving ophthalmologists, travel medicine/infectious diseases physicians and other specialists.
Collapse
Affiliation(s)
- Francesca F Norman
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, CIBERINFEC, Madrid, Spain; Universidad de Alcalá, Madrid, Spain.
| | | | - Diego Gayoso-Cantero
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, CIBERINFEC, Madrid, Spain
| | | | - Maria-Dolores Corbacho-Loarte
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, CIBERINFEC, Madrid, Spain
| | - Rogelio López-Vélez
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, CIBERINFEC, Madrid, Spain
| | - Marta González-Sanz
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRYCIS, CIBERINFEC, Madrid, Spain
| |
Collapse
|
6
|
Kamath MM, Adams EM, Lightfoot JD, Wells BL, Fuller KK. The mammalian Ire1 inhibitor, 4µ8C, exhibits broad anti- Aspergillus activity in vitro and in a treatment model of fungal keratitis. Front Cell Infect Microbiol 2024; 14:1477463. [PMID: 39600871 PMCID: PMC11588707 DOI: 10.3389/fcimb.2024.1477463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that hacA is essential for Aspergillus fumigatus virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both in vitro and in a treatment model of FK. Methods The antifungal activity of Ire1 inhibitors was tested against conidia of several A. fumigatus isolates by a broth microdilution assay and against fungal biofilm by XTT reduction. The influence of 4μ8C on hacA mRNA splicing in A. fumigatus was assessed through gel electrophoresis and qRT-PCR of UPR regulatory genes. The toxicity and antifungal profile of 4μ8C in the cornea was assessed by applying drops to uninfected or A. fumigatus-infected corneas 3 times daily starting 4 hours post-inoculation. Corneas were evaluated daily through slit-lamp imaging and optical coherence tomography, or at endpoint through histology or fungal burden quantification via colony forming units. Results Among six Ire1 inhibitors screened, the endonuclease inhibitor 4μ8C displayed the strongest antifungal profile with an apparent fungicidal action. The compound both blocked conidial germination and hyphal metabolism of A. fumigatus Af293 in the same concentration range that blocked hacA splicing and UPR gene induction (60-120 µM). Topical treatment of sham-inoculated corneas with 0.5 and 2.5 mM 4μ8C did not impact corneal clarity, but did transiently inhibit epithelialization of corneal ulcers. Relative to vehicle-treated Af293-infected corneas, treatment with 0.5 and 2.5 mM drug resulted in a 50% and >90% reduction in fungal load, respectively, the latter of which corresponded to an absence of clinical signs of infection or corneal pathology. Conclusion The in vitro data suggest that 4μ8C displays antifungal activity against A. fumigatus through the specific inhibition of IreA. Topical application of the compound to the murine cornea can furthermore block the establishment of infection, suggesting this class of drugs can be developed as novel antifungals that improve visual outcomes in FK patients.
Collapse
Affiliation(s)
- Manali M. Kamath
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge D. Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Becca L. Wells
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kevin K. Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Crasta M, Gimenez E, Ostan PC, Arteaga K. Photoactivated chromophore for keratitis-Corneal cross-linking in dogs and cats: A retrospective study in Italy. Vet Ophthalmol 2024. [PMID: 39455420 DOI: 10.1111/vop.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVE To evaluate the success and failure rate of photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) therapy in a single population of dogs and cats. To identify the usefulness of the PACK-CXL based on ulcer depth and establish a cutoff at which this procedure could be recommended. To analyze the influence of the different variables in corneal healing time and to report the presence of secondary endothelial damage and cataract formation. MATERIALS AND METHODS Medical records of dogs and cats with presumptive infectious keratitis which underwent accelerated epithelium-off PACK-CXL between 2016 and 2023 were reviewed and analyzed. RESULTS Records for 369 animals were included, and the overall success rate for healing was 97% (range 4-74 days and no rescue procedure). The second success (re-epithelialization <30 days and no rescue procedure) rate was 86%, and a total of 40 eyes needed more than 1 month for the corneal repair. Corneal ulcers were classified in three categories based on the depth: 0%-33% (46%), 34%-66% (37.4%), and 67%-100% (16.5%). The cutoff at which PACK-CXL had a higher probability of failure was with ulcer depth >66.5%. Animals who suffered from keratomalacia and hypopyon at presentation, or were treated with topical serum or gentamicin after PACK-CXL showed an increase in epithelial healing time (EHT). Increasing age, brachycephalic conformation, keratomalacia alone, and deeper ulcers were identified as risk factors for the treatment outcome. Secondary endothelial injury or cataract formation was not noted in this study. CONCLUSIONS Accelerated PACK-CXL is a non-invasive, adjunctive treatment to medical therapy, which can be used in presumed infectious keratitis with a high probability of success. However, it is important to take in consideration the patient age, skull conformation, presence of keratomalacia, and the ulcer depth.
Collapse
Affiliation(s)
| | - Eva Gimenez
- Visionvet Anicura Eye Clinic, Bologna, Italy
| | | | | |
Collapse
|
8
|
Mohammadi M, Rahmani S, Ebrahimi Z, Nowroozi G, Mahmoudi F, Shahlaei M, Moradi S. In Situ Forming Hydrogel Reinforced with Antibiotic-Loaded Mesoporous Silica Nanoparticles for the Treatment of Bacterial Keratitis. AAPS PharmSciTech 2024; 25:254. [PMID: 39443345 DOI: 10.1208/s12249-024-02969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Bacterial keratitis (BK) is a serious ocular infection that can lead to vision impairment or blindness if not treated promptly. Herein, we report the development of a versatile composite hydrogel consisting of silk fibroin and sodium alginate, reinforced by antibiotic-loaded mesoporous silica nanoparticles (MSNs) for the treatment of BK. The drug delivery system is constructed by incorporating vancomycin- and ceftazidime-loaded MSNs into the hydrogel network. The synthesized MSNs were found to be spherical in shape with an average size of about 95 nm. The loading capacities of both drugs were approximately 45% and 43%, for vancomycin and ceftazidime respectively. Moreover, the formulation exhibited a sustained release profile, with 92% of vancomycin and 90% of ceftazidime released over a 24 h period. The cytocompatibility of the drug carrier was also confirmed by MTT assay results. In addition, we performed molecular dynamics (MD) simulations to better reflect the drug-drug and drug-MSN interactions. The results obtained from RMSD, number of contacts, and MSD analyses perfectly corroborated the experimental findings. In brief, the designed drug-MSN@hydrogel could mark an intriguing new chapter in the treatment of BK.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokoufeh Rahmani
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohre Ebrahimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Nowroozi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Dai Y, Zhang J, Zhang S, Li L, Qu C, Chen J, Lu L. Ag/Cu nanoparticles-loaded glycocalyx biomimetic corneal bandage lenses for combatting bacterial keratitis. J Control Release 2024; 376:382-394. [PMID: 39419448 DOI: 10.1016/j.jconrel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Bacterial keratitis is a major cause of blindness, hindered by the rising threat of antibiotic resistance. Although corneal bandage lenses (CBLs) are widely utilized in ophthalmic treatment, their effectiveness in treating bacterial keratitis remains limited due to risks of secondary infections, patient discomfort, and complications. In this study, we developed a novel biomimetic coating on CBLs by grafting Ag/Cu bimetallic nanoparticles (Ag/Cu-NPs) and thiol-functionalized heparin (Hep-SH) using a rapid polydopamine (PDA) deposition technique, effectively mimicking the ocular surface glycocalyx structure. The resulting Ag/Cu-NPs/Hep-SH coated CBLs (PNH-CBLs) exhibited significant antibacterial activity, with over 80 % reduction in Staphylococcus aureus (S. aureus) and 70 % in Escherichia coli (E. coli) due to the sustained release of Ag+ and Cu2+, along with displaying favorable in vitro biocompatibility. Animal experiments conducted on New Zealand white rabbits with bacterial keratitis demonstrated successful treatment therapeutic outcomes, with PNH-CBLs leading to a significant decrease in clinical score. These biomimetic lenses also exhibited selective anti-protein adsorption properties, minimizing inflammation and promoting surface lubrication. Overall, this innovative approach addresses critical challenges in antibiotic resistance and offers a promising therapeutic strategy for managing ophthalmic infectious diseases.
Collapse
Affiliation(s)
- Yan Dai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiali Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Shimeng Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chao Qu
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Jiang Chen
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
10
|
Wu KY, Qian SY, Faucher A, Tran SD. Advancements in Hydrogels for Corneal Healing and Tissue Engineering. Gels 2024; 10:662. [PMID: 39451315 PMCID: PMC11507397 DOI: 10.3390/gels10100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant attention for their versatile applications across various fields, including biomedical engineering. This review delves into the fundamentals of hydrogels, exploring their definition, properties, and classification. Hydrogels, as three-dimensional networks of crosslinked polymers, possess tunable properties such as biocompatibility, mechanical strength, and hydrophilicity, making them ideal for medical applications. Uniquely, this article offers original insights into the application of hydrogels specifically for corneal tissue engineering, bridging a gap in current research. The review further examines the anatomical and functional complexities of the cornea, highlighting the challenges associated with corneal pathologies and the current reliance on donor corneas for transplantation. Considering the global shortage of donor corneas, this review discusses the potential of hydrogel-based materials in corneal tissue engineering. Emphasis is placed on the synthesis processes, including physical and chemical crosslinking, and the integration of bioactive molecules. Stimuli-responsive hydrogels, which react to environmental triggers, are identified as promising tools for drug delivery and tissue repair. Additionally, clinical applications of hydrogels in corneal pathologies are explored, showcasing their efficacy in various trials. Finally, the review addresses the challenges of regulatory approval and the need for further research to fully realize the potential of hydrogels in corneal tissue engineering, offering a promising outlook for future developments in this field.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Shu Yu Qian
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
11
|
Haro-Morlett L, Vera-Duarte GR, Oliveros-Valdes F, Cortes-Moreno TN, Ramirez-Miranda A, Navas A, Graue-Hernandez EO. Effects of the COVID-19 Pandemic on Microbial Keratitis: A 5-Year Comparative Study. Cornea 2024:00003226-990000000-00706. [PMID: 39365354 DOI: 10.1097/ico.0000000000003720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE To report the clinical and microbiological profiles of microbial keratitis and its antimicrobial resistance before, during, and after COVID-19. METHODS This was a retrospective case-note review of all corneal scrape specimens collected from patients with microbial keratitis from January 2018 to December 2023. Case records were analyzed for demographic characteristics, microbiological diagnosis, and antibiograms. All outcome variables were collected, stratified, and compared between 3 periods: the pre-COVID-19 group (January-December 2019), the COVID-19 group (January 2020-December 2022), and the post-COVID-19 group (January-December 2023). RESULTS A total of 947 corneal cultures from 947 patients were reviewed. Gram-positive bacteria predominated in all periods, with no significant differences in their distribution. Staphylococcus epidermidis was the most frequently identified organism. Pseudomonas aeruginosa was the most common Gram-negative bacterium, with its incidence significantly lower in the post-COVID period. Fungal infections showed a significant increase in the post-COVID group, with Fusarium sp. being the most common fungus and showing a significant increase in incidence in the post-COVID group. CONCLUSIONS Despite a stable incidence of microbial keratitis, this study highlights a concerning trend in antibiotic resistance. Although some pathogens became less common, those that persisted have become increasingly difficult to treat. Understanding the clinical and microbiological profiles of microbial keratitis and antimicrobial resistance patterns before and after the COVID-19 pandemic is crucial for informed treatment decisions.
Collapse
Affiliation(s)
- Luis Haro-Morlett
- Instituto de Oftalmologia Fundacion Conde de Valenciana, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Dibbs M, Matesva M, Theotoka D, Jayaraj C, Metiku B, Demkowicz P, Heng JS, Wang Y, Bakhoum CY, Chow J, Bakhoum MF. A Tear-Based Approach for Rapid Identification of Bacterial Pathogens in Corneal Ulcers Using Nanopore Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24314375. [PMID: 39399005 PMCID: PMC11469460 DOI: 10.1101/2024.09.26.24314375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Purpose Corneal ulcers pose a significant threat to vision, with the need for prompt and precise pathogen identification being critical to effective treatment. This study assesses the efficacy of using next-generation portable sequencing (Nanopore Technology) to detect and identify bacterial pathogens directly from tear samples, providing a non-invasive alternative to traditional corneal scraping and culture, which are limited by high false-negative rates. Design Prospective observational study. Participants Ten participants diagnosed with corneal ulcers. Methods Tear samples were collected from the ocular surface using Schirmer strips. Corneal scrapings and cultures were performed as medically indicated. The 16S rRNA gene was amplified directly from the tear samples using polymerase chain reaction (PCR), and Nanopore sequencing was used for bacterial species identification and taxonomic classification. Comparative analysis was conducted to evaluate the concordance between Nanopore sequencing results and traditional culture methods. Main Outcome Measures Comparison of bacterial species detected via Nanopore sequencing with those identified through traditional culture methods. Results Bacterial DNA was identified in 8 of the 10 samples analyzed using the tear-based sequencing method. Notably, Nanopore sequencing accurately identified the causative bacteria in all 4 samples that exhibited bacterial growth on culture. Additionally, it detected bacterial pathogens in 2 of the 4 ulcers that did not show bacterial growth on culture. In 2 cases where cultures could not be obtained due to the small size of the ulcer, tear sequencing successfully identified bacterial species, highlighting potentially overlooked pathogens in corneal ulcers. Conclusions PCR amplification of 16S RNA directly from tears followed by Nanopore sequencing is an effective, non-invasive method to identify bacterial pathogens in corneal ulcers, offering non-inferior results to traditional culture methods. This technique not only allows for the detection of traditionally hard-to-culture organisms, providing immediate diagnostic value to guide treatment, but also enhances our understanding of the microbiological landscape of corneal ulcers, thereby informing more effective treatment strategies.
Collapse
|
13
|
Wang Y, Banga L, Ebrahim AS, Carion TW, Sosne G, Berger EA. Activation of pro-resolving pathways mediate the therapeutic effects of thymosin beta-4 during Pseudomonas aeruginosa-induced keratitis. Front Immunol 2024; 15:1458684. [PMID: 39380984 PMCID: PMC11458456 DOI: 10.3389/fimmu.2024.1458684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Current treatments for bacterial keratitis fail to address the sight-threatening inflammatory host response. Our recent work elucidating the therapeutic mechanisms of adjunctive thymosin beta-4 (Tβ4) in resolving inflammation and infection in bacterial keratitis revealed modulation of effector cell function and enhanced bacterial killing. The current study builds upon the observed effects on effector cell function by investigating the impact of Tβ4 on specialized pro-resolving lipid mediator (SPM) pathways as they play a significant role in inflammation resolution. Methods Using a well-established in vivo model of Pseudomonas aeruginosa-induced bacterial keratitis, we assessed key enzymes (5-LOX and 12/15-LOX) involved in SPM pathway activation, SPM end products (lipoxins, resolvins), and receptor levels for these mediators. In vitro validation using LPS-stimulated murine monocyte/MΦ-like RAW 264.7 cells and siRNA to inhibit Tβ4 and LOX enzymes was carried out to complement our in vivo findings. Results Findings from our in vivo and in vitro investigations demonstrated that adjunctive Tβ4 treatment significantly influences enzymes and receptors involved in SPM pathways. Further, Tβ4 alone enhances the generation of SPM end products in the cornea. Our in vitro assessments confirmed that Tβ4-enhanced phagocytosis is directly mediated by SPM pathway activation. Whereas Tβ4-enhanced efferocytosis appeared to be indirect. Conclusion Collectively, these findings suggest that the therapeutic effect of Tβ4 resolves inflammation through the activation of SPM pathways, thereby enhancing host defense and tissue repair. Our research contributes to understanding the potential mechanisms behind Tβ4 immunoregulatory function, pointing to its promising ability as a comprehensive adjunctive treatment for bacterial keratitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth A. Berger
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
14
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Chen L, Wu MY, Chen SL, Hu R, Wang Y, Zeng W, Feng S, Ke M, Wang L, Chen S, Gu M. The Guardian of Vision: Intelligent Bacteriophage-Based Eyedrops for Clinical Multidrug-Resistant Ocular Surface Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407268. [PMID: 39091071 DOI: 10.1002/adma.202407268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Clinical multidrug-resistant Pseudomonas aeruginosa (MDR-PA) is the leading cause of refractory bacterial keratitis (BK). However, the reported BK treatment methods lack biosecurity and bioavailability, which usually causes irreversible visual impairment and even blindness. Herein, for BK caused by clinically isolated MDR-PA infection, armed phages are modularized with the type I photosensitizer (PS) ACR-DMT, and an intelligent phage eyedrop is developed for combined phagotherapy and photodynamic therapy (PDT). These eyedrops maximize the advantages of bacteriophages and ACR-DMT, enabling more robust and specific targeting killing of MDR-PA under low oxygen-dependence, penetrating and disrupting biofilms, and efficiently preventing biofilm reformation. Altering the biofilm and immune microenvironments alleviates inflammation noninvasively, promotes corneal healing without scar formation, protects ocular tissues, restores visual function, and prevents long-term discomfort and pain. This strategy exhibits strong scalability, enables at-home treatment of ocular surface infections with great patient compliance and a favorable prognosis, and has significant potential for clinical application.
Collapse
Affiliation(s)
- Luojia Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ming-Yu Wu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Si-Ling Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rui Hu
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yifei Wang
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Weijuan Zeng
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Min Ke
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Shi Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meijia Gu
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
16
|
He X, Zhang Z, Hu M, Lin X, Weng X, Lu J, Fang L, Chen X. Liquiritin Alleviates Inflammation in Lipopolysaccharide-Induced Human Corneal Epithelial Cells. Curr Eye Res 2024; 49:930-941. [PMID: 38767463 DOI: 10.1080/02713683.2024.2353263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE This research was designed to elucidate the anti-inflammatory impacts of liquiritin on lipopolysaccharide (LPS)-activated human corneal epithelial cells (HCECs). METHODS The Cell Counting kit-8 (CCK-8) assay was adopted to assess cell viability. The enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion levels of the proinflammatory cytokines IL-6, IL-8, and TNF-α. Transcriptome analysis was conducted to identify the genes that exhibited differential expression between different treatment. The model group included cells treated with LPS (10 µg/mL), the treatment group comprised cells treated with liquiritin (80 µM) and LPS (10 µg/mL), and the control group consisted of untreated cells. To further validate the expression levels of the selected genes, including CSF2, CXCL1, CXCL2, CXCL8, IL1A, IL1B, IL24, IL6, and LTB, quantitative real-time PCR was performed. The expression of proteins related to the Akt/NF-κB signaling pathway was assessed through western blot analysis. NF-κB nuclear translocation was evaluated through immunofluorescence staining. RESULTS The secretion of IL-6, IL-8, and TNF-α in LPS-induced HCECs was significantly downregulated by liquiritin. Based on the transcriptome analysis, the mRNA expression of pro-inflammatory cytokines, namely IL-6, IL-8, IL-1β, IL-24, TNF-α, and IL-1α was overproduced by LPS stimulation, and suppressed after liquiritin treatment. Furthermore, the Western blot results revealed a remarkable reduction in the phosphorylation degrees of NF-κB p65, IκB, and Akt upon treatment with liquiritin. Additionally, immunofluorescence analysis confirmed liquiritin's inhibition of LPS-induced p65 nuclear translocation. CONCLUSIONS Collectively, these findings imply that liquiritin suppresses the expression of proinflammatory cytokines, and the anti-inflammatory impacts of liquiritin may be caused by its repression of the Akt/NF-κB signaling pathway in LPS-induced HCECs. These data indicate that liquiritin could provide a potential therapeutic application for inflammation-associated corneal diseases.
Collapse
Affiliation(s)
- Xian He
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
- Key Laboratory of Safety Evaluation of Medical Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ziyang Zhang
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
| | - Meili Hu
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
| | - Xinyi Lin
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
| | - Xu Weng
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
| | - Jiajun Lu
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
| | - Li Fang
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
- Key Laboratory of Safety Evaluation of Medical Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xianhua Chen
- Zhejiang Institute of Medical Device Supervision and Testing, Hangzhou, Zhejiang Province, China
- Key Laboratory of Safety Evaluation of Medical Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Duran-Ospina JP, de la Hoz-M J, Maddela NR, Lapo-Talledo GJ, Siteneski A, Montes-Escobar K. Global research on keratomycosis: New insights from latent Dirichlet allocation and HJ-Biplot-driven knowledge mapping study. Diagn Microbiol Infect Dis 2024; 110:116442. [PMID: 39024935 DOI: 10.1016/j.diagmicrobio.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Keratomycosis is a form of infectious keratitis, an infection of the cornea, which is caused by fungi. This disease is a leading cause of ocular morbidity globally with at least 60 % of the affected individuals becoming monocularly blind. OBJECTIVE This bibliometric analysis aimed to comprehensively assess the existing body of literature, providing insights of the evolution of keratomycosis research by identifying key themes and research gaps. METHODS This work used the modeling method Latent Dirichlet Allocation (LDA) to identify and interpret scientific information on topics concerning existing categories in a set of documents. The HJ-Biplot method was also used to determine the relationship between the analyzed topics, taking into consideration the years under study. RESULTS This bibliometric analysis was performed on a total of 2,599 scientific articles published between 1992 and 2022. The five leading countries with more scientific production and citations on keratomycosis were The United States of America, followed by India, China, United Kingdom and Australia. The top five topics studied were Case Reports and Corneal Infections, which exhibited a decreasing trend; followed by Penetrating Keratoplasty and Corneal Surgery, Ocular Effects of Antifungal Drugs, Gene Expression and Inflammatory Response in the Cornea and Patient Data which have been increasing throughout the years. However Filamentous Fungi and Specific Pathogens, and Antifungal Therapies research has been decreasing in trend. CONCLUSION Additional investigation into innovative antifungal drug therapies is crucial for proactively tackling the potential future resistance to antifungal agents in scientific writing.
Collapse
Affiliation(s)
| | | | - Naga Raju Maddela
- Research Institute and Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | | | - Aline Siteneski
- Research Institute and Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Karime Montes-Escobar
- Departamento de Matemáticas y Estadística, Faculta de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| |
Collapse
|
18
|
Khor WB, Lakshminarayanan R, Periayah MH, Prajna VN, Garg P, Sharma N, Mehta JS, Young A, Goseyarakwong P, Puangsricharern V, Tan AL, Beuerman RW, Tan DTH. The antibiotic resistance profiles of Pseudomonas aeruginosa in the Asia Cornea Society Infectious Keratitis Study. Int Ophthalmol 2024; 44:361. [PMID: 39215853 PMCID: PMC11365837 DOI: 10.1007/s10792-024-03270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To describe the prevalence and antibiotic resistance profiles of Pseudomonas aeruginosa isolated from the Asia Cornea Society Infectious Keratitis Study (ACSIKS). METHODS All bacterial isolates from ACSIKS underwent repeat microbiological identification in a central repository in Singapore. Minimum inhibitory concentration (MIC) determination was conducted for isolates of P. aeruginosa against thirteen antibiotics from 6 different classes, and categorized based on Clinical Laboratory Standard Institutes' reference ranges. The percentage rates of resistance (non-susceptibility) to each antibiotic included isolates of both intermediate and complete resistance. Multi-drug resistance (MDR) was defined as non-susceptibility to at least one agent in three or more antimicrobial classes. RESULTS Of the 1493 unique bacterial specimens obtained from ACSIKS, 319 isolates were of P. aeruginosa. The majority of isolates were from centers in India (n = 118, 37%), Singapore (n = 90, 28.2%), Hong Kong (n = 31, 9.7%) and Thailand (n = 30, 9.4%). The cumulative antibiotic resistance rate was the greatest for polymyxin B (100%), ciprofloxacin (17.6%) and moxifloxacin (16.9%), and lowest for cefepime (11.6%) and amikacin (13.5%). Isolates from India demonstrated the highest antibiotic resistance rates of all the centers, and included moxifloxacin (47.5%) and ciprofloxacin (39.8%). Forty-eight of the 59 MDR isolates also originated from India. Antibiotic resistance rates were significantly lower in the other ACSIKS centers, and were typically less than 10%. CONCLUSIONS The antibiotic resistance profiles of P. aeruginosa varied between different countries. While it was low for most countries, substantial antibiotic resistance and a significant number of multi-drug resistant isolates were noted in the centers from India.
Collapse
Affiliation(s)
- Wei-Boon Khor
- Singapore National Eye Centre, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | | | | | - Prashant Garg
- LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jodhbir S Mehta
- Singapore National Eye Centre, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Alvin Young
- The Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Prince of Wales Hospital & Alice Ho Miu Ling Nethersole Hospital, Hong Kong SAR, China
| | - Panida Goseyarakwong
- Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vilavun Puangsricharern
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ai Ling Tan
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
| | - Roger W Beuerman
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Donald Tiang-Hwee Tan
- Singapore National Eye Centre, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Camden Medical Centre, 1 Orchard Blvd, #13-03, Singapore, 248649, Singapore.
| |
Collapse
|
19
|
Peng Y, Pang S, Zeng Y, Wei J, Lu J, Ruan Y, Hong X, He X, Chu X, Guo Y, Guo H, Qian S, Jiang Z, Jiang Z, Wang B. Antibiotic-free ocular sterilization while suppressing immune response to protect corneal transparency in infectious keratitis treatment. J Control Release 2024; 374:563-576. [PMID: 39186983 DOI: 10.1016/j.jconrel.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Clinical guidelines for infectious keratitis treatment require that anti-inflammatory drugs can only be used after infection elimination, which causes irreversible inflammatory damage to the cornea. In this work, photodynamic metal organic frameworks (PCN-224) were used as drug carrier to load Pt NPs with catalase-like activity and anti-inflammatory drug (Dexamethasone, DXMS) for endogenous oxygen generation and reduced corneal damage, respectively. The photodynamic therapy (PDT) effect was greatly enhanced in bacteria elimination and bacterial biofilms removal through catalysis of overexpressed hydrogen peroxide (H2O2, ∼8.0 and 31.0 μM in bacterial solution and biofilms, respectively) into oxygen by Pt NPs. More importantly, the cationic liposome modified PCN-224@Pt@DXMS@Liposomes (PPDL NPs) greatly enhanced the adhesion to negatively charged ocular surface and penetration into corneal barrier and bacterial biofilms. Both in vitro cell viability test and in vivo eye irritation tests proved good biocompatibility of PPDL NPs under 660 nm laser irradiation. Furthermore, PDT of PPDL NPs in rapid bacteria killing was verified through infectious keratitis animal model. The superior bactericidal effect of antibacterial materials could largely replace the bactericidal effect of the immune system. It is worth mentioning that this simultaneous sterilization and anti-inflammation treatment mode is a new exploration against the clinical treatment guidelines.
Collapse
Affiliation(s)
- Yaou Peng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Shuaiyue Pang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yanlin Zeng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayi Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinda Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yangfan Ruan
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xinyu Hong
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuhui He
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiaoying Chu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yishun Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hanwen Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Siyuan Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zipei Jiang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Bailiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Ophthalmogy, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
20
|
Prajna VN, Radhakrishnan N, Lalitha PS, Rajaraman R, Christy J, Venugopal A, Abdelrahman S, Srinivasan A, Varnado N, Arnold B, Amescua G, Lietman TM, Rose-Nussbaumer JR. Steroids and Cross-Linking for Ulcer Treatment Trial II: Baseline Characteristics. Cornea 2024:00003226-990000000-00673. [PMID: 39208371 DOI: 10.1097/ico.0000000000003678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The Steroids and Cross-linking for Ulcer Treatment Trial is an NIH-funded international, randomized, double-masked, sham and placebo-controlled clinical trial to determine the benefit of adjunctive corneal cross-linking with riboflavin and/or topical difluprednate in addition to topical antibiotic drops for treatment of smear-positive bacterial ulcers. The purpose of this study was to explore the baseline characteristics for infection of patients enrolled, and the ocular comorbidities of patients screened for inclusion. METHODS Of the 2005 patients with smear-positive bacterial ulcers screened, 280 patients were enrolled. Descriptive statistics were used to summarize and characterize the data. RESULTS Eligible patients in India had baseline factors associated with agricultural work (N = 132; 47%) and manual labor (N = 54; 19%), whereas patients in the United States were associated with contact lens wear (N = 11; 69%) (P <0.001). Nearly, 10% of patients with unilateral infectious keratitis are at risk of bilateral blindness because of preexisting visual disability in their other eye and thus ineligible for inclusion. India had higher rates of exclusionary factors for blindness in the other eye such as cataract (N = 48; 27%) and glaucoma (N = 24; 13) compared with the United States (N = 0; 0%) (P <0.001). CONCLUSIONS While corneal ulceration is an important cause of disability in technologically advanced countries, it occurs more frequently in low and middle-income countries, and the implications on these populations should be considered. These baseline factors can be evaluated to address such health care disparities.
Collapse
Affiliation(s)
| | | | - Prajna S Lalitha
- Aravind Eye Care System, Madurai, Coimbatore, Pondicherry, India
| | | | | | - Anitha Venugopal
- Aravind Eye Care System, Madurai, Coimbatore, Pondicherry, India
| | - Sarah Abdelrahman
- FI Proctor Foundation, University of California, San Francisco, San Francisco, CA
| | - Amrita Srinivasan
- Department of Ophthalmology, Byers Eye Institute, Stanford University, San Francisco, CA
| | - Nicole Varnado
- Department of Ophthalmology, Byers Eye Institute, Stanford University, San Francisco, CA
| | - Ben Arnold
- FI Proctor Foundation, University of California, San Francisco, San Francisco, CA
| | - Guillermo Amescua
- Department of Ophthalmology, University of Miami Health System Bascom Palmer Eye Institute, Miami, FL; and
| | - Thomas M Lietman
- FI Proctor Foundation, University of California, San Francisco, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, CA
| | - Jennifer R Rose-Nussbaumer
- FI Proctor Foundation, University of California, San Francisco, San Francisco, CA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, San Francisco, CA
| |
Collapse
|
21
|
Asfaw T, Metaferia Y, Weldehanna EG, Weldehanna DG. Bacterial pathogens and antimicrobial susceptibility in ocular infections: A study at Boru-Meda General Hospital, Dessie, Ethiopia. BMC Ophthalmol 2024; 24:342. [PMID: 39138386 PMCID: PMC11323621 DOI: 10.1186/s12886-024-03544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
INTRODUCTION The eye consists of both internal and external compartments. Several variables, including microbes, dust, and high temperatures can cause eye illnesses that can result in blindness. Bacterial eye infections continue to be a major cause of ocular morbidity and blindness, and their prevalence is periodically rising. The objective of the study was to detect bacterial pathogens and assess their susceptibility profiles to antibiotics in the ophthalmology unit of Boru-meda Hospital in Dessie, Ethiopia. METHODS A hospital-based cross-sectional study was conducted from February 1 to April 30, 2021, among 319 study participants with symptomatic ocular or peri-ocular infections who were enrolled using a consecutive sampling technique. After proper specimen collection, the specimen was immediately inoculated with chocolate, blood, and MacConkey agar. After pure colonies were obtained, they were identified using standard microbiological methods. The Kirby Bauer disk diffusion method was used to test antimicrobial susceptibility patterns, based on the guidelines of the Clinical and Laboratory Standards Institute. RESULTS The majority of participants developed conjunctivitis 126 (39.5%), followed by blepharitis 47 (14.73%), and dacryocystitis 45 (14.1%). Overall, 164 (51.4%) participants were culture positive, six (1.9%) participants had mixed bacterial isolates, giving a total of 170 bacterial isolates with an isolation rate of 53.3%. The predominant species was CoNS 47 (27.6%), followed by S. aureus 38 (22.4%) and Moraxella species 32 (18.8%). The overall Multi-Drug Resistance (MDR) rate was 62.9%, with 33 (44.6%) being gram-negative and 74 (77.1%) being gram-positive isolates. CONCLUSION Conjunctivitis was the dominant clinical case and CoNS, was the predominant isolate. A higher rate of MDR isolates, particularly gram-positive ones, was observed. Efficient peri-ocular or ocular bacterial infection surveillance, including microbiological laboratory data, is necessary for monitoring disease trends.
Collapse
Affiliation(s)
| | - Yeshi Metaferia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | | | - Daniel Gebretsadik Weldehanna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
22
|
Kamath MM, Adams EM, Lightfoot JD, Wells BL, Fuller KK. The mammalian Ire1 inhibitor, 4μ8C, exhibits broad anti- Aspergillus activity in vitro and in a treatment model of fungal keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607189. [PMID: 39149375 PMCID: PMC11326231 DOI: 10.1101/2024.08.08.607189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Objective The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that hacA is essential for Aspergillus fumigatus virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both in vitro and in a treatment model of FK. Methods The antifungal activity of Ire1 inhibitors was tested against conidia of several A. fumigatus isolates by a microbroth dilution assay and against fungal biofilm by XTT reduction. The influence of 4μ8C on hacA mRNA splicing in A. fumigatus was assessed through gel electrophoresis and qRT-PCR of UPR regulatory genes. The toxicity and antifungal profile of 4μ8C in the cornea was assessed by applying drops to uninfected or A. fumigatus-infected corneas 3 times daily starting 4 hours post-inoculation. Corneas were evaluated daily through slit-lamp imaging and optical coherence tomography, or at endpoint through histology or fungal burden quantification via colony forming units. Results Among six Ire1 inhibitors screened, the endonuclease inhibitor 4μ8C displayed the strongest antifungal profile with an apparent fungicidal action. The compound both blocked conidial germination and hyphal metabolism of A. fumigatus Af293 in the same concentration range that blocked hacA splicing and UPR gene induction (60-120 μM). Topical treatment of sham-inoculated corneas with 0.5 and 2.5 mM 4μ8C did not impact corneal clarity, but did transiently inhibit epithelialization of corneal ulcers. Relative to vehicle-treated Af293-infected corneas, treatment with 0.5 and 2.5 mM drug resulted in a 50% and >90% reduction in fungal load, respectively, the latter of which corresponded to an absence of clinical signs of infection or corneal pathology. Conclusion The in vitro data suggest that 4μ8C displays antifungal activity against A. fumigatus through the specific inhibition of IreA. Topical application of the compound to the murine cornea can furthermore block the establishment of infection, suggesting this class of drugs can be developed as novel antifungals that improve visual outcomes in FK patients.
Collapse
Affiliation(s)
- Manali M. Kamath
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jorge D. Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Becca L. Wells
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kevin K. Fuller
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
23
|
Shi Q, Peng B, Cheng Z, Zhang Z, Wei Z, Wang Z, Zhang Y, Chen K, Xu X, Lu X, Cao K, Wei X, Liang Q. Direct Cost Analysis of Microbial Keratitis in North China: A Hospital-Based Retrospective Study. Pathogens 2024; 13:666. [PMID: 39204266 PMCID: PMC11357569 DOI: 10.3390/pathogens13080666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial keratitis (MK) is the fourth leading cause of blindness globally, imposing a substantial burden on the healthcare system. This study aims to determine the cost composition of MK patients and explore factors influencing these expenses. We analyzed the demographics, clinical features, and costs of 602 MK patients treated at Beijing Tongren Hospital from June 2021 to October 2023. The analysis revealed the average total cost of treating MK was USD 1646.8, with a median of USD 550.3 (IQR: 333.3-1239.1). Patients with Acanthamoeba keratitis (AK) incurred the highest median total costs at USD 706.2 (IQR: 399.2-3370.2). Additionally, AK patients faced the highest costs for ophthalmic exams and laboratory tests (both p < 0.001), while patients with fungal keratitis (FK) and viral keratitis (VK) experienced higher medication costs. Costs varied significantly with the severity of MK, especially for outpatients at severity level 4, which was markedly higher than levels 1-3 (USD 1520.1 vs. USD 401.0, p < 0.001). Delayed presentation also resulted in increased costs (USD 385.2 vs. USD 600.3, p < 0.001). Our study highlights the financial burden associated with MK treatment and underscores the importance of timely and accurate diagnosis and intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China; (Q.S.); (B.P.); (Z.C.); (Z.Z.); (Z.W.); (Z.W.); (Y.Z.); (K.C.); (X.X.); (X.L.); (K.C.); (X.W.)
| |
Collapse
|
24
|
Zhong R, Xu Z, Zhang S, Zeng M, Li H, Liu S, Lin S. Development of novel bisphenol derivatives with a membrane-targeting mechanism as potent gram-positive antibacterial agents. Eur J Med Chem 2024; 274:116544. [PMID: 38850855 DOI: 10.1016/j.ejmech.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Antibiotic resistance is becoming increasingly severe. The development of small molecular antimicrobial peptides is regarded as a promising design strategy for antibiotics. Here, a series of bisphenol derivatives with amphiphilic structures were designed and synthesized as antibacterial agents by imitating the design strategy of antimicrobial peptides. After a series of structural optimizations, lead compound 43 was identified, which exhibited excellent antibacterial activity against Gram-positive bacterial strains (MICs = 0.78-1.56 μg/mL), poor hemolytic activity (HC50 > 200 μg/mL), and low cytotoxicity (CC50 > 100 μg/mL). Further biological evaluation results indicated that 43 exerted antibacterial effects by directly destroying bacterial cell membranes and displayed rapid bactericidal properties (within 0.5-1 h), leading to a very low probability of drug resistance. Moreover, in a murine model of corneal infection, 43 exhibited a strong in vivo antibacterial efficacy. These findings indicate that 43 is a promising candidate compound for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Rongcui Zhong
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zikai Xu
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shujun Zhang
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Minghui Zeng
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haizhou Li
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shouping Liu
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuimu Lin
- Affiliated Qingyuan Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
25
|
Clare G, Kempen JH, Pavésio C. Infectious eye disease in the 21st century-an overview. Eye (Lond) 2024; 38:2014-2027. [PMID: 38355671 PMCID: PMC11269619 DOI: 10.1038/s41433-024-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Infectious diseases affecting the eye often cause unilateral or asymmetric visual loss in children and people of working age. This group of conditions includes viral, bacterial, fungal and parasitic diseases, both common and rare presentations which, in aggregate, may account for a significant portion of the global visual burden. Diagnosis is frequently challenging even in specialist centres, and many disease presentations are highly regional. In an age of globalisation, an understanding of the various modes of transmission and the geographic distribution of infections can be instructive to clinicians. The impact of eye infections on global disability is currently not sufficiently captured in global prevalence studies on visual impairment and blindness, which focus on bilateral disease in the over-50s. Moreover, in many cases it is hard to differentiate between infectious and immune-mediated diseases. Since infectious eye diseases can be preventable and frequently affect younger people, we argue that in future prevalence studies they should be considered as a separate category, including estimates of disability-adjusted life years (DALY) as a measure of overall disease burden. Numbers of ocular infections are uniquely affected by outbreaks as well as endemic transmission, and their control frequently relies on collaborative partnerships that go well beyond the remit of ophthalmology, encompassing domains as various as vaccination, antibiotic development, individual healthcare, vector control, mass drug administration, food supplementation, environmental and food hygiene, epidemiological mapping, and many more. Moreover, the anticipated impacts of global warming, conflict, food poverty, urbanisation and environmental degradation are likely to magnify their importance. While remote telemedicine can be a useful aide in the diagnosis of these conditions in resource-poor areas, enhanced global reporting networks and artificial intelligence systems may ultimately be required for disease surveillance and monitoring.
Collapse
Affiliation(s)
| | - John H Kempen
- Department of Ophthalmology and Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary; and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Sight for Souls, Bellevue, WA, USA
- MCM Eye Unit; MyungSung Christian Medical Center (MCM) Comprehensive Specialized Hospital and MyungSung Medical College, Addis Ababa, Ethiopia
- Department of Ophthalmology, Addis Ababa University School of Medicine, Addis Ababa, Ethiopia
| | | |
Collapse
|
26
|
Kim CK, Karslioglu MZ, Zhao SH, Lee OL. Infectious Keratitis in Patients Over 65: A Review on Treatment and Preserving Eyesight. Clin Interv Aging 2024; 19:1393-1405. [PMID: 39099749 PMCID: PMC11298191 DOI: 10.2147/cia.s467262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Infectious keratitis (IK) represents a significant global health concern, ranking as the fifth leading cause of blindness worldwide despite being largely preventable and treatable. Elderly populations are particularly susceptible due to age-related changes in immune response and corneal structure. However, research on IK in this demographic remains scarce. Age-related alterations such as increased permeability and reduced endothelial cell density further compound susceptibility to infection and hinder healing mechanisms. Additionally, inflammaging, characterized by chronic inflammation that develops with advanced age, disrupts the ocular immune balance, potentially exacerbating IK and other age-related eye diseases. Understanding these mechanisms is paramount for enhancing IK management, especially in elderly patients. This review comprehensively assesses risk factors, clinical characteristics, and management strategies for bacterial, viral, fungal, and acanthamoeba keratitis in the elderly population, offering crucial insights for effective intervention.
Collapse
Affiliation(s)
- Christine K Kim
- Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Melisa Z Karslioglu
- Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Sharon H Zhao
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Olivia L Lee
- Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
27
|
Zheng L, Chen Y, Han Y, Lin J, Fan K, Wang M, Teng T, Yang X, Ke L, Li M, Guo S, Li Z, Wu Y, Li C. Thermosensitive Polyhedral Oligomeric Silsesquioxane Hybrid Hydrogel Enhances the Antibacterial Efficiency of Erythromycin in Bacterial Keratitis. Biomater Res 2024; 28:0033. [PMID: 39040621 PMCID: PMC11260774 DOI: 10.34133/bmr.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 07/24/2024] Open
Abstract
Bacterial keratitis is a serious ocular infection that can impair vision or even cause blindness. The clinical use of antibiotics is limited due to their low bioavailability and drug resistance. Hence, there is a need to develop a novel drug delivery system for this infectious disease. In this study, erythromycin (EM) was encapsulated into a bifunctional polyhedral oligomeric silsesquioxane (BPOSS) with the backbone of the poly-PEG/PPG urethane (BPEP) hydrogel with the aim of improving the drug efficiency in treating bacterial keratitis. A comprehensive characterization of the BPEP hydrogel was performed, and its biocompatibility was assessed. Furthermore, we carried out the evaluation of the antimicrobial effect of the BPEP-EM hydrogel in S. aureus keratitis using in vivo mouse model. The BPEP hydrogel exhibited self-assembling and thermogelling properties, which assisted the drug loading of drug EM and improved its water solubility. Furthermore, the BPEP hydrogel could effectively bind with mucin on the ocular surface, thereby markedly prolonging the ocular residence time of EM. In vivo testing confirmed that the BPEP-EM hydrogel exerted a potent therapeutic action in the mouse model of bacterial keratitis. In addition, the hydrogel also exhibited an excellent biocompatibility. Our findings demonstrate that the BPEP-EM hydrogel showed a superior therapeutic effect in bacterial keratitis and demonstrated its potential as an ophthalmic formulation.
Collapse
Affiliation(s)
- Lan Zheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jingwei Lin
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Kai Fan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Mengyuan Wang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Ting Teng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiuqin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Muyuan Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117,Shandong Province, PR China
| | - Shujia Guo
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Zibiao Li
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117,Shandong Province, PR China
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| |
Collapse
|
28
|
Lai JM, Chen J, Navia JC, Durkee H, Gonzalez A, Rowaan C, Arcari T, Aguilar MC, Llanes K, Ziebarth N, Martinez JD, Miller D, Flynn HW, Amescua G, Parel JM. Enhancing Rose Bengal penetration in ex vivo human corneas using iontophoresis. Ther Deliv 2024; 15:567-575. [PMID: 39023301 PMCID: PMC11412146 DOI: 10.1080/20415990.2024.2371778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: Rose Bengal photodynamic antimicrobial therapy (RB-PDAT) has poor corneal penetration, limiting its efficacy against acanthamoeba keratitis (AK). Iontophoresis enhances corneal permeation of charged molecules, piquing interest in its effects on RB in ex vivo human corneas.Methods: Five donor whole globes each underwent iontophoresis with RB, soaking in RB, or were soaked in normal saline (controls). RB penetration and corneal thickness was assessed using confocal microscopy.Results: Iontophoresis increased RB penetration compared with soaking (177 ± 9.5 μm vs. 100 ± 5.7 μm, p < 0.001), with no significant differences in corneal thickness between groups (460 ± 87 μm vs. 407 ± 69 μm, p = 0.432).Conclusion: Iontophoresis significantly improves RB penetration and its use in PDAT could offer a novel therapy for acanthamoeba keratitis. Further studies are needed to validate clinical efficacy.
Collapse
Affiliation(s)
- James M Lai
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Justin Chen
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Carlos Navia
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Heather Durkee
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alex Gonzalez
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cornelis Rowaan
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Timothy Arcari
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mariela C Aguilar
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Noel Ziebarth
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Jaime D Martinez
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Darlene Miller
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Ocular Microbiology Laboratory, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Harry W Flynn
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Ocular Microbiology Laboratory, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guillermo Amescua
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Ocular Microbiology Laboratory, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jean-Marie Parel
- Ophthalmic Biophysics Center, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
29
|
Rodriguez P, Abbondante S, Marshall M, Abdelmeseh J, Tombola F, Pearlman E. An essential role for the Hv1 voltage-gated proton channel in Pseudomonas aeruginosa corneal infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603631. [PMID: 39071375 PMCID: PMC11275807 DOI: 10.1101/2024.07.15.603631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Assembly of NADPH oxidase 2 (NOX2) proteins in neutrophils plays an essential role in controlling microbial infections by producing high levels of reactive oxygen species (ROS). In contrast, the role of the Hv1 voltage-gated proton channel that is required for sustained NOX2 activity is less well characterized. We examined the role of Hv1 in a murine model of blinding Pseudomonas aeruginosa corneal infection and found that in contrast to C57BL/6 mice, Hvcn1 -/- mice exhibit an impaired ability to kill bacteria and regulate disease severity. In vitro, we used a novel Hv1 Inhibitor Flexible (HIF) to block ROS production by human and murine neutrophils and found that HIF inhibits ROS production in a dose-dependent manner following stimulation with PMA or infection with P. aeruginosa. Collectively, these findings demonstrate an important role for Hv1 on controlling bacterial growth in a clinically relevant bacterial infection model.
Collapse
Affiliation(s)
- Priscila Rodriguez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Serena Abbondante
- Department of Ophthalmology, University of California, Irvine, Irvine, CA
| | - Michaela Marshall
- Department of Ophthalmology, University of California, Irvine, Irvine, CA
| | - Jessica Abdelmeseh
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Department of Ophthalmology, University of California, Irvine, Irvine, CA
| |
Collapse
|
30
|
Jiang X, Jin Y, Zeng Y, Shi P, Li W. Self-Implantable Core-Shell Microneedle Patch for Long-Acting Treatment of Keratitis via Programmed Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310461. [PMID: 38396201 DOI: 10.1002/smll.202310461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yinli Jin
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yongnian Zeng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peng Shi
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
31
|
Roberts D, Thomas J, Salmon J, Cubeta MA, Stapelmann K, Gilger BC. Cold atmospheric plasma inactivates Aspergillus flavus and Fusarium keratoplasticum biofilms and conidia in vitro. J Med Microbiol 2024; 73:001858. [PMID: 38985505 PMCID: PMC11316566 DOI: 10.1099/jmm.0.001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/15/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction. Aspergillus flavus and Fusarium keratoplasticum are common causative pathogens of fungal keratitis (FK), a severe corneal disease associated with significant morbidity and vision loss. Escalating incidence of antifungal resistance to available antifungal drugs poses a major challenge to FK treatment. Cold atmospheric plasma (CAP) is a pioneering nonpharmacologic antimicrobial intervention that has demonstrated potential as a broad-spectrum antifungal treatment.Gap statement. Previous research highlights biofilm-associated resistance as a critical barrier to effective FK treatment. Although CAP has shown promise against various fungal infections, its efficacy against biofilm and conidial forms of FK pathogens remains inadequately explored.Aim. This study aims to investigate the antifungal efficacy of CAP against clinical fungal keratitis isolates of A. flavus and F. keratoplasticum in vitro.Methodology. Power parameters (22-27 kVpp, 300-400 Hz and 20-80 mA) of a dielectric barrier discharge CAP device were optimized for inactivation of A. flavus biofilms. Optimal applied voltage and total current were applied to F. keratoplasticum biofilms and conidial suspensions of A. flavus and F. keratoplasticum. The antifungal effect of CAP treatment was investigated by evaluating fungal viability through means of metabolic activity, c.f.u. enumeration (c.f.u. ml-1) and biofilm formation.Results. For both fungal species, CAP exhibited strong time-dependent inactivation, achieving greater than 80 % reduction in metabolic activity and c.f.u. ml-1 within 300 s or less, and complete inhibition after 600 s of treatment.Conclusion. Our findings indicate that CAP is a promising broad-spectrum antifungal intervention. CAP treatment effectively reduces fungal viability in both biofilm and conidial suspension cultures of A. flavus and F. keratoplasticum, suggesting its potential as an alternative treatment strategy for fungal keratitis.
Collapse
Affiliation(s)
- Darby Roberts
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, USA
| | - Jonathan Thomas
- Department of Nuclear Engineering, College of Engineering, NC State University, Raleigh, NC, USA
| | - Jacklyn Salmon
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, USA
| | - Marc A. Cubeta
- Department of Entomology and Plant Pathology, College of Agriculture and Life Science, NC State University, Center for Integrated Fungal Research, Raleigh, NC, USA
| | - Katharina Stapelmann
- Department of Nuclear Engineering, College of Engineering, NC State University, Raleigh, NC, USA
| | - Brian C. Gilger
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Dong G, Hao Z, Zhang C, Deng A. Unveiling challenging corneal infections: a comprehensive etiological diagnosis through metagenomic next-generation sequencing (mNGS) of corneal tissue samples. Int Ophthalmol 2024; 44:246. [PMID: 38907102 DOI: 10.1007/s10792-024-03201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE The objective of this study was to assess the clinical diagnostic value of metagenomic next-generation sequencing (mNGS) in cases of challenging corneal infections using corneal tissue samples. METHODS This retrospective study involved 42 patients with corneal infections, where conventional diagnostic techniques failed to identify the causative pathogen. Corneal tissue specimens underwent mNGS, followed by microbial culture for validation. Sensitivity-guided antimicrobial therapy was administered upon identification of the pathogen. The diagnostic and therapeutic efficacy of mNGS was analyzed to evaluate its clinical utility. RESULTS A total of 42 patients were included in this study, with mNGS detection results obtained for 38 cases (90.48%). Among them, 30 cases (71.43%) were clinically significant, eight cases (19.05%) had low clinical relevance, and four cases (9.52%) showed no detection. Following corresponding antimicrobial treatment, 30 patients exhibited significant improvement, resulting in a treatment effectiveness of 71.43%. The prognosis of mNGS-positive patients was superior to that of mNGS-negative patients, with statistically significant differences observed (P < 0.001). CONCLUSIONS Corneal tissue mNGS facilitated the rapid identification of causative agents in challenging corneal infections with unclear clinical diagnoses. It could be seamlessly integrated with traditional diagnostic methods to guide the diagnosis and treatment of corneal diseases.
Collapse
Affiliation(s)
- Guangguo Dong
- Department of Ophthalmology, Jinan Second People's Hospital, Jinan, 250200, China
| | - Zhongkai Hao
- Department of Ophthalmology, Jinan Second People's Hospital, Jinan, 250200, China
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - Chenming Zhang
- Department of Ophthalmology, Jinan Second People's Hospital, Jinan, 250200, China.
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China.
| | - Aijun Deng
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China.
| |
Collapse
|
33
|
Xiang J, Zou R, Jiang Y, Xiang L, Liu F, Xu C, Wu A. Harnessing the Potential of a Nitroreductase-Responsive Fluorescent Probe for the Diagnosis of Bacterial Keratitis. Bioconjug Chem 2024; 35:758-765. [PMID: 38857526 DOI: 10.1021/acs.bioconjchem.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Bacterial keratitis, an ocular emergency, is the predominant cause of infectious keratitis. However, diagnostic procedures for it are invasive, time-consuming, and expeditious, thereby limiting effective treatment for the disease in the clinic. It is imperative to develop a timely and convenient method for the noninvasive diagnosis of bacterial keratitis. Fluorescence imaging is a convenient and noninvasive diagnostic method with high sensitivity. In this study, a type of nitroreductase-responsive probe (NTRP), which responds to nitroreductase to generate fluorescence signals, was developed as an activatable fluorescent probe for the imaging diagnosis of bacterial keratitis. Imaging experiments both in vitro and in vivo demonstrated that the probe exhibited "turn-on" fluorescence signals in response to nitroreductase-secreting bacteria within 10 min. Furthermore, the fluorescence intensity reached its highest at 4 or 6 h in vitro and at 30 min in vivo when the excitation wavelength was set at 520 nm. Therefore, the NTRP has the potential to serve as a feasible agent for the rapid and noninvasive in situ fluorescence diagnosis of bacterial keratitis.
Collapse
Affiliation(s)
- Jing Xiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ruifen Zou
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Medical Engineering, Jining Medical University, Jining 272067, China
| | - Yu Jiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lingchao Xiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Fang Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
34
|
Yu C, Xu J, Heidari G, Jiang H, Shi Y, Wu A, Makvandi P, Neisiany RE, Zare EN, Shao M, Hu L. Injectable hydrogels based on biopolymers for the treatment of ocular diseases. Int J Biol Macromol 2024; 269:132086. [PMID: 38705321 DOI: 10.1016/j.ijbiomac.2024.132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.
Collapse
Affiliation(s)
- Caiyu Yu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Xu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Golnaz Heidari
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Huijun Jiang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India.
| | - Minmin Shao
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Liang Hu
- Department of Eye, Ear, Nose and Throat, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou 325000, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
35
|
Nayel AA, Hamdy NA, Massoud TH, Mohamed NM. A comparison of antimicrobial regimen outcomes and antibiogram development in microbial keratitis: a prospective cohort study in Alexandria, Egypt. Graefes Arch Clin Exp Ophthalmol 2024; 262:1865-1882. [PMID: 38240778 PMCID: PMC11106157 DOI: 10.1007/s00417-023-06362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Antimicrobial resistance in microbial keratitis has not been previously explored in Alexandria. We aim to recommend effective therapies through identification of etiological agents, determination of antimicrobial susceptibilities, and comparing outcomes of empiric topical antimicrobials. METHODS In this 2022 prospective cohort conducted in Alexandria Main University Hospital cornea clinic, antimicrobial susceptibilities of isolated microorganisms from corneal scrapings were detected and antibiograms were developed. Bacterial (BK), fungal (FK), or mixed fungal/bacterial keratitis (MFBK) patients on empiric regimens were compared for ulcer healing, time-to-epithelialization, best-corrected visual acuity, interventions, and complications. RESULTS The prevalent microorganisms in 93 positive-cultures were coagulase-negative staphylococci (CoNS, 30.1%), Pseudomonas aeruginosa (14%), and Aspergillus spp. (12.9%). CoNS were susceptible to vancomycin (VAN, 100%) and moxifloxacin (MOX, 90.9%). Gram-negative bacteria showed more susceptibility to gatifloxacin (90.9%) than MOX (57.1%), and to gentamicin (GEN, 44.4%) than ceftazidime (CAZ, 11.8%). Methicillin-resistance reached 23.9% among Gram-positive bacteria. Fungi exhibited 10% resistance to voriconazole (VRC). Percentages of healed ulcers in 49 BK patients using GEN + VAN, CAZ + VAN and MOX were 85.7%, 44.4%, and 64.5%, respectively (p = 0.259). Their median time-to-epithelialization reached 21, 30, and 30 days, respectively (log-rank p = 0.020). In 51 FK patients, more ulcers (88.9%) healed with natamycin (NT) + VRC combination compared to VRC (39.1%) or NT (52.6%) (p = 0.036). Their median time-to-epithelialization was 65, 60, and 22 days, respectively (log-rank p < 0.001). The VRC group required more interventions (60.9%) than NT + VRC-treated group (11.1%) (p = 0.018). In 23 MFBK patients, none healed using NT + CAZ + VAN, while 50% healed using VRC + CAZ + VAN (p = 0.052). Regimens had comparable visual outcomes and complications. CONCLUSION Based on the higher detected susceptibility, we recommend empiric MOX in suspected Gram-positive BK, gatifloxacin in Gram-negative BK, and GEN + VAN in severe BK. Due to better outcomes, we recommend NT + VRC in severe FK. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT05655689. Registered December 19, 2022- Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05655689?cond=NCT05655689.&draw=2&rank=1.
Collapse
Affiliation(s)
- Amira A Nayel
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Clinical Pharmacy Department, Alexandria Ophthalmology Hospital, Ministry of Health and Population of Egypt, Alexandria, Egypt
| | - Noha A Hamdy
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Tamer H Massoud
- Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
Siew L, Ng NBH, Lim CHL. Acute painful red eye in a teenage girl. BMJ 2024; 385:e078598. [PMID: 38782411 DOI: 10.1136/bmj-2023-078598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
- Lei Siew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas Beng Hui Ng
- National University Hospital, Khoo Teck Puat-National University Children's Medical Institute, Singapore
| | | |
Collapse
|
37
|
Liu S, Bai Q, Jiang Y, Gao Y, Chen Z, Shang L, Zhang S, Yu L, Yang D, Sui N, Zhu Z. Multienzyme-Like Nanozyme Encapsulated Ocular Microneedles for Keratitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308403. [PMID: 38098457 DOI: 10.1002/smll.202308403] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Indexed: 05/25/2024]
Abstract
Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.
Collapse
Affiliation(s)
- Shen Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yonghui Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Limin Shang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Siying Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Dongqin Yang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
38
|
Neri S, Mascolini MV, Peruffo A, Todros S, Zuin M, Cordaro L, Martines E, Contiero B, Carniel EL, Iacopetti I, Patruno M, Fontanella CG, Perazzi A. How does atmospheric pressure cold helium plasma affect the biomechanical behaviour on alkali-lesioned corneas? BMC Vet Res 2024; 20:153. [PMID: 38659026 PMCID: PMC11041036 DOI: 10.1186/s12917-024-03980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Melting corneal ulcers are a serious condition that affects a great number of animals and people around the world and it is characterised by a progressive weakening of the tissue leading to possible severe ophthalmic complications, such as visual impairment or blindness. This disease is routinely treated with medical therapy and keratoplasty, and recently also with alternative regenerative therapies, such as cross-linking, amniotic membrane transplant, and laser. Plasma medicine is another recent example of regenerative treatment that showed promising results in reducing the microbial load of corneal tissue together with maintaining its cellular vitality. Since the effect of helium plasma application on corneal mechanical viscoelasticity has not yet been investigated, the aim of this study is first to evaluate it on ex vivo porcine corneas for different exposition times and then to compare the results with previous data on cross-linking treatment. RESULTS 94 ex vivo porcine corneas divided into 16 populations (healthy or injured, fresh or cultured and treated or not with plasma or cross-linking) were analysed. For each population, a biomechanical analysis was performed by uniaxial stress-relaxation tests, and a statistical analysis was carried out considering the characteristic mechanical parameters. In terms of equilibrium normalised stress, no statistically significant difference resulted when the healthy corneas were compared with lesioned plasma-treated ones, independently of treatment time, contrary to what was obtained about the cross-linking treated corneas which exhibited more intense relaxation phenomena. CONCLUSIONS In this study, the influence of the Helium plasma treatment was observed on the viscoelasticity of porcine corneas ex vivo, by restoring in lesioned tissue a degree of relaxation similar to the one of the native tissue, even after only 2 min of application. Therefore, the obtained results suggest that plasma treatment is a promising new regenerative ophthalmic therapy for melting corneal ulcers, laying the groundwork for further studies to correlate the mechanical findings with corneal histology and ultrastructural anatomy after plasma treatment.
Collapse
Affiliation(s)
- Simona Neri
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy.
| | - Maria Vittoria Mascolini
- Department of Industrial Engineering, University of Padua, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padua, Padova, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy.
| | - Silvia Todros
- Department of Industrial Engineering, University of Padua, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padua, Padova, Italy
| | - Matteo Zuin
- RFX (CNR, ENEA, INFN), Padova, Italy
- CNR, Institute for Plasma Science and Technology, Padova, Italy
| | - Luigi Cordaro
- RFX (CNR, ENEA, INFN), Padova, Italy
- CNR, Institute for Plasma Science and Technology, Padova, Italy
| | - Emilio Martines
- Department of Physics "G. Occhialini", University of Milano - Bicocca, Milano, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padua, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padua, Padova, Italy
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padua, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padua, Padova, Italy
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padua, Padova, Italy
| |
Collapse
|
39
|
Mangoni ML, Loffredo MR, Casciaro B, Ferrera L, Cappiello F. An Overview of Frog Skin-Derived Esc Peptides: Promising Multifunctional Weapons against Pseudomonas aeruginosa-Induced Pulmonary and Ocular Surface Infections. Int J Mol Sci 2024; 25:4400. [PMID: 38673985 PMCID: PMC11049899 DOI: 10.3390/ijms25084400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Loretta Ferrera
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| |
Collapse
|
40
|
Zhang J, Li Y, Xie S, Lou H, Chen H, Zhang G. Baicalein glycymicelle ophthalmic solution: Preparation, in vitro antimicrobial activities, and antimicrobial mechanism evaluations. Int J Pharm 2024; 654:123964. [PMID: 38430948 DOI: 10.1016/j.ijpharm.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The purpose of this study was to develop a novel baicalein (BAI) loaded glycymicelle ophthalmic solution with small molecule phytochemical glycyrrhizin as nanocarriers and to explore this solution's potential as an antimicrobial agent against ocular infections. The optimized BAI glycymicelles had a high encapsulation efficiency (98.76 ± 1.25 %), a small particle size (54.38 ± 2.41 nm), a uniform size distribution (polydispersity index = 0.293 ± 0.083), and a zeta potential of -28.3 ± 1.17 mV. The BAI glycymicelle ophthalmic solution exhibited an excellent short-term storage stability. BAI glycymicelles significantly increased the apparent solubility and in vitro release capability of BAI. The BAI glycymicelle ophthalmic solution exhibited no hen's egg-chorioallantoic membrane' irritation and strong in vivo ocular tolerance in rabbits. The BAI glycymicelles noticeably enhanced the in vivo corneal permeation. The BAI glycymicelles also precipitated increased in vitro antioxidant activity and significantly improved in vitro antipathogen activities. Various antimicrobial mechanisms, including the destruction of the bacterial cell wall, damage to the bacterial cell membranes, interruptions to the biofilm structure, and the apoptosis of bacteria, were inflicted on BAI glycymicelles. These findings provided useful knowledge regarding the development of a novel ophthalmic solution and formulation of BAI.
Collapse
Affiliation(s)
- Jing Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuhang Li
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Sibin Xie
- Qingdao Central Medical Group, Qingdao, China
| | - Huadong Lou
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Hao Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Guowen Zhang
- The Eighth People's Hospital of Qingdao, Qingdao, China.
| |
Collapse
|
41
|
Petrillo F, Tortori A, Vallino V, Galdiero M, Fea AM, De Sanctis U, Reibaldi M. Understanding Acanthamoeba Keratitis: An In-Depth Review of a Sight-Threatening Eye Infection. Microorganisms 2024; 12:758. [PMID: 38674702 PMCID: PMC11052265 DOI: 10.3390/microorganisms12040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Acanthamoeba keratitis (AK) is a rare but potentially sight-threatening corneal infection caused by the Acanthamoeba parasite. This microorganism is found ubiquitously in the environment, often in freshwater, soil, and other sources of moisture. Despite its low incidence, AK presents significant challenges due to delayed diagnosis and the complex nature of therapeutic management. Early recognition is crucial to prevent severe ocular complications, including corneal ulceration and vision loss. Diagnostic modalities and treatment strategies may vary greatly depending on the clinical manifestation and the available tools. With the growing reported cases of Acanthamoeba keratitis, it is essential for the ophthalmic community to thoroughly understand this condition for its effective management and improved outcomes. This review provides a comprehensive overview of AK, encompassing its epidemiology, risk factors, pathophysiology, clinical manifestations, diagnosis, and treatment.
Collapse
Affiliation(s)
- Francesco Petrillo
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (V.V.); (A.M.F.); (U.D.S.); (M.R.)
- Department of Ophthalmology, “City of Health and Science” Hospital, 10126 Turin, Italy
| | - Antonia Tortori
- Ophthalmology Unit, Surgery Department, Piacenza Hospital, 29121 Piacenza, Italy;
| | - Veronica Vallino
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (V.V.); (A.M.F.); (U.D.S.); (M.R.)
- Department of Ophthalmology, “City of Health and Science” Hospital, 10126 Turin, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Antonio M. Fea
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (V.V.); (A.M.F.); (U.D.S.); (M.R.)
- Department of Ophthalmology, “City of Health and Science” Hospital, 10126 Turin, Italy
| | - Ugo De Sanctis
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (V.V.); (A.M.F.); (U.D.S.); (M.R.)
- Department of Ophthalmology, “City of Health and Science” Hospital, 10126 Turin, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (V.V.); (A.M.F.); (U.D.S.); (M.R.)
- Department of Ophthalmology, “City of Health and Science” Hospital, 10126 Turin, Italy
| |
Collapse
|
42
|
Duan H, Meng F, Liu X, Qi P, Peng X, Li C, Wang Q, Zhao G, Lin J. Extracellular vesicles from Candida albicans modulate immune cells function and play a protective role in fungal keratitis. Microb Pathog 2024; 189:106606. [PMID: 38437994 DOI: 10.1016/j.micpath.2024.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Fungal keratitis (FK) is a highly blinding infectious corneal disease caused by pathogenic fungi. Candida albicans (C. albicans) is one of the main pathogens of fungal keratitis. Extracellular vesicles (EVs), lipid bilayer compartments released by almost all living cells, including fungi, have garnered attention for their role in pathogenic microbial infection and host immune responses in recent years. Studies have reported that pretreating the host with fungal EVs can reduce the inflammatory response of the host when attacked by fungi and reduce the lethality of fungal infection. However, there are no studies that have evaluated whether C. albicans EVs can modulate the inflammatory response associated with C. albicans keratitis. Our study revealed that C. albicans EVs could activate the polymorphonuclear cells (PMNs) and promote their secretion of proinflammatory cytokines and nitric oxide (NO), enhance their phagocytic and fungicidal abilities against C. albicans. C. albicans EVs also induced a proinflammatory response in RAW264.7 cells, which was characterized by increased production of inflammatory cytokines and elevated expression of the chemokine CCL2. Similarly, stimulation of C. albicans EVs to RAW264.7 cells also enhanced the phagocytosis and killing ability of cells against C. albicans. Besides, in our in vivo experiments, after receiving subconjunctival injection of C. albicans EVs, C57BL/6 mice were infected with C. albicans. The results demonstrated that pre-exposure to C. albicans EVs could effectively diminish the severity of keratitis, reduce fungal load and improve prognosis. Overall, we conclude that C. albicans EVs can modulate the function of immune cells and play a protective role in C. albicans keratitis.
Collapse
Affiliation(s)
- Huijin Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fanyue Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Pingli Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
43
|
Cabrera-Aguas M, Chidi-Egboka N, Kandel H, Watson SL. Antimicrobial resistance in ocular infection: A review. Clin Exp Ophthalmol 2024; 52:258-275. [PMID: 38494451 DOI: 10.1111/ceo.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
Antimicrobial resistance (AMR) is a global public health threat with significant impact on treatment outcomes. The World Health Organization's Global Action Plan on AMR recommended strengthening the evidence base through surveillance programs and research. Comprehensive, timely data on AMR for organisms isolated from ocular infections are needed to guide treatment decisions and inform researchers and microbiologists of emerging trends. This article aims to provide an update on the development of AMR in ocular organisms, AMR in bacterial ocular infections and on AMR stewardship programs globally. The most common ocular pathogens are Pseudomonas aeruginosa, Staphylococcus spp., Streptococcus pneumoniae, and Haemophilus influenzae in ocular infections. A variety of studies and a few surveillance programs worldwide have reported on AMR in these infections over time. Fluoroquinolone resistance has increased particularly in Asia and North America. For conjunctivitis, the ARMOR cumulative study in the USA reported a slight decrease in resistance to ciprofloxacin. For keratitis, resistance to methicillin has remained stable for S. aureus and CoNS, while resistance to ciprofloxacin has decreased for MRSA globally. Methicillin-resistance and multidrug resistance are also emerging, requiring ongoing monitoring. Antimicrobial stewardship (AMS) programmes have a critical role in reducing the threat of AMR and improving treatment outcomes. To be successful AMS must be informed by up-to-date AMR surveillance data. As a profession it is timely for ophthalmology to act to prevent AMR leading to greater visual loss through supporting surveillance programmes and establishing AMS.
Collapse
Affiliation(s)
- Maria Cabrera-Aguas
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Ngozi Chidi-Egboka
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Himal Kandel
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie L Watson
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Mazzantini D, Massimino M, Calvigioni M, Rossi V, Celandroni F, Lupetti A, Batoni G, Ghelardi E. Anti-Staphylococcal Biofilm Effects of a Liposome-Based Formulation Containing Citrus Polyphenols. Antibiotics (Basel) 2024; 13:318. [PMID: 38666994 PMCID: PMC11047357 DOI: 10.3390/antibiotics13040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Biofilms are surface-associated microbial communities embedded in a matrix that is almost impenetrable to antibiotics, thus constituting a critical health threat. Biofilm formation on the cornea or ocular devices can lead to serious and difficult-to-treat infections. Nowadays, natural molecules with antimicrobial activity and liposome-based delivery systems are proposed as anti-biofilm candidates. In this study, the anti-biofilm activity of a formulation containing citrus polyphenols encapsulated in liposomes was evaluated against Staphylococcus aureus and Staphylococcus epidermidis, the most common agents in ocular infections. The formulation activity against planktonic staphylococci was tested by broth microdilution and sub-inhibitory concentrations were used to evaluate the effect on biofilm formation using the crystal violet (CV) assay. The eradicating effect of the preparation on mature biofilms was investigated by the CV assay, plate count, and confocal laser scanning microscopy. The product was bactericidal against staphylococci at a dilution of 1:2 or 1:4 and able to reduce biofilm formation even if diluted at 1:64. The formulation also had the ability to reduce the biomass of mature biofilms without affecting the number of cells, suggesting activity on the extracellular matrix. Overall, our results support the application of the used liposome-encapsulated polyphenols as an anti-biofilm strategy to counter biofilm-associated ocular infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (D.M.); (M.M.); (M.C.); (V.R.); (F.C.); (A.L.); (G.B.)
| |
Collapse
|
45
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
46
|
Tey KY, Cheong EZK, Ang M. Potential applications of artificial intelligence in image analysis in cornea diseases: a review. EYE AND VISION (LONDON, ENGLAND) 2024; 11:10. [PMID: 38448961 PMCID: PMC10919022 DOI: 10.1186/s40662-024-00376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Artificial intelligence (AI) is an emerging field which could make an intelligent healthcare model a reality and has been garnering traction in the field of medicine, with promising results. There have been recent developments in machine learning and/or deep learning algorithms for applications in ophthalmology-primarily for diabetic retinopathy, and age-related macular degeneration. However, AI research in the field of cornea diseases is relatively new. Algorithms have been described to assist clinicians in diagnosis or detection of cornea conditions such as keratoconus, infectious keratitis and dry eye disease. AI may also be used for segmentation and analysis of cornea imaging or tomography as an adjunctive tool. Despite the potential advantages that these new technologies offer, there are challenges that need to be addressed before they can be integrated into clinical practice. In this review, we aim to summarize current literature and provide an update regarding recent advances in AI technologies pertaining to corneal diseases, and its potential future application, in particular pertaining to image analysis.
Collapse
Affiliation(s)
- Kai Yuan Tey
- Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | | | - Marcus Ang
- Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
47
|
Cartwright VA, Smith JR. Women in ophthalmology. Clin Exp Ophthalmol 2024; 52:133-134. [PMID: 38454207 DOI: 10.1111/ceo.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/09/2024]
Affiliation(s)
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Simoliunas E, Ruedas-Torres I, Jiménez-Gómez Y, Edin E, Aghajanzadeh-Kiyaseh M, Zamani-Roudbaraki M, Asoklis R, Alksne M, Thathapudi NC, Poudel BK, Rinkunaite I, Asoklis K, Iesmantaite M, Ortega-Llamas L, Makselis A, Munoz M, Baltriukiene D, Bukelskiene V, Gómez-Laguna J, González-Andrades M, Griffith M. Inflammation-suppressing cornea-in-a-syringe with anti-viral GF19 peptide promotes regeneration in HSV-1 infected rabbit corneas. NPJ Regen Med 2024; 9:11. [PMID: 38429307 PMCID: PMC10907611 DOI: 10.1038/s41536-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Pathophysiologic inflammation, e.g., from HSV-1 viral infection, can cause tissue destruction resulting in ulceration, perforation, and ultimately blindness. We developed an injectable Cornea-in-a-Syringe (CIS) sealant-filler to treat damaged corneas. CIS comprises linear carboxylated polymers of inflammation-suppressing 2-methacryloyloxyethyl phosphorylcholine, regeneration-promoting collagen-like peptide, and adhesive collagen-citrate glue. We also incorporated GF19, a modified anti-viral host defense peptide that blocked HSV-1 activity in vitro when released from silica nanoparticles (SiNP-GF19). CIS alone suppressed inflammation when tested in a surgically perforated and HSV-1-infected rabbit corneal model, allowing tissue and nerve regeneration. However, at six months post-operation, only regenerated neocorneas previously treated with CIS with SiNP-GF19 had structural and functional features approaching those of normal healthy corneas and were HSV-1 virus-free. We showed that composite injectable biomaterials can be designed to allow regeneration by modulating inflammation and blocking viral activity in an infected tissue. Future iterations could be optimized for clinical application.
Collapse
Affiliation(s)
- Egidijus Simoliunas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14014, Córdoba, Spain
| | - Yolanda Jiménez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, 14004, Cordoba, Spain
| | - Elle Edin
- Department of Ophthalmology and Institute of Biomedical Engineering, University of Montreal, Montrea, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Mozhgan Aghajanzadeh-Kiyaseh
- Department of Ophthalmology and Institute of Biomedical Engineering, University of Montreal, Montrea, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Mostafa Zamani-Roudbaraki
- Department of Ophthalmology and Institute of Biomedical Engineering, University of Montreal, Montrea, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Rimvydas Asoklis
- Department of Ophthalmology, Vilnius University Hospital, Vilnius, Lithuania
| | - Milda Alksne
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Neethi C Thathapudi
- Department of Ophthalmology and Institute of Biomedical Engineering, University of Montreal, Montrea, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Bijay K Poudel
- Department of Ophthalmology and Institute of Biomedical Engineering, University of Montreal, Montrea, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Ieva Rinkunaite
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kasparas Asoklis
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Monika Iesmantaite
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laura Ortega-Llamas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, 14004, Cordoba, Spain
| | - Almantas Makselis
- Department of Ophthalmology, Vilnius University Hospital, Vilnius, Lithuania
| | - Marcelo Munoz
- Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daiva Baltriukiene
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14014, Córdoba, Spain.
| | - Miguel González-Andrades
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, 14004, Cordoba, Spain.
| | - May Griffith
- Department of Ophthalmology and Institute of Biomedical Engineering, University of Montreal, Montrea, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada.
| |
Collapse
|
49
|
Mishra S, Manzanares MA, Prater J, Culp D, Gold LI. Calreticulin accelerates corneal wound closure and mitigates fibrosis: Potential therapeutic applications. J Cell Mol Med 2024; 28:e18027. [PMID: 37985392 PMCID: PMC10902309 DOI: 10.1111/jcmm.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
The processes involved in regeneration of cutaneous compared to corneal tissues involve different intrinsic mechanisms. Importantly, cutaneous wounds involve healing by angiogenesis but vascularization of the cornea obscures vision. Previous studies showed that topically applied calreticulin (CALR) healed full-thickness excisional animal wounds by a tissue regenerative process markedly enhancing repair without evoking angiogenesis. In the current study, the application of CALR in a rabbit corneal injury model: (1) accelerated full wound closure by 3 days (2) accelerated delayed healing caused by corticosteroids, routinely used to prevent post-injury inflammation, by 6 days and (3) healed wounds without vascularization or fibrosis/hazing. In vitro, CALR stimulated proliferation of human corneal epithelial cells (CE) and corneal stromal cells (keratocytes) by 1.5-fold and 1.4-fold, respectively and induced migration of CE cells and keratocytes, by 72% and 85% compared to controls of 44% and 59%, respectively. As a marker of decreased fibrosis, CALR treated corneal wounds showed decreased immunostaining for α-smooth muscle actin (α-SMA) by keratocytes and following CALR treatment in vitro, decreased the levels of TGF-β2 in human CE cells and α-SMA in keratocytes. CALR has the potential to be a novel therapeutic both, to accelerate corneal healing from various injuries and in conjunction with corticosteroids.
Collapse
Affiliation(s)
- Sarita Mishra
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Miguel A. Manzanares
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Justin Prater
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - David Culp
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - Leslie I. Gold
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
- Department of PathologyNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| |
Collapse
|
50
|
Arun K, Georgoudis P. Pseudomonas Keratitis: From Diagnosis to Successful Deep Anterior Lamellar Keratoplasty. Cureus 2024; 16:e56154. [PMID: 38495968 PMCID: PMC10940118 DOI: 10.7759/cureus.56154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 03/19/2024] Open
Abstract
Pseudomonas keratitis is an aggressive form of bacterial keratitis that can have devastating consequences, such as corneal perforation, if not promptly identified and appropriately managed. The aim of this case report is to highlight key clinical features of Pseudomonas keratitis and evaluate the initial and long-term management options for this condition. We report a case of a 32-year-old female who presented with a large corneal abscess and hypopyon following contact lens wear. Corneal cultures confirmed Pseudomonas as the causative organism and she was treated with topical levofloxacin and gentamycin. Following sterilisation of the corneal ulcer, the patient was left with deep stromal scarring, peripheral corneal thinning as well as four-quadrant deep corneal vascularisation. She was listed for deep anterior lamellar keratoplasty surgery to clear her visual axis. We highlight some of the challenges that were faced both intra-operatively and post-operatively and how they were managed.
Collapse
|