1
|
Woo MS, Bal LC, Winschel I, Manca E, Walkenhorst M, Sevgili B, Sonner JK, Di Liberto G, Mayer C, Binkle-Ladisch L, Rothammer N, Unger L, Raich L, Hadjilaou A, Noli B, Manai AL, Vieira V, Meurs N, Wagner I, Pless O, Cocco C, Stephens SB, Glatzel M, Merkler D, Friese MA. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis. J Clin Invest 2024; 134:e177692. [PMID: 39145444 PMCID: PMC11324305 DOI: 10.1172/jci177692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C. Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias Manca
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bachar Sevgili
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Hadjilaou
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Barbara Noli
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio L. Manai
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Samuel B. Stephens
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Gabaldon-Albero A, Mayo S, Martinez F. NR4A2 as a Novel Target Gene for Developmental and Epileptic Encephalopathy: A Systematic Review of Related Disorders and Therapeutic Strategies. Int J Mol Sci 2024; 25:5198. [PMID: 38791237 PMCID: PMC11120677 DOI: 10.3390/ijms25105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The NR4A2 gene encodes an orphan transcription factor of the steroid-thyroid hormone-retinoid receptor superfamily. This review focuses on the clinical findings associated with the pathogenic variants so far reported, including three unreported cases. Also, its role in neurodegenerative diseases, such as Parkinson's or Alzheimer's disease, is examined, as well as a brief exploration on recent proposals to develop novel therapies for these neurological diseases based on small molecules that could modulate NR4A2 transcriptional activity. The main characteristic shared by all patients is mild to severe developmental delay/intellectual disability. Moderate to severe disorder of the expressive and receptive language is present in at least 42%, while neuro-psychiatric issues were reported in 53% of patients. Movement disorders, including dystonia, chorea or ataxia, are described in 37% patients, although probably underestimated because of its frequent onset in late adolescence-young adulthood. Finally, epilepsy was surprisingly present in 42% of patients, being drug-resistant in three of them. The age at onset varied widely, from five months to twenty-six years, as did the classification of epilepsy, which ranged from focal epilepsy to infantile spasms or Lennox-Gastaut syndrome. Accordingly, we propose that NR4A2 should be considered as a first-tier target gene for the genetic diagnosis of developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Alba Gabaldon-Albero
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Francisco Martinez
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
3
|
Song J, Qin BF, Feng QY, Zhang JJ, Zhao GY, Luo Z, Sun HM. Albiflorin ameliorates thioacetamide-induced hepatic fibrosis: The involvement of NURR1-mediated inflammatory signaling cascades in hepatic stellate cells activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116334. [PMID: 38626607 DOI: 10.1016/j.ecoenv.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-β), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.
Collapse
Affiliation(s)
- Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Jin-Jin Zhang
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China
| | - Gui-Yun Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Zheng Luo
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
4
|
Provasek VE, Kodavati M, Guo W, Wang H, Boldogh I, Van Den Bosch L, Britz G, Hegde ML. lncRNA Sequencing Reveals Neurodegeneration-Associated FUS Mutations Alter Transcriptional Landscape of iPS Cells That Persists in Motor Neurons. Cells 2023; 12:2461. [PMID: 37887305 PMCID: PMC10604943 DOI: 10.3390/cells12202461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Fused-in sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs) and differentially expressed lncRNAs (DELs) and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered the expression profiles of mRNAs and lncRNAs in iPSCs. Using this large dataset, we identified and verified six key differentially regulated TAR pairs in iPSCs that were also altered in iMNs. These target transcripts included: GPR149, NR4A, LMO3, SLC15A4, ZNF404, and CRACD. These findings indicated that selected mutant FUS-induced transcriptional alterations persist from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis as likely altered by these FUS mutations. Furthermore, ingenuity pathway analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations between RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into potential molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
| | - Wenting Guo
- INSERM, UMR-S1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, CRBS, 67000 Strasbourg, France;
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Haibo Wang
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Ludo Van Den Bosch
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Muralidhar L. Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
5
|
Zhang S, Shi K, Lyu N, Zhang Y, Liang G, Zhang W, Wang X, Wen H, Wen L, Ma H, Wang J, Yu X, Guan L. Genome-wide DNA methylation analysis in families with multiple individuals diagnosed with schizophrenia and intellectual disability. World J Biol Psychiatry 2023; 24:741-753. [PMID: 37017099 DOI: 10.1080/15622975.2023.2198595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES Schizophrenia (SZ) and intellectual disability (ID) are both included in the continuum of neurodevelopmental disorders (NDDs). DNA methylation is known to be important in the occurrence of NDDs. The family study is conducive to eliminate the effects of relative epigenetic backgrounds, and to screen for differentially methylated positions (DMPs) and regions (DMRs) that are truly associated with NDDs. METHODS Four monozygotic twin families were recruited, and both twin individuals suffered from NDDs (either SZ, ID, or SZ plus ID). Genome-wide methylation analysis was performed in all samples and each family. DMPs and DMRs between NDD patients and unaffected individuals were identified. Functional and pathway enrichment analyses were performed on the annotated genes. RESULTS Two significant DMPs annotated to CYP2E1 were found in all samples. In Family One, 1476 DMPs mapped to 880 genes, and 162 DMRs overlapping with 153 unique genes were recognised. Our results suggested that the altered methylation levels of FYN, STAT3, RAC1, and NR4A2 were associated with the development of SZ and ID. Neurodevelopment and the immune system may participate in the occurrence of SZ and ID. CONCLUSIONS Our findings suggested that DNA methylation participated in the development of NDDs by affecting neurodevelopment and the immune system.
Collapse
Affiliation(s)
- Shengmin Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kaiyu Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Lyu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Beijing Anding Hospital, Beijing Key Laboratory of Mental Disorders, The National Clinical Research Centre for Mental Disorders, The Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yunshu Zhang
- The Sixth People's Hospital of Hebei Province, Hebei Mental Health Centre, Baoding, Hebei, China
| | | | - Wufang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Hong Wen
- The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Liping Wen
- Zigong Mental Health Centre, Zigong, Sichuan, China
| | - Hong Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lili Guan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
6
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Schrott R, Greeson KW, King D, Crow KMS, Easley CA, Murphy SK. Cannabis alters DNA methylation at maternally imprinted and autism candidate genes in spermatogenic cells. Syst Biol Reprod Med 2022; 68:357-369. [PMID: 35687495 PMCID: PMC10032331 DOI: 10.1080/19396368.2022.2073292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Cannabis use in the United States is increasing, with highest consumption among men at their peak reproductive years. We previously demonstrated widespread changes in sperm DNA methylation with cannabis exposure in humans and rats, including genes important in neurodevelopment. Here, we use an in vitro human spermatogenesis model to recapitulate chronic cannabis use and assess DNA methylation at imprinted and autism spectrum disorder (ASD) candidate genes in spermatogonial stem cell (SSC)- and spermatid-like cells. Methylation at maternally imprinted genes SGCE and GRB10 was significantly altered in SSC- and spermatid-like cells, respectively, while PEG3 was significantly differentially methylated in spermatid-like cells. Two of ten randomly selected ASD candidate genes, HCN1 and NR4A2, had significantly altered methylation with cannabis exposure in SSC-like cells. These results support our findings in human cohorts and provide a new tool with which to gain mechanistic insights into the association between paternal cannabis use and risk of ASD in offspring.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Katherine W. Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Dillon King
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Krista M. Symosko Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Charles A. Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Susan K. Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| |
Collapse
|
8
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
9
|
Transcriptomic analysis in the striatum reveals the involvement of Nurr1 in the social behavior of prenatally valproic acid-exposed male mice. Transl Psychiatry 2022; 12:324. [PMID: 35945212 PMCID: PMC9363495 DOI: 10.1038/s41398-022-02056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that exhibits neurobehavioral deficits characterized by abnormalities in social interactions, deficits in communication as well as restricted interests, and repetitive behaviors. The basal ganglia is one of the brain regions implicated as dysfunctional in ASD. In particular, the defects in corticostriatal function have been reported to be involved in the pathogenesis of ASD. Surface deformation of the striatum in the brains of patients with ASD and their correlation with behavioral symptoms was reported in magnetic resonance imaging (MRI) studies. We demonstrated that prenatal valproic acid (VPA) exposure induced synaptic and molecular changes and decreased neuronal activity in the striatum. Using RNA sequencing (RNA-Seq), we analyzed transcriptome alterations in striatal tissues from 10-week-old prenatally VPA-exposed BALB/c male mice. Among the upregulated genes, Nurr1 was significantly upregulated in striatal tissues from prenatally VPA-exposed mice. Viral knockdown of Nurr1 by shRNA significantly rescued the reduction in dendritic spine density and the number of mature dendritic spines in the striatum and markedly improved social deficits in prenatally VPA-exposed mice. In addition, treatment with amodiaquine, which is a known ligand for Nurr1, mimicked the social deficits and synaptic abnormalities in saline-exposed mice as observed in prenatally VPA-exposed mice. Furthermore, PatDp+/- mice, a commonly used ASD genetic mouse model, also showed increased levels of Nurr1 in the striatum. Taken together, these results suggest that the increase in Nurr1 expression in the striatum is a mechanism related to the changes in synaptic deficits and behavioral phenotypes of the VPA-induced ASD mouse model.
Collapse
|
10
|
Song X, Xu W, Xiao M, Lu Y, Lan X, Tang X, Xu N, Yu G, Zhang H, Wu S. Two novel heterozygous truncating variants in NR4A2 identified in patients with neurodevelopmental disorder and brief literature review. Front Neurosci 2022; 16:956429. [PMID: 35992907 PMCID: PMC9383035 DOI: 10.3389/fnins.2022.956429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022] Open
Abstract
Pathogenic variants in the nuclear receptor superfamily 4 group A member 2 (NR4A2) cause an autosomal dominant neurodevelopmental disorder with or without seizures. Here, we described two patients presenting with developmental delay, language impairment, and attention-deficit hyperactivity disorder. Trio-based whole exome sequencing revealed two novel heterozygous variants, c.1541-2A > C and c.915C > A, in NR4A2. Both variants were identified as de novo and confirmed by Sanger sequencing. In vitro functional analyses were performed to assess their effects on expression of mRNA or protein. The canonical splicing variant c.1541-2A > C caused aberrant splicing, leading to the retention of intron 7 and a truncated protein due to an early termination codon within intron 7 with decreased protein expression, while the variant c.915C > A was shown to result in a shorter protein with increased expression level unexpectedly. The clinical and genetic characteristics of the previously published patients were briefly reviewed for highlighting the potential link between mutations and phenotypes. Our research further confirms that NR4A2 is a disease-causing gene of neurodevelopmental disorders and suggests alterations in different domains of NR4A2 cause various severity of symptoms.
Collapse
Affiliation(s)
- Xiaozhen Song
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuhen Xu
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Man Xiao
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfen Lu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Lan
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Tang
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nanjie Xu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hong Zhang,
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shengnan Wu,
| |
Collapse
|
11
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
12
|
Krgovic D, Gorenjak M, Rihar N, Opalic I, Stangler Herodez S, Gregoric Kumperscak H, Dovc P, Kokalj Vokac N. Impaired Neurodevelopmental Genes in Slovenian Autistic Children Elucidate the Comorbidity of Autism With Other Developmental Disorders. Front Mol Neurosci 2022; 15:912671. [PMID: 35813072 PMCID: PMC9259896 DOI: 10.3389/fnmol.2022.912671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a phenotypically heterogeneous group of patients that strongly intertwine with other neurodevelopmental disorders (NDDs), with genetics playing a significant role in their etiology. Whole exome sequencing (WES) has become predominant in molecular diagnostics for ASD by considerably increasing the diagnostic yield. However, the proportion of undiagnosed patients still remains high due to complex clinical presentation, reduced penetrance, and lack of segregation analysis or clinical information. Thus, reverse phenotyping, where we first identified a possible genetic cause and then determine its clinical relevance, has been shown to be a more efficient approach. WES was performed on 147 Slovenian pediatric patients with suspected ASD. Data analysis was focused on identifying ultrarare or “single event” variants in ASD-associated genes and further expanded to NDD-associated genes. Protein function and gene prioritization were performed on detected clinically relevant variants to determine their role in ASD etiology and phenotype. Reverse phenotyping revealed a pathogenic or likely pathogenic variant in ASD-associated genes in 20.4% of patients, with subsequent segregation analysis indicating that 14 were de novo variants and 1 was presumed compound heterozygous. The diagnostic yield was further increased by 2.7% by the analysis of ultrarare or “single event” variants in all NDD-associated genes. Protein function analysis established that genes in which variants of unknown significance (VUS) were detected were predominantly the cause of intellectual disability (ID), and in most cases, features of ASD as well. Using such an approach, variants in rarely described ASD-associated genes, such as SIN3B, NR4A2, and GRIA1, were detected. By expanding the analysis to include functionally similar NDD genes, variants in KCNK9, GNE, and other genes were identified. These would probably have been missed by classic genotype–phenotype analysis. Our study thus demonstrates that in patients with ASD, analysis of ultrarare or “single event” variants obtained using WES with the inclusion of functionally similar genes and reverse phenotyping obtained a higher diagnostic yield despite limited clinical data. The present study also demonstrates that most of the causative genes in our cohort were involved in the syndromic form of ASD and confirms their comorbidity with other developmental disorders.
Collapse
Affiliation(s)
- Danijela Krgovic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Danijela Krgovic,
| | - Mario Gorenjak
- Centre for Human Molecular Genetics, and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Nika Rihar
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iva Opalic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
| | - Spela Stangler Herodez
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kokalj Vokac
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
13
|
Català-Solsona J, Miñano-Molina AJ, Rodríguez-Álvarez J. Nr4a2 Transcription Factor in Hippocampal Synaptic Plasticity, Memory and Cognitive Dysfunction: A Perspective Review. Front Mol Neurosci 2021; 14:786226. [PMID: 34880728 PMCID: PMC8645690 DOI: 10.3389/fnmol.2021.786226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Long-lasting changes of synaptic efficacy are largely mediated by activity-induced gene transcription and are essential for neuronal plasticity and memory. In this scenario, transcription factors have emerged as pivotal players underlying synaptic plasticity and the modification of neural networks required for memory formation and consolidation. Hippocampal synaptic dysfunction is widely accepted to underlie the cognitive decline observed in some neurodegenerative disorders including Alzheimer’s disease. Therefore, understanding the molecular pathways regulating gene expression profiles may help to identify new synaptic therapeutic targets. The nuclear receptor 4A subfamily (Nr4a) of transcription factors has been involved in a variety of physiological processes within the hippocampus, ranging from inflammation to neuroprotection. Recent studies have also pointed out a role for the activity-dependent nuclear receptor subfamily 4, group A, member 2 (Nr4a2/Nurr1) in hippocampal synaptic plasticity and cognitive functions, although the underlying molecular mechanisms are still poorly understood. In this review, we highlight the specific effects of Nr4a2 in hippocampal synaptic plasticity and memory formation and we discuss whether the dysregulation of this transcription factor could contribute to hippocampal synaptic dysfunction, altogether suggesting the possibility that Nr4a2 may emerge as a novel synaptic therapeutic target in brain pathologies associated to cognitive dysfunctions.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alfredo J Miñano-Molina
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Álvarez
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
14
|
NR4A2 expression is not altered in placentas from cases of growth restriction or preeclampsia, but is reduced in hypoxic cytotrophoblast. Sci Rep 2021; 11:20670. [PMID: 34667209 PMCID: PMC8526588 DOI: 10.1038/s41598-021-00192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) transcripts are elevated in the circulation of individuals whose pregnancies are complicated by preterm fetal growth restriction (FGR). In this paper, we show that the cases with preeclampsia (PE) have increased circulating NR4A2 transcripts compared to those with normotensive FGR. We aimed to establish whether the dysfunctional placenta mirrors the increase in NR4A2 transcripts and further, to uncover the function of placental NR4A2. NR4A2 expression was detected in preterm and term placental tissue; expressed higher at term. NR4A2 mRNA expression and protein were not altered in placentas from preterm FGR or PE pregnancies. Hypoxia (1% O2 compared to 8% O2) significantly reduced cytotrophoblast NR4A2 mRNA expression, but not placental explant NR4A2 expression. Silencing cytotrophoblast NR4A2 expression under hypoxia (via short interfering (si)RNAs) did not alter angiogenic Placental Growth Factor, nor anti-angiogenic sFlt-1 mRNA expression or protein secretion, but increased expression of cellular antioxidant, oxidative stress, inflammatory, and growth genes. NR4A2 expression was also not altered in a model of tumour necrosis factor-α-induced endothelial dysfunction, or with pravastatin treatment. Further studies are required to identify the origin of the circulating transcripts in pathological pregnancies, and investigate the function of placental NR4A2.
Collapse
|
15
|
Winter B, Krämer J, Meinhardt T, Berner D, Alt K, Wenzel M, Winkelmann J, Zech M. NR4A2 and Dystonia with Dopa Responsiveness. Mov Disord 2021; 36:2203-2204. [PMID: 34155693 DOI: 10.1002/mds.28701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 01/30/2023] Open
Affiliation(s)
- Benedikt Winter
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| | - Johannes Krämer
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| | | | | | | | | | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Salloum-Asfar S, Elsayed AK, Elhag SF, Abdulla SA. Circulating Non-Coding RNAs as a Signature of Autism Spectrum Disorder Symptomatology. Int J Mol Sci 2021; 22:ijms22126549. [PMID: 34207213 PMCID: PMC8235321 DOI: 10.3390/ijms22126549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder that becomes apparent during early childhood development. The complexity of ASD makes clinically diagnosing the condition difficult. Consequently, by identifying the biomarkers associated with ASD severity and combining them with clinical diagnosis, one may better factionalize within the spectrum and devise more targeted therapeutic strategies. Currently, there are no reliable biomarkers that can be used for precise ASD diagnosis. Consequently, our pilot experimental cohort was subdivided into three groups: healthy controls, individuals those that express severe symptoms of ASD, and individuals that exhibit mild symptoms of ASD. Using next-generation sequencing, we were able to identify several circulating non-coding RNAs (cir-ncRNAs) in plasma. To the best of our knowledge, this study is the first to show that miRNAs, piRNAs, snoRNAs, Y-RNAs, tRNAs, and lncRNAs are stably expressed in plasma. Our data identify cir-ncRNAs that are specific to ASD. Furthermore, several of the identified cir-ncRNAs were explicitly associated with either the severe or mild groups. Hence, our findings suggest that cir-ncRNAs have the potential to be utilized as objective diagnostic biomarkers and clinical targets.
Collapse
|
17
|
Ruiz-Sánchez E, Jiménez-Genchi J, Alcántara-Flores YM, Castañeda-González CJ, Aviña-Cervantes CL, Yescas P, del Socorro González-Valadez M, Martínez-Rodríguez N, Ríos-Ortiz A, González-González M, López-Navarro ME, Rojas P. Working memory deficits in schizophrenia are associated with the rs34884856 variant and expression levels of the NR4A2 gene in a sample Mexican population: a case control study. BMC Psychiatry 2021; 21:86. [PMID: 33563249 PMCID: PMC7871565 DOI: 10.1186/s12888-021-03081-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cognitive functions represent useful endophenotypes to identify the association between genetic variants and schizophrenia. In this sense, the NR4A2 gene has been implicated in schizophrenia and cognition in different animal models and clinical trials. We hypothesized that the NR4A2 gene is associated with working memory performance in schizophrenia. This study aimed to analyze two variants and the expression levels of the NR4A2 gene with susceptibility to schizophrenia, as well as to evaluate whether possession of NR4A2 variants influence the possible correlation between gene expression and working memory performance in schizophrenia. METHODS The current study included 187 schizophrenia patients and 227 controls genotyped for two of the most studied NR4A2 genetic variants in neurological and neuropsychiatric diseases. Genotyping was performed using High Resolution Melt and sequencing techniques. In addition, mRNA expression of NR4A2 was performed in peripheral mononuclear cells of 112 patients and 118 controls. A group of these participants, 54 patients and 87 controls, performed the working memory index of the WAIS III test. RESULTS Both genotypic frequencies of the two variants and expression levels of the NR4A2 gene showed no significant difference when in patients versus controls. However, patients homozygous for the rs34884856 promoter variant showed a positive correlation between expression levels and auditory working memory. CONCLUSIONS Our finding suggested that changes in expression levels of the NR4A2 gene could be associated with working memory in schizophrenia depending on patients' genotype in a sample from a Mexican population.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Janet Jiménez-Genchi
- Research Unit, Hospital Psiquiátrico Fray Bernardino Álvarez, Mexico City, Mexico
| | - Yessica M. Alcántara-Flores
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | | | - Carlos L. Aviña-Cervantes
- grid.419204.a0000 0000 8637 5954Department of Psychiatry, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Petra Yescas
- grid.419204.a0000 0000 8637 5954Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | | | - Nancy Martínez-Rodríguez
- grid.414757.40000 0004 0633 3412Epidemiology, Endocrinology & Nutrition Research Unit, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Antonio Ríos-Ortiz
- Research Unit, Hospital Psiquiátrico Fray Bernardino Álvarez, Mexico City, Mexico
| | - Martha González-González
- grid.419204.a0000 0000 8637 5954Unit of Cognition and Behavior, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - María E. López-Navarro
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Patricia Rojas
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269, Mexico City, Mexico.
| |
Collapse
|
18
|
Jesús S, Hinarejos I, Carrillo F, Martínez-Rubio D, Macías-García D, Sánchez-Monteagudo A, Adarmes A, Lupo V, Pérez-Dueñas B, Mir P, Espinós C. NR4A2 Mutations Can Cause Intellectual Disability and Language Impairment With Persistent Dystonia-Parkinsonism. NEUROLOGY-GENETICS 2021; 7:e543. [PMID: 33585677 PMCID: PMC7879338 DOI: 10.1212/nxg.0000000000000543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Silvia Jesús
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Isabel Hinarejos
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Dolores Martínez-Rubio
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Ana Sánchez-Monteagudo
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Astrid Adarmes
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Vincenzo Lupo
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Belén Pérez-Dueñas
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Carmen Espinós
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| |
Collapse
|
19
|
De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy. Genet Med 2020; 22:1413-1417. [PMID: 32366965 PMCID: PMC7394879 DOI: 10.1038/s41436-020-0815-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients.
Collapse
|
20
|
Wirth T, Mariani LL, Bergant G, Baulac M, Habert M, Drouot N, Ollivier E, Hodžić A, Rudolf G, Nitschke P, Rudolf G, Chelly J, Tranchant C, Anheim M, Roze E. Loss‐of‐Function Mutations in
NR4A2
Cause Dopa‐Responsive Dystonia Parkinsonism. Mov Disord 2020; 35:880-885. [DOI: 10.1002/mds.27982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Thomas Wirth
- Département de neurologie, Hôpital de HautepierreHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Louise Laure Mariani
- Sorbonne UniversitéInstitut du Cerveau et de la Moelle épinière, Inserm U 1127, CNRS UMR 7225 F‐75013 Paris France
- Assistance Publique–Hôpitaux de Paris, Department of NeurologyHôpital Pitié‐Salpêtrière F‐75013 Paris France
| | - Gaber Bergant
- Clinical Institute of Medical GeneticsUniversity Medical Centre Ljubljana Ljubljana Slovenia
| | - Michel Baulac
- Sorbonne UniversitéInstitut du Cerveau et de la Moelle épinière, Inserm U 1127, CNRS UMR 7225 F‐75013 Paris France
- Assistance Publique–Hôpitaux de Paris, Department of NeurologyHôpital Pitié‐Salpêtrière F‐75013 Paris France
| | - Marie‐Odile Habert
- Sorbonne UniversitéCNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB F‐75006 Paris France
- AP‐HPHôpital Pitié‐Salpêtrière, Médecine Nucléaire F‐75013 Paris France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France
| | - Emmanuelle Ollivier
- Institut IMAGINE, Bioinformatics PlatformUniversité Paris Descartes Paris France
| | - Alenka Hodžić
- Clinical Institute of Medical GeneticsUniversity Medical Centre Ljubljana Ljubljana Slovenia
| | - Gorazd Rudolf
- Clinical Institute of Medical GeneticsUniversity Medical Centre Ljubljana Ljubljana Slovenia
| | - Patrick Nitschke
- Institut IMAGINE, Bioinformatics PlatformUniversité Paris Descartes Paris France
| | - Gabrielle Rudolf
- Département de neurologie, Hôpital de HautepierreHôpitaux Universitaires de Strasbourg Strasbourg France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de Strasbourg Strasbourg France
| | - Jamel Chelly
- Département de neurologie, Hôpital de HautepierreHôpitaux Universitaires de Strasbourg Strasbourg France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France
- Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg Strasbourg France
| | - Christine Tranchant
- Département de neurologie, Hôpital de HautepierreHôpitaux Universitaires de Strasbourg Strasbourg France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de Strasbourg Strasbourg France
| | - Mathieu Anheim
- Département de neurologie, Hôpital de HautepierreHôpitaux Universitaires de Strasbourg Strasbourg France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de Strasbourg Strasbourg France
| | - Emmanuel Roze
- Sorbonne UniversitéInstitut du Cerveau et de la Moelle épinière, Inserm U 1127, CNRS UMR 7225 F‐75013 Paris France
- Assistance Publique–Hôpitaux de Paris, Department of NeurologyHôpital Pitié‐Salpêtrière F‐75013 Paris France
| |
Collapse
|
21
|
Feliciano P, Zhou X, Astrovskaya I, Turner TN, Wang T, Brueggeman L, Barnard R, Hsieh A, Snyder LG, Muzny DM, Sabo A, Gibbs RA, Eichler EE, O’Roak BJ, Michaelson JJ, Volfovsky N, Shen Y, Chung WK. Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genom Med 2019; 4:19. [PMID: 31452935 PMCID: PMC6707204 DOI: 10.1038/s41525-019-0093-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/11/2019] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogeneous condition, caused by a combination of rare de novo and inherited variants as well as common variants in at least several hundred genes. However, significantly larger sample sizes are needed to identify the complete set of genetic risk factors. We conducted a pilot study for SPARK (SPARKForAutism.org) of 457 families with ASD, all consented online. Whole exome sequencing (WES) and genotyping data were generated for each family using DNA from saliva. We identified variants in genes and loci that are clinically recognized causes or significant contributors to ASD in 10.4% of families without previous genetic findings. In addition, we identified variants that are possibly associated with ASD in an additional 3.4% of families. A meta-analysis using the TADA framework at a false discovery rate (FDR) of 0.1 provides statistical support for 26 ASD risk genes. While most of these genes are already known ASD risk genes, BRSK2 has the strongest statistical support and reaches genome-wide significance as a risk gene for ASD (p-value = 2.3e-06). Future studies leveraging the thousands of individuals with ASD who have enrolled in SPARK are likely to further clarify the genetic risk factors associated with ASD as well as allow accelerate ASD research that incorporates genetic etiology.
Collapse
Affiliation(s)
| | - Xueya Zhou
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
| | | | - Tychele N. Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Leo Brueggeman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | - Rebecca Barnard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 USA
| | - Alexander Hsieh
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Brian J. O’Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jacob J. Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | | | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
| | - Wendy K. Chung
- Simons Foundation, New York, NY 10010 USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
22
|
Ramos LLP, Monteiro FP, Sampaio LPB, Costa LA, Ribeiro MDO, Freitas EL, Kitajima JP, Kok F. Heterozygous loss of function of NR4A2 is associated with intellectual deficiency, rolandic epilepsy, and language impairment. Clin Case Rep 2019; 7:1582-1584. [PMID: 31428396 PMCID: PMC6693049 DOI: 10.1002/ccr3.2260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 11/08/2022] Open
Abstract
Recognition of a de novo mutation in NR4A2 associated with a neurodevelopmental phenotype reinforces its role in 2q23q24 microdeletion syndrome. Using the proband WES data and the probability of loss-of-function intolerance index (pLi) set at 1.0 (highest intolerance constraint), we could target NR4A2 as the candidate gene in this patient.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Kok
- Mendelics Genomic AnalysisSao PauloBrazil
- Department of NeurologyUniversity of Sao Paulo School of MedicineSao PauloBrazil
| |
Collapse
|
23
|
Guo H, Duyzend MH, Coe BP, Baker C, Hoekzema K, Gerdts J, Turner TN, Zody MC, Beighley JS, Murali SC, Nelson BJ, Bamshad MJ, Nickerson DA, Bernier RA, Eichler EE. Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet Med 2018; 21:1611-1620. [PMID: 30504930 DOI: 10.1038/s41436-018-0380-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To maximize the discovery of potentially pathogenic variants to better understand the diagnostic utility of genome sequencing (GS) and to assess how the presence of multiple risk events might affect the phenotypic severity in autism spectrum disorders (ASD). METHODS GS was applied to 180 simplex and multiplex ASD families (578 individuals, 213 patients) with exome sequencing and array comparative genomic hybridization further applied to a subset for validation and cross-platform comparisons. RESULTS We found that 40.8% of patients carried variants with evidence of disease risk, including a de novo frameshift variant in NR4A2 and two de novo missense variants in SYNCRIP, while 21.1% carried clinically relevant pathogenic or likely pathogenic variants. Patients with more than one risk variant (9.9%) were more severely affected with respect to cognitive ability compared with patients with a single or no-risk variant. We observed no instance among the 27 multiplex families where a pathogenic or likely pathogenic variant was transmitted to all affected members in the family. CONCLUSION The study demonstrates the diagnostic utility of GS, especially for multiple risk variants that contribute to the phenotypic severity, shows the genetic heterogeneity in multiplex families, and provides evidence for new genes for follow up.
Collapse
Affiliation(s)
- Hui Guo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Michael H Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Gerdts
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Tychele N Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Shwetha C Murali
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Michael J Bamshad
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|