1
|
Gao X, Chen X, Yu L, Zhao S, Jiu Y. Host cytoskeleton and membrane network remodeling in the regulation of viral replication. BIOPHYSICS REPORTS 2025; 11:34-45. [PMID: 40070659 PMCID: PMC11891074 DOI: 10.52601/bpr.2024.240040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 03/14/2025] Open
Abstract
Viral epidemics pose major threats to global health and economies. A hallmark of viral infection is the reshaping of host cell membranes and cytoskeletons to form organelle-like structures, known as viral factories, which support viral genome replication. Viral infection in many cases induces the cytoskeletal network to form cage-like structures around viral factories, including actin rings, microtubule cages, and intermediate filament cages. Viruses hijack various organelles to create these replication factories, such as viroplasms, spherules, double-membrane vesicles, tubes, and nuclear viral factories. This review specifically examines the roles of cytoskeletal elements and the endomembrane system in material transport, structural support, and biochemical regulation during viral factory formation. Furthermore, we discuss the broader implications of these interactions for viral replication and highlight potential future research directions.
Collapse
Affiliation(s)
- Xuedi Gao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinming Chen
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Letian Yu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Liu X, Xia X, Martynowycz MW, Gonen T, Zhou ZH. Molecular sociology of virus-induced cellular condensates supporting reovirus assembly and replication. Nat Commun 2024; 15:10638. [PMID: 39639006 PMCID: PMC11621325 DOI: 10.1038/s41467-024-54968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Virus-induced cellular condensates, or viral factories, are poorly understood high-density phases where replication of many viruses occurs. Here, by cryogenic electron tomography (cryoET) of focused ion beam (FIB) milling-produced lamellae of mammalian reovirus (MRV)-infected cells, we visualized the molecular organization and interplay (i.e., "molecular sociology") of host and virus in 3D at two time points post-infection, enabling a detailed description of these condensates and a mechanistic understanding of MRV replication within them. Expanding over time, the condensate fashions host ribosomes at its periphery, and host microtubules, lipid membranes, and viral molecules in its interior, forming a 3D architecture that supports the dynamic processes of viral genome replication and capsid assembly. A total of six MRV assembly intermediates are identified inside the condensate: star core, empty and genome-containing cores, empty and full virions, and outer shell particle. Except for star core, these intermediates are visualized at atomic resolution by cryogenic electron microscopy (cryoEM) of cellular extracts. The temporal sequence and spatial rearrangement among these viral intermediates choreograph the viral life cycle within the condensates. Together, the molecular sociology of MRV-induced cellular condensate highlights the functional advantage of transient enrichment of molecules at the right location and time for viral replication.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Fiske KL, Brigleb PH, Sanchez LM, Hinterleitner R, Taylor GM, Dermody TS. Strain-specific differences in reovirus infection of murine macrophages segregate with polymorphisms in viral outer-capsid protein σ3. J Virol 2024; 98:e0114724. [PMID: 39431846 PMCID: PMC11575339 DOI: 10.1128/jvi.01147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Mammalian orthoreovirus (reovirus) strains type 1 Lang (T1L) and type 3 Dearing-RV (T3D-RV) infect the intestine in mice but differ in the induction of inflammatory responses. T1L infection is associated with the blockade of oral immunological tolerance to newly introduced dietary antigens, whereas T3D-RV is not. T1L infection leads to an increase in infiltrating phagocytes, including macrophages, in gut-associated lymphoid tissues that are not observed in T3D-RV infection. However, the function of macrophages in reovirus intestinal infection is unknown. Using cells sorted from infected intestinal tissue and primary cultures of bone-marrow-derived macrophages (BMDMs), we discovered that T1L infects macrophages more efficiently than T3D-RV. Analysis of T1L × T3D-RV reassortant viruses revealed that the viral S4 gene segment, which encodes outer-capsid protein σ3, is responsible for strain-specific differences in infection of BMDMs. Differences in the binding of T1L and T3D-RV to BMDMs also segregated with the σ3-encoding S4 gene. Paired immunoglobulin-like receptor B (PirB), which serves as a receptor for reovirus, is expressed on macrophages and engages σ3. We found that PirB-specific antibody blocks T1L binding to BMDMs and that T1L binding to PirB-/- BMDMs is significantly diminished. Collectively, our data suggest that reovirus T1L infection of macrophages is dependent on engagement of PirB by viral outer-capsid protein σ3. These findings raise the possibility that macrophages function in the innate immune response to reovirus infection that blocks immunological tolerance to new food antigens.IMPORTANCEMammalian orthoreovirus (reovirus) infects humans throughout their lifespan and has been linked to celiac disease (CeD). CeD is caused by a loss of oral immunological tolerance (LOT) to dietary gluten and leads to intestinal inflammation following gluten ingestion, which worsens with prolonged exposure and can cause malnutrition. There are limited treatment options for CeD. While there are genetic risk factors associated with the illness, triggers for disease onset are not completely understood. Enteric viruses, including reovirus, have been linked to CeD induction. We found that a reovirus strain associated with oral immunological tolerance blockade infects macrophages by virtue of its capacity to bind macrophage receptor PirB. These data contribute to an understanding of the innate immune response elicited by reovirus, which may shed light on how viruses trigger LOT and inform the development of CeD vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Kay L Fiske
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela H Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luzmariel Medina Sanchez
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Reinhard Hinterleitner
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
6
|
Bayandina SV, Mukha DV. Saccharomyces cerevisiae as a Model for Studying Human Neurodegenerative Disorders: Viral Capsid Protein Expression. Int J Mol Sci 2023; 24:17213. [PMID: 38139041 PMCID: PMC10743263 DOI: 10.3390/ijms242417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this article, we briefly describe human neurodegenerative diseases (NDs) and the experimental models used to study them. The main focus is the yeast Saccharomyces cerevisiae as an experimental model used to study neurodegenerative processes. We review recent experimental data on the aggregation of human neurodegenerative disease-related proteins in yeast cells. In addition, we describe the results of studies that were designed to investigate the molecular mechanisms that underlie the aggregation of reporter proteins. The advantages and disadvantages of the experimental approaches that are currently used to study the formation of protein aggregates are described. Special attention is given to the similarity between aggregates that form as a result of protein misfolding and viral factories-special structural formations in which viral particles are formed inside virus-infected cells. A separate part of the review is devoted to our previously published study on the formation of aggregates upon expression of the insect densovirus capsid protein in yeast cells. Based on the reviewed results of studies on NDs and related protein aggregation, as well as viral protein aggregation, a new experimental model system for the study of human NDs is proposed. The core of the proposed system is a comparative transcriptomic analysis of changes in signaling pathways during the expression of viral capsid proteins in yeast cells.
Collapse
Affiliation(s)
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Etibor TA, O’Riain A, Alenquer M, Diwo C, Vale-Costa S, Amorim MJ. Challenges in Imaging Analyses of Biomolecular Condensates in Cells Infected with Influenza A Virus. Int J Mol Sci 2023; 24:15253. [PMID: 37894933 PMCID: PMC10607852 DOI: 10.3390/ijms242015253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Biomolecular condensates are crucial compartments within cells, relying on their material properties for function. They form and persist through weak, transient interactions, often undetectable by classical biochemical approaches. Hence, microscopy-based techniques have been the most reliable methods to detail the molecular mechanisms controlling their formation, material properties, and alterations, including dissolution or phase transitions due to cellular manipulation and disease, and to search for novel therapeutic strategies targeting biomolecular condensates. However, technical challenges in microscopy-based analysis persist. This paper discusses imaging, data acquisition, and analytical methodologies' advantages, challenges, and limitations in determining biophysical parameters explaining biomolecular condensate formation, dissolution, and phase transitions. In addition, we mention how machine learning is increasingly important for efficient image analysis, teaching programs what a condensate should resemble, aiding in the correlation and interpretation of information from diverse data sources. Influenza A virus forms liquid viral inclusions in the infected cell cytosol that serve as model biomolecular condensates for this study. Our previous work showcased the possibility of hardening these liquid inclusions, potentially leading to novel antiviral strategies. This was established using a framework involving live cell imaging to measure dynamics, internal rearrangement capacity, coalescence, and relaxation time. Additionally, we integrated thermodynamic characteristics by analysing fixed images through Z-projections. The aforementioned paper laid the foundation for this subsequent technical paper, which explores how different modalities in data acquisition and processing impact the robustness of results to detect bona fide phase transitions by measuring thermodynamic traits in fixed cells. Using solely this approach would greatly simplify screening pipelines. For this, we tested how single focal plane images, Z-projections, or volumetric analyses of images stained with antibodies or live tagged proteins altered the quantification of thermodynamic measurements. Customizing methodologies for different biomolecular condensates through advanced bioimaging significantly contributes to biological research and potential therapeutic advancements.
Collapse
Affiliation(s)
- Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Aidan O’Riain
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Marta Alenquer
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
- Cell Biology of Viral Infection Lab (CBV), Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal
| | - Christian Diwo
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
- Cell Biology of Viral Infection Lab (CBV), Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal
| |
Collapse
|
8
|
Borodavka A, Acker J. Seeing Biomolecular Condensates Through the Lens of Viruses. Annu Rev Virol 2023; 10:163-182. [PMID: 37040799 DOI: 10.1146/annurev-virology-111821-103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Phase separation of viral biopolymers is a key factor in the formation of cytoplasmic viral inclusions, known as sites of virus replication and assembly. This review describes the mechanisms and factors that affect phase separation in viral replication and identifies potential areas for future research. Drawing inspiration from studies on cellular RNA-rich condensates, we compare the hierarchical coassembly of ribosomal RNAs and proteins in the nucleolus to the coordinated coassembly of viral RNAs and proteins taking place within viral factories in viruses containing segmented RNA genomes. We highlight the common characteristics of biomolecular condensates in viral replication and how this new understanding is reshaping our views of virus assembly mechanisms. Such studies have the potential to uncover unexplored antiviral strategies targeting these phase-separated states.
Collapse
Affiliation(s)
- Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| | - Julia Acker
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
9
|
Ay S, Di Nunzio F. HIV-Induced CPSF6 Condensates. J Mol Biol 2023; 435:168094. [PMID: 37061085 DOI: 10.1016/j.jmb.2023.168094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Viruses are obligate parasites that rely on their host's cellular machinery for replication. To facilitate their replication cycle, many viruses have been shown to remodel the cellular architecture by inducing the formation of membraneless organelles (MLOs). Eukaryotic cells have evolved MLOs that are highly dynamic, self-organizing microenvironments that segregate biological processes and increase the efficiency of reactions by concentrating enzymes and substrates. In the context of viral infections, MLOs can be utilized by viruses to complete their replication cycle. This review focuses on the pathway used by the HIV-1 virus to remodel the nuclear landscape of its host, creating viral/host niches that enable efficient viral replication. Specifically, we discuss how the interaction between the HIV-1 capsid and the cellular factor CPSF6 triggers the formation of nuclear MLOs that support nuclear reverse transcription and viral integration in favored regions of the host chromatin. This review compiles current knowledge on the origin of nuclear HIV-MLOs and their role in early post-nuclear entry steps of the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Selen Ay
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
| |
Collapse
|
10
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
11
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
12
|
Li Z, Zheng M, He Z, Qin Y, Chen M. Morphogenesis and functional organization of viral inclusion bodies. CELL INSIGHT 2023; 2:100103. [PMID: 37193093 PMCID: PMC10164783 DOI: 10.1016/j.cellin.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/18/2023]
Abstract
Eukaryotic viruses are obligate intracellular parasites that rely on the host cell machinery to carry out their replication cycle. This complex process involves a series of steps, starting with virus entry, followed by genome replication, and ending with virion assembly and release. Negative strand RNA and some DNA viruses have evolved to alter the organization of the host cell interior to create a specialized environment for genome replication, known as IBs, which are precisely orchestrated to ensure efficient viral replication. The biogenesis of IBs requires the cooperation of both viral and host factors. These structures serve multiple functions during infection, including sequestering viral nucleic acids and proteins from innate immune responses, increasing the local concentration of viral and host factors, and spatially coordinating consecutive replication cycle steps. While ultrastructural and functional studies have improved our understanding of IBs, much remains to be learned about the precise mechanisms of IB formation and function. This review aims to summarize the current understanding of how IBs are formed, describe the morphology of these structures, and highlight the mechanism of their functions. Given that the formation of IBs involves complex interactions between the virus and the host cell, the role of both viral and cellular organelles in this process is also discussed.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Miaomiao Zheng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Zhicheng He
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
13
|
W B Jr M, A S R, P M, F B. Cellular and Natural Viral Engineering in Cognition-Based Evolution. Commun Integr Biol 2023; 16:2196145. [PMID: 37153718 PMCID: PMC10155641 DOI: 10.1080/19420889.2023.2196145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Neo-Darwinism conceptualizes evolution as the continuous succession of predominately random genetic variations disciplined by natural selection. In that frame, the primary interaction between cells and the virome is relegated to host-parasite dynamics governed by selective influences. Cognition-Based Evolution regards biological and evolutionary development as a reciprocating cognition-based informational interactome for the protection of self-referential cells. To sustain cellular homeorhesis, cognitive cells collaborate to assess the validity of ambiguous biological information. That collective interaction involves coordinate measurement, communication, and active deployment of resources as Natural Cellular Engineering. These coordinated activities drive multicellularity, biological development, and evolutionary change. The virome participates as the vital intercessory among the cellular domains to ensure their shared permanent perpetuation. The interactions between the virome and the cellular domains represent active virocellular cross-communications for the continual exchange of resources. Modular genetic transfers between viruses and cells carry bioactive potentials. Those exchanges are deployed as nonrandom flexible tools among the domains in their continuous confrontation with environmental stresses. This alternative framework fundamentally shifts our perspective on viral-cellular interactions, strengthening established principles of viral symbiogenesis. Pathogenesis can now be properly appraised as one expression of a range of outcomes between cells and viruses within a larger conceptual framework of Natural Viral Engineering as a co-engineering participant with cells. It is proposed that Natural Viral Engineering should be viewed as a co-existent facet of Natural Cellular Engineering within Cognition-Based Evolution.
Collapse
Affiliation(s)
- Miller W B Jr
- Banner Health Systems - Medicine, Paradise Valley, Arizona, AZ, USA
| | - Reber A S
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Marshall P
- Department of Engineering, Evolution 2.0, Oak Park, IL, USA
| | - Baluška F
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Flexibility of the Rotavirus NSP2 C-Terminal Region Supports Factory Formation via Liquid-Liquid Phase Separation. J Virol 2023; 97:e0003923. [PMID: 36749077 PMCID: PMC9973012 DOI: 10.1128/jvi.00039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.
Collapse
|
15
|
Zhang J, Chang MX. TBK1 Isoform Inhibits Grass Carp Reovirus Infection by Targeting the Degradation of Viral Nonstructural Proteins NS80 and NS38. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:191-203. [PMID: 36445692 DOI: 10.4049/jimmunol.2200471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/03/2022] [Indexed: 01/03/2023]
Abstract
TANK-binding kinase 1 (TBK1) undergoes alternative splicing, and the previously reported TBK1 isoforms are negative regulators of RIG-I-like receptor-mediated type I IFN production. Although a study has suggested that grass carp TBK1 has an opposite effect at high- and low-titer of grass carp reovirus (GCRV) infection, the functions of grass carp TBK1 isoforms in GCRV infection remain unclear. In this study, we show that a TBK1 isoform from grass carp (Ctenopharyngodon idellus) named as gcTBK1_tv3, which has a 1-aa difference with zebrafish TBK1_tv3, inhibits the replication and infection of GCRV both at high and low titers of infection in C. idellus kidney cells. gcTBK1_tv3 can colocalize and interact with the NS80 and NS38 proteins of GCRV. Furthermore, gcTBK1_tv3 specifically degrades the NS80 and NS38 proteins of GCRV through the ubiquitin-proteasome pathway. Mechanistically, gcTBK1_tv3 promotes the degradation of NS80 or NS38 for K48-linked ubiquitination by targeting the Lys503 residue of NS80 or Lys328 residue of NS38, respectively, which ultimately impairs the production of cytoplasmic viral inclusion bodies and limits GCRV replication and infection. Taken together, our findings provide insight into the function of TBK1 isoform in the antiviral immune response and demonstrate that TBK1 isoform can target the nonstructural proteins of GCRV for impairing the formation of viral inclusion bodies.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; and.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Commun Biol 2023; 6:28. [PMID: 36631662 PMCID: PMC9834402 DOI: 10.1038/s42003-023-04427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.
Collapse
|
17
|
Jiang T, Du K, Wang P, Wang X, Zang L, Peng D, Chen X, Sun G, Zhang H, Fan Z, Cao Z, Zhou T. Sugarcane mosaic virus orchestrates the lactate fermentation pathway to support its successful infection. FRONTIERS IN PLANT SCIENCE 2023; 13:1099362. [PMID: 36699858 PMCID: PMC9868461 DOI: 10.3389/fpls.2022.1099362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Viruses often establish their own infection by altering host metabolism. How viruses co-opt plant metabolism to support their successful infection remains an open question. Here, we used untargeted metabolomics to reveal that lactate accumulates immediately before and after robust sugarcane mosaic virus (SCMV) infection. Induction of lactate-involved anaerobic glycolysis is beneficial to SCMV infection. The enzyme activity and transcriptional levels of lactate dehydrogenase (LDH) were up-regulated by SCMV infection, and LDH is essential for robust SCMV infection. Moreover, LDH relocates in viral replicase complexes (VRCs) by interacting with SCMV-encoded 6K2 protein, a key protein responsible for inducing VRCs. Additionally, lactate could promote SCMV infection by suppressing plant defense responses. Taken together, we have revealed a viral strategy to manipulate host metabolism to support replication compartment but also depress the defense response during the process of infection.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Kaitong Du
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Pei Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xinhai Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lianyi Zang
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, Tai’an, China
| | - Dezhi Peng
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Geng Sun
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Jiang X, Luan Y, Chai M, Yang Y, Wang Y, Deng W, Li Y, Cheng X, Wu X. The N-Terminal α-Helix of Potato Virus X-Encoded RNA-Dependent RNA Polymerase Is Required for Membrane Association and Multimerization. Viruses 2022; 14:v14091907. [PMID: 36146714 PMCID: PMC9504981 DOI: 10.3390/v14091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Positive-sense single-stranded RNA viruses replicate in virus-induced membranous organelles for maximum efficiency and immune escaping. The replication of potato virus X (PVX) takes place on the endoplasmic reticulum (ER); however, how PVX-encoded RNA-dependent RNA polymerase (RdRp) is associated with the ER is still unknown. A proline-kinked amphipathic α-helix was recently found in the MET domain of RdRp. In this study, we further illustrate that the first α-helix of the MET domain is also required for ER association. Moreover, we found that the MET domain forms multimers on ER and the first α-helix is essential for multimerization. These results suggest that the RdRp of PVX adopts more than one hydrophobic motif for membrane association and for multimerization.
Collapse
Affiliation(s)
- Xue Jiang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yameng Luan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Mengzhu Chai
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yingshuai Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yuting Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Wenjia Deng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yonggang Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.C.); (X.W.)
| | - Xiaoyun Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.C.); (X.W.)
| |
Collapse
|
19
|
Zhang J, Li P, Lu R, Ouyang S, Chang MX. Structural and functional analysis of the small GTPase ARF1 reveals a pivotal role of its GTP-binding domain in controlling of the generation of viral inclusion bodies and replication of grass carp reovirus. Front Immunol 2022; 13:956587. [PMID: 36091067 PMCID: PMC9459132 DOI: 10.3389/fimmu.2022.956587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp reovirus (GCRV) is the most pathogenic double-stranded (ds) RNA virus among the isolated aquareoviruses. The molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection are poorly understood. Here, we discovered that the grass carp ADP ribosylation factor 1 (gcARF1) was required for GCRV replication since the knockdown of gcARF1 by siRNA or inhibiting its GTPase activity by treatment with brefeldin A (BFA) significantly impaired the yield of infectious viral progeny. GCRV infection recruited gcARF1 into viral inclusion bodies (VIBs) by its nonstructural proteins NS80 and NS38. The small_GTP domain of gcARF1 was confirmed to be crucial for promoting GCRV replication and infection, and the number of VIBs reduced significantly by the inhibition of gcARF1 GTPase activity. The analysis of gcARF1-GDP complex crystal structure revealed that the 27AAGKTT32 motif and eight amino acid residues (A27, G29, K30, T31, T32, N126, D129 and A160), which were located mainly within the GTP-binding domain of gcARF1, were crucial for the binding of gcARF1 with GDP. Furthermore, the 27AAGKTT32 motif and the amino acid residue T31 of gcARF1 were indispensable for the function of gcARF1 in promoting GCRV replication and infection. Taken together, it is demonstrated that the GTPase activity of gcARF1 is required for efficient replication of GCRV and that host GTPase ARF1 is closely related with the generation of VIBs.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Riye Lu
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Songying Ouyang
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| |
Collapse
|
20
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
21
|
Chaikeeratisak V, Khanna K, Nguyen KT, Egan ME, Enustun E, Armbruster E, Lee J, Pogliano K, Villa E, Pogliano J. Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage. SCIENCE ADVANCES 2022; 8:eabj9670. [PMID: 35507660 PMCID: PMC9067925 DOI: 10.1126/sciadv.abj9670] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 03/16/2022] [Indexed: 06/03/2023]
Abstract
Many eukaryotic viruses assemble mature particles within distinct subcellular compartments, but bacteriophages are generally assumed to assemble randomly throughout the host cell cytoplasm. Here, we show that viral particles of Pseudomonas nucleus-forming jumbo phage PhiPA3 assemble into a unique structure inside cells we term phage bouquets. We show that after capsids complete DNA packaging at the surface of the phage nucleus, tails assemble and attach to capsids, and these particles accumulate over time in a spherical pattern, with tails oriented inward and the heads outward to form bouquets at specific subcellular locations. Bouquets localize at the same fixed distance from the phage nucleus even when it is mispositioned, suggesting an active mechanism for positioning. These results mark the discovery of a pathway for organizing mature viral particles inside bacteria and demonstrate that nucleus-forming jumbo phages, like most eukaryotic viruses, are highly spatially organized during all stages of their lytic cycle.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katrina T Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eray Enustun
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Armbruster
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Liu CC, Liu YY, Zhou JF, Chen X, Chen H, Hu JH, Chen J, Zhang J, Sun RC, Wei JC, Go YY, Morita E, Zhou B. Cellular ESCRT components are recruited to regulate the endocytic trafficking and RNA replication compartment assembly during classical swine fever virus infection. PLoS Pathog 2022; 18:e1010294. [PMID: 35120190 PMCID: PMC8849529 DOI: 10.1371/journal.ppat.1010294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
As the important molecular machinery for membrane protein sorting in eukaryotic cells, the endosomal sorting and transport complexes (ESCRT-0/I/II/III and VPS4) usually participate in various replication stages of enveloped viruses, such as endocytosis and budding. The main subunit of ESCRT-I, Tsg101, has been previously revealed to play a role in the entry and replication of classical swine fever virus (CSFV). However, the effect of the whole ESCRT machinery during CSFV infection has not yet been well defined. Here, we systematically determine the effects of subunits of ESCRT on entry, replication, and budding of CSFV by genetic analysis. We show that EAP20 (VPS25) (ESCRT-II), CHMP4B and CHMP7 (ESCRT-III) regulate CSFV entry and assist vesicles in transporting CSFV from Clathrin, early endosomes, late endosomes to lysosomes. Importantly, we first demonstrate that HRS (ESCRT-0), VPS28 (ESCRT-I), VPS25 (ESCRT-II) and adaptor protein ALIX play important roles in the formation of virus replication complexes (VRC) together with CHMP2B/4B/7 (ESCRT-III), and VPS4A. Further analyses reveal these subunits interact with CSFV nonstructural proteins (NS) and locate in the endoplasmic reticulum, but not Golgi, suggesting the role of ESCRT in regulating VRC assembly. In addition, we demonstrate that VPS4A is close to lipid droplets (LDs), indicating the importance of lipid metabolism in the formation of VRC and nucleic acid production. Altogether, we draw a new picture of cellular ESCRT machinery in CSFV entry and VRC formation, which could provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus. ESCRT machinery can be responsible for virus budding and participate in regulating virus entry. However, little has been reported on its effects on VRC formation. Here, we uncover the novel roles of ESCRT-III and VPS4A in VRC assembly and update the additional subunits involved in the intracellular trafficking of CSFV. These data indicate that the ESCRT machinery promotes CSFV replication by forming VRC, which making it become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Furthermore, we first demonstrate that the roles of ESCRT components in the formation of VRC in swine Pestivirus. Our findings highlight the growing evidence of diverse interactions between ESCRT subunits and viral factors of Flaviviridae family, and provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus.
Collapse
Affiliation(s)
- Chun-chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ya-yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiang-fei Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia-huan Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui-cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jian-chao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
23
|
Abstract
Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of non-enveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). In this work, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. Analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP-ribosylation factor 1 (ARF1), is required for IBDV replication since inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative-mutant T31N over-expression hampered the IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnaviruses-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, being the lack of a transcriptionally active core the main differential feature. This structural trait, among others that resemble the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and have argued the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses. Here, we present original data showing the IBDV-induced GC reorganization and the crosstalk between IBDV and the Rab1b-GBF1-ARF1 mediated intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnaviruses-host cells and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.
Collapse
|
24
|
Zandi M, Hosseini P, Soltani S, Rasooli A, Moghadami M, Nasimzadeh S, Behnezhad F. The role of lipids in the pathophysiology of coronavirus infections. Osong Public Health Res Perspect 2021; 12:278-285. [PMID: 34719219 PMCID: PMC8561023 DOI: 10.24171/j.phrp.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses, which have been known to cause diseases in animals since the 1930s, utilize cellular components during their replication cycle. Lipids play important roles in viral infection, as coronaviruses target cellular lipids and lipid metabolism to modify their host cells to become an optimal environment for viral replication. Therefore, lipids can be considered as potential targets for the development of antiviral agents. This review provides an overview of the roles of cellular lipids in different stages of the life cycle of coronaviruses.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rasooli
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Mona Moghadami
- Department of Medical Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sepideh Nasimzadeh
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Molho M, Prasanth KR, Pogany J, Nagy PD. Targeting conserved co-opted host factors to block virus replication: Using allosteric inhibitors of the cytosolic Hsp70s to interfere with tomato bushy stunt virus replication. Virology 2021; 563:1-19. [PMID: 34399236 DOI: 10.1016/j.virol.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022]
Abstract
To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2 perform pro-viral functions equivalent to that of the yeast Ssa1 Hsp70. These functions include activation of the tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral approach against tombusviruses in plants.
Collapse
Affiliation(s)
- Melissa Molho
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - K Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
26
|
Feng Z, Inaba JI, Nagy PD. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase. J Virol 2021; 95:e0107621. [PMID: 34406861 PMCID: PMC8513485 DOI: 10.1128/jvi.01076-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
27
|
Rodrigues RA, de Souza FG, de Azevedo BL, da Silva LC, Abrahão JS. The morphogenesis of different giant viruses as additional evidence for a common origin of Nucleocytoviricota. Curr Opin Virol 2021; 49:102-110. [PMID: 34116391 DOI: 10.1016/j.coviro.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Large and giant DNA viruses are a monophyletic group constituting the recently established phylum Nucleocytoviricota. The virus particle morphogenesis of these viruses exhibit striking similarities. Viral factories are established in the host cells where new virions are assembled by recruiting host membranes, forming an inner lipid layer. An outer protein layer starts as a lamellar structure, commonly referred to as viral crescents, coded by the major capsid protein gene. Also, these viruses have a conserved ATPase-coding gene related to genome encapsidation. Similar properties are described for tectiviruses, putative small ancestors of giant viruses. Here we review the morphogenesis of giant viruses and discuss how the process similarities constitute additional evidence to the common origin of Nucleocytoviricota.
Collapse
Affiliation(s)
- Rodrigo Al Rodrigues
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda G de Souza
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruna L de Azevedo
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Cf da Silva
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jônatas S Abrahão
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
28
|
The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles. Proc Natl Acad Sci U S A 2021; 118:2016066118. [PMID: 33376201 DOI: 10.1073/pnas.2016066118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast and in planta. In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.
Collapse
|
29
|
The HSV-1 Transcription Factor ICP4 Confers Liquid-Like Properties to Viral Replication Compartments. Int J Mol Sci 2021; 22:ijms22094447. [PMID: 33923223 PMCID: PMC8123221 DOI: 10.3390/ijms22094447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Herpes Simplex Virus Type-1 (HSV-1) forms progeny in the nucleus within distinct membrane-less inclusions, the viral replication compartments (VRCs), where viral gene expression, DNA replication, and packaging occur. The way in which the VRCs maintain spatial integrity remains unresolved. Here, we demonstrate that the essential viral transcription factor ICP4 is an intrinsically disordered protein (IDP) capable of driving protein condensation and liquid–liquid phase separation (LLPS) in transfected cells. Particularly, ICP4 forms nuclear liquid-like condensates in a dose- and time-dependent manner. Fluorescence recovery after photobleaching (FRAP) assays revealed rapid exchange rates of EYFP-ICP4 between phase-separated condensates and the surroundings, akin to other viral IDPs that drive LLPS. Likewise, HSV-1 VRCs revealed by EYFP-tagged ICP4 retained their liquid-like nature, suggesting that they are phase-separated condensates. Individual VRCs homotypically fused when reaching close proximity and grew over the course of infection. Together, the results of this study demonstrate that the HSV-1 transcription factor ICP4 has characteristics of a viral IDP, forms condensates in the cell nucleus by LLPS, and can be used as a proxy for HSV-1 VRCs with characteristics of liquid–liquid phase-separated condensates.
Collapse
|
30
|
Nagy PD, Feng Z. Tombusviruses orchestrate the host endomembrane system to create elaborate membranous replication organelles. Curr Opin Virol 2021; 48:30-41. [PMID: 33845410 DOI: 10.1016/j.coviro.2021.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/09/2023]
Abstract
Positive-strand RNA viruses depend on intensive manipulation of subcellular organelles and membranes to create unique viral replication organelles (VROs), which represent the sites of robust virus replication. The host endomembrane-based protein-trafficking and vesicle-trafficking pathways are specifically targeted by many (+)RNA viruses to take advantage of their rich resources. We summarize the critical roles of co-opted endoplasmic reticulum subdomains and associated host proteins and COPII vesicles play in tombusvirus replication. We also present the surprising contribution of the early endosome and the retromer tubular transport carriers to VRO biogenesis. The central player is tomato bushy stunt virus (TBSV), which provides an outstanding system based on the identification of a complex network of interactions with the host cells. We present the emerging theme on how TBSV uses tethering and membrane-shaping proteins and lipid modifying enzymes to build the sophisticated VRO membranes with unique lipid composition.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
31
|
Lin W, Feng Z, Prasanth KR, Liu Y, Nagy PD. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog 2021; 17:e1009423. [PMID: 33725015 PMCID: PMC7997005 DOI: 10.1371/journal.ppat.1009423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/26/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| |
Collapse
|
32
|
Etibor TA, Yamauchi Y, Amorim MJ. Liquid Biomolecular Condensates and Viral Lifecycles: Review and Perspectives. Viruses 2021; 13:366. [PMID: 33669141 PMCID: PMC7996568 DOI: 10.3390/v13030366] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses are highly dependent on the host they infect. Their dependence triggers processes of virus-host co-adaptation, enabling viruses to explore host resources whilst escaping immunity. Scientists have tackled viral-host interplay at differing levels of complexity-in individual hosts, organs, tissues and cells-and seminal studies advanced our understanding about viral lifecycles, intra- or inter-species transmission, and means to control infections. Recently, it emerged as important to address the physical properties of the materials in biological systems; membrane-bound organelles are only one of many ways to separate molecules from the cellular milieu. By achieving a type of compartmentalization lacking membranes known as biomolecular condensates, biological systems developed alternative mechanisms of controlling reactions. The identification that many biological condensates display liquid properties led to the proposal that liquid-liquid phase separation (LLPS) drives their formation. The concept of LLPS is a paradigm shift in cellular structure and organization. There is an unprecedented momentum to revisit long-standing questions in virology and to explore novel antiviral strategies. In the first part of this review, we focus on the state-of-the-art about biomolecular condensates. In the second part, we capture what is known about RNA virus-phase biology and discuss future perspectives of this emerging field in virology.
Collapse
Affiliation(s)
- Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TL, UK;
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| |
Collapse
|
33
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
34
|
The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection. Viruses 2021; 13:v13020275. [PMID: 33670092 PMCID: PMC7916891 DOI: 10.3390/v13020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
De novo viral protein synthesis following entry into host cells is essential for viral replication. As a consequence, viruses have evolved mechanisms to engage the host translational machinery while at the same time avoiding or counteracting host defenses that act to repress translation. Mammalian orthoreoviruses are dsRNA-containing viruses whose mRNAs were used as models for early investigations into the mechanisms that underpin the recognition and engagement of eukaryotic mRNAs by host cell ribosomes. However, there remain many unanswered questions and paradoxes regarding translation of reoviral mRNAs in the context of infection. This review summarizes the current state of knowledge about reovirus translation, identifies key unanswered questions, and proposes possible pathways toward a better understanding of reovirus translation.
Collapse
|
35
|
Rao Y, Wang TY, Qin C, Espinosa B, Liu Q, Ekanayake A, Zhao J, Savas AC, Zhang S, Zarinfar M, Liu Y, Zhu W, Graham N, Jiang T, Zhang C, Feng P. Targeting CTP Synthetase 1 to Restore Interferon Induction and Impede Nucleotide Synthesis in SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.05.429959. [PMID: 33564769 PMCID: PMC7872357 DOI: 10.1101/2021.02.05.429959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The newly emerged SARS-CoV-2 caused a global pandemic with astonishing mortality and morbidity. The mechanisms underpinning its highly infectious nature remain poorly understood. We report here that SARS-CoV-2 exploits cellular CTP synthetase 1 (CTPS1) to promote CTP synthesis and suppress interferon (IFN) induction. Screening a SARS-CoV-2 expression library identified ORF7b and ORF8 that suppressed IFN induction via inducing the deamidation of interferon regulatory factor 3 (IRF3). Deamidated IRF3 fails to bind the promoters of classic IRF3-responsible genes, thus muting IFN induction. Conversely, a shRNA-mediated screen focused on cellular glutamine amidotransferases corroborated that CTPS1 deamidates IRF3 to inhibit IFN induction. Functionally, ORF7b and ORF8 activate CTPS1 to promote de novo CTP synthesis while shutting down IFN induction. De novo synthesis of small-molecule inhibitors of CTPS1 enabled CTP depletion and IFN induction in SARS-CoV-2 infection, thus impeding SARS-CoV-2 replication. Our work uncovers a strategy that a viral pathogen couples immune evasion to metabolic activation to fuel viral replication. Inhibition of the cellular CTPS1 offers an attractive means for developing antiviral therapy that would be resistant to SARS-CoV-2 mutation.
Collapse
Affiliation(s)
- Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Bianca Espinosa
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Qizhi Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Arunika Ekanayake
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Florida Research and Innovation Center, Cleveland Clinic, FL 34987, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Mehrnaz Zarinfar
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Wenjie Zhu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China
| | - Nicholas Graham
- Mork Family Department of Chemical Engineering and Materials Science, Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China
| | - Chao Zhang
- Department of Chemistry, Dornsife College of Arts, Letters and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Lead Contact
| |
Collapse
|
36
|
Alers-Velazquez R, Jacques S, Muller C, Boldt J, Schoelz J, Leisner S. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology 2021; 553:9-22. [PMID: 33197754 DOI: 10.1016/j.virol.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.
Collapse
Affiliation(s)
- Roberto Alers-Velazquez
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Sarah Jacques
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Jennifer Boldt
- USDA-Agricultural Research Service, Application Technology Research Unit, 2801 West Bancroft Street, Mail Stop 604, Toledo, OH, 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA.
| |
Collapse
|
37
|
Aicher SM, Monaghan P, Netherton CL, Hawes PC. Unpicking the Secrets of African Swine Fever Viral Replication Sites. Viruses 2021; 13:v13010077. [PMID: 33429879 PMCID: PMC7827680 DOI: 10.3390/v13010077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is a highly contagious pathogen which causes a lethal haemorrhagic fever in domestic pigs and wild boar. The large, double-stranded DNA virus replicates in perinuclear cytoplasmic replication sites known as viral factories. These factories are complex, multi-dimensional structures. Here we investigated the protein and membrane compartments of the factory using super-resolution and electron tomography. Click IT chemistry in combination with stimulated emission depletion (STED) microscopy revealed a reticular network of newly synthesized viral proteins, including the structural proteins p54 and p34, previously seen as a pleomorphic ribbon by confocal microscopy. Electron microscopy and tomography confirmed that this network is an accumulation of membrane assembly intermediates which take several forms. At early time points in the factory formation, these intermediates present as small, individual membrane fragments which appear to grow and link together, in a continuous progression towards new, icosahedral virions. It remains unknown how these membranes form and how they traffic to the factory during virus morphogenesis.
Collapse
Affiliation(s)
- Sophie-Marie Aicher
- African Swine Fever Vaccinology Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (S.-M.A.); (C.L.N.)
| | - Paul Monaghan
- Bioimaging, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Christopher L. Netherton
- African Swine Fever Vaccinology Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (S.-M.A.); (C.L.N.)
| | - Philippa C. Hawes
- Bioimaging, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK;
- Correspondence:
| |
Collapse
|
38
|
Abstract
Viral factories are intracellular compartments of the host cell that contain viral replication organelles and necessary elements for assembly and maturation of new infectious viral particles. In this article we revise the methods used to study viral factories and the current knowledge on the structure, functions and biogenesis of these structures. We also describe some of the most emblematic examples of viral factories characterized so far. Finally, we describe how the identification of mechanisms involved in the biogenesis and functional architecture of viral factories will provide new means for antiviral intervention.
Collapse
|
39
|
Abstract
Since their discovery more than 100 years ago, the viruses that infect bacteria (bacteriophages) have been widely studied as model systems. Largely overlooked, however, have been "jumbo phages," with genome sizes ranging from 200 to 500 kbp. Jumbo phages generally have large virions with complex structures and a broad host spectrum. While the majority of jumbo phage genes are poorly functionally characterized, recent work has discovered many unique biological features, including a conserved tubulin homolog that coordinates a proteinaceous nucleus-like compartment that houses and segregates phage DNA. The tubulin spindle displays dynamic instability and centers the phage nucleus within the bacterial host during phage infection for optimal reproduction. The shell provides robust physical protection for the enclosed phage genomes against attack from DNA-targeting bacterial immune systems, thereby endowing jumbo phages with broad resistance. In this review, we focus on the current knowledge of the cytoskeletal elements and the specialized nuclear compartment derived from jumbo phages, and we highlight their importance in facilitating spatial and temporal organization over the viral life cycle. Additionally, we discuss the evolutionary relationships between jumbo phages and eukaryotic viruses, as well as the therapeutic potential and drawbacks of jumbo phages as antimicrobial agents in phage therapy.
Collapse
|
40
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
41
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
42
|
Tian Z, Su Y, Zhang M, Zhang X, Guan Q. Successful Management of Recurrent Subacute Thyroiditis by Adding Colchicine to Glucocorticoid Treatment: A Case Series Study. Horm Metab Res 2020; 52:712-717. [PMID: 32365399 DOI: 10.1055/a-1148-2260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although subacute thyroiditis (SAT) is thought to be a self-limited inflammatory thyroid disease, the recurrence rate of SAT is approximately 10-20%. It is difficult for these patients to stop glucocorticoid treatment, and they are usually bothered with recurrent pain and the side effects of glucocorticoids for more than several months. We describe three cases who were diagnosed with recurrent subacute thyroiditis after a reduction in prednisolone (PSL) dose, either immediately upon the cessation of PSL or shortly thereafter. Their symptoms, including the adverse effects of PSL, severely impacted their quality of life. After a complete assessment, we administered colchicine at 1 mg per day for 1-2 months to control the recurrence of SAT and monitored their routine blood parameters every two weeks. All 3 patients were successfully tapered off of PSL treatment and were free of frequently recurrent SAT. Colchicine may be therapeutic in patients with prednisolone-refractory, recurrent SAT. However, a large-scale, double-blind, controlled, prospective multicenter study is required to provide a solid body of evidence.
Collapse
Affiliation(s)
- Zhenhua Tian
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Su
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Meijie Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| |
Collapse
|
43
|
Brahim Belhaouari D, Fontanini A, Baudoin JP, Haddad G, Le Bideau M, Bou Khalil JY, Raoult D, La Scola B. The Strengths of Scanning Electron Microscopy in Deciphering SARS-CoV-2 Infectious Cycle. Front Microbiol 2020; 11:2014. [PMID: 32973730 PMCID: PMC7466455 DOI: 10.3389/fmicb.2020.02014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Electron microscopy is a powerful tool in the field of microbiology. It has played a key role in the rapid diagnosis of viruses in patient samples and has contributed significantly to the clarification of virus structure and function, helping to guide the public health response to emerging viral infections. In the present study, we used scanning electron microscopy (SEM) to study the infectious cycle of SARS-CoV-2 in Vero E6 cells and we controlled some key findings by classical transmission electronic microscopy (TEM). The replication cycle of the virus was followed from 1 to 36 h post-infection. Our results revealed that SARS-CoV-2 infected the cells through membrane fusion. Particles are formed in the peri-nuclear region from a budding of the endoplasmic reticulum-Golgi apparatus complex into morphogenesis matrix vesicae. New SARS-CoV-2 particles were expelled from the cells, through cell lysis or by fusion of virus containing vacuoles with the cell plasma membrane. Overall, this cycle is highly comparable to that of SARS-CoV. By providing a detailed and complete SARS-CoV-2 infectious cycle, SEM proves to be a very rapid and efficient tool compared to classical TEM.
Collapse
Affiliation(s)
- Djamal Brahim Belhaouari
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
| | | | - Jean-Pierre Baudoin
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
| | - Gabriel Haddad
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
| | - Marion Le Bideau
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
| | | | - Didier Raoult
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
44
|
Wolff G, Melia CE, Snijder EJ, Bárcena M. Double-Membrane Vesicles as Platforms for Viral Replication. Trends Microbiol 2020; 28:1022-1033. [PMID: 32536523 PMCID: PMC7289118 DOI: 10.1016/j.tim.2020.05.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Viruses, as obligate intracellular parasites, exploit cellular pathways and resources in a variety of fascinating ways. A striking example of this is the remodelling of intracellular membranes into specialized structures that support the replication of positive-sense ssRNA (+RNA) viruses infecting eukaryotes. These distinct forms of virus-induced structures include double-membrane vesicles (DMVs), found during viral infections as diverse and notorious as those of coronaviruses, enteroviruses, noroviruses, or hepatitis C virus. Our understanding of these DMVs has evolved over the past 15 years thanks to advances in imaging techniques and modern molecular biology tools. In this article, we review contemporary understanding of the biogenesis, structure, and function of virus-induced DMVs as well as the open questions posed by these intriguing structures.
Collapse
Affiliation(s)
- Georg Wolff
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte E Melia
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
45
|
Palmitoylated Cysteines in Chikungunya Virus nsP1 Are Critical for Targeting to Cholesterol-Rich Plasma Membrane Microdomains with Functional Consequences for Viral Genome Replication. J Virol 2020; 94:JVI.02183-19. [PMID: 32132240 DOI: 10.1128/jvi.02183-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication.IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.
Collapse
|
46
|
Nagy PD, Lin W. Taking over Cellular Energy-Metabolism for TBSV Replication: The High ATP Requirement of an RNA Virus within the Viral Replication Organelle. Viruses 2020; 12:v12010056. [PMID: 31947719 PMCID: PMC7019945 DOI: 10.3390/v12010056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries on virus-driven hijacking and compartmentalization of the cellular glycolytic and fermentation pathways to support robust virus replication put the spotlight on the energy requirement of viral processes. The active recruitment of glycolytic enzymes in combination with fermentation enzymes by the viral replication proteins emphasizes the advantages of producing ATP locally within viral replication structures. This leads to a paradigm shift in our understanding of how viruses take over host metabolism to support the virus’s energy needs during the replication process. This review highlights our current understanding of how a small plant virus, Tomato bushy stunt virus, exploits a conserved energy-generating cellular pathway during viral replication. The emerging picture is that viruses not only rewire cellular metabolic pathways to obtain the necessary resources from the infected cells but the fast replicating viruses might have to actively hijack and compartmentalize the energy-producing enzymes to provide a readily available source of ATP for viral replication process.
Collapse
|
47
|
Fernández de Castro I. OBSOLETE: Virus Factories. REFERENCE MODULE IN LIFE SCIENCES 2020. [PMCID: PMC7268204 DOI: 10.1016/b978-0-12-809633-8.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Lin W, Liu Y, Molho M, Zhang S, Wang L, Xie L, Nagy PD. Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation. PLoS Pathog 2019; 15:e1008092. [PMID: 31648290 PMCID: PMC6830812 DOI: 10.1371/journal.ppat.1008092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/05/2019] [Accepted: 09/18/2019] [Indexed: 01/27/2023] Open
Abstract
The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.
Collapse
Affiliation(s)
- Wenwu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Melissa Molho
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shengjie Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Longshen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianhui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
49
|
Niehl A, Heinlein M. Perception of double-stranded RNA in plant antiviral immunity. MOLECULAR PLANT PATHOLOGY 2019; 20:1203-1210. [PMID: 30942534 PMCID: PMC6715784 DOI: 10.1111/mpp.12798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA silencing and antiviral pattern-triggered immunity (PTI) both rely on recognition of double-stranded (ds)RNAs as defence-inducing signals. While dsRNA recognition by dicer-like proteins during antiviral RNA silencing is thoroughly investigated, the molecular mechanisms involved in dsRNA perception leading to antiviral PTI are just about to be untangled. Parallels to antimicrobial PTI thereby only partially facilitate our view on antiviral PTI. PTI against microbial pathogens involves plasma membrane bound receptors; however, dsRNAs produced during virus infection occur intracellularly. Hence, how dsRNA may be perceived during this immune response is still an open question. In this short review, we describe recent discoveries in PTI signalling upon sensing of microbial patterns and endogenous 'danger' molecules with emphasis on immune signalling-associated subcellular trafficking processes in plants. Based on these studies, we develop different scenarios how dsRNAs could be sensed during antiviral PTI.
Collapse
Affiliation(s)
- Annette Niehl
- Julius Kühn‐Institute, Institute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐12D‐38104BraunschweigGermany
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR235712 rue du Général ZimmerF‐67000StrasbourgFrance
| |
Collapse
|
50
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|