1
|
Mapar M, Rydzak T, Hommes JW, Surewaard BGJ, Lewis IA. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants. Trends Microbiol 2024:S0966-842X(24)00251-8. [PMID: 39393939 DOI: 10.1016/j.tim.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.
Collapse
Affiliation(s)
- Maryam Mapar
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rydzak
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Josefien W Hommes
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bas G J Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Alves J, Vrieling M, Ring N, Yebra G, Pickering A, Prajsnar TK, Renshaw SA, Fitzgerald JR. Experimental evolution of Staphylococcus aureus in macrophages: dissection of a conditional adaptive trait promoting intracellular survival. mBio 2024; 15:e0034624. [PMID: 38682911 PMCID: PMC11237485 DOI: 10.1128/mbio.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Staphylococcus aureus is a major pathogen associated with important diseases in humans and animals. Macrophages are a key component of the innate immune response to S. aureus infection and play a major role in disease outcomes. To investigate the adaptive evolution of S. aureus in response to macrophages, we developed an experimental infection assay. S. aureus strains representing major human epidemic clones were passaged many times in a macrophage cell line, accumulating mutations in an array of genomic loci. Phenotypic analysis revealed the emergence of a lineage exhibiting increased survival in macrophages and human blood, and resistance to vancomycin. The evolved lineage exhibited a previously undescribed small colony variant (SCV) phenotype characterized by hyper-pigmentation, which resulted from a missense mutation in rsbW. Notably, the novel SCV was a conditional adaptive trait that was unstable in nutrient-replete conditions in vitro, rapidly converting from hyper-pigmented SCV to a non-pigmented large colony variant via spontaneous sigB deletion events. Importantly, we identified similar deletions in the genome sequences of a limited number of clinical S. aureus isolates from public databases, indicating that related events may occur during clinical infection. Experimental infection of zebrafish did not reveal a difference in virulence between parent and novel SCV but demonstrated an in vivo fitness cost for the compensatory sigB deletion events. Taken together, we report an experimental evolutionary approach for investigating bacterial innate immune cell interactions, revealing a conditional adaptation that promotes S. aureus survival in macrophages and resistance to vancomycin. IMPORTANCE Staphylococcus aureus is an important human bacterial pathogen. The host response to S. aureus involves the production of innate immune cells such as macrophages which are important for fighting infection. Here we report a new model of experimental evolution for studying how S. aureus can evade killing by macrophages. We identified a novel adaptive phenotype that promotes survival in macrophages and blood and resistance to antibiotics. The phenotype is lost rapidly upon growth in nutrient-rich conditions via disruption of the alternative sigma factor sigB, revealing a conditional niche-specific fitness advantage. Genomic analysis of clinical isolates suggests similar adaptations may occur during human infections. Our model may be used broadly to identify adaptations of S. aureus to the innate immune response.
Collapse
Affiliation(s)
- Joana Alves
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Manouk Vrieling
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Natalie Ring
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Gonzalo Yebra
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Amy Pickering
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Tomasz K. Prajsnar
- Florey Institute, Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, Sheffield, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Volk CF, Proctor RA, Rose WE. The Complex Intracellular Lifecycle of Staphylococcus aureus Contributes to Reduced Antibiotic Efficacy and Persistent Bacteremia. Int J Mol Sci 2024; 25:6486. [PMID: 38928191 PMCID: PMC11203666 DOI: 10.3390/ijms25126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.
Collapse
Affiliation(s)
- Cecilia F. Volk
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Richard A. Proctor
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Dombach JL, Christensen GL, Allgood SC, Quintana JLJ, Detweiler CS. Inhibition of multiple staphylococcal growth states by a small molecule that disrupts membrane fluidity and voltage. mSphere 2024; 9:e0077223. [PMID: 38445864 PMCID: PMC10964410 DOI: 10.1128/msphere.00772-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
New molecular approaches to disrupting bacterial infections are needed. The bacterial cell membrane is an essential structure with diverse potential lipid and protein targets for antimicrobials. While rapid lysis of the bacterial cell membrane kills bacteria, lytic compounds are generally toxic to whole animals. In contrast, compounds that subtly damage the bacterial cell membrane could disable a microbe, facilitating pathogen clearance by the immune system with limited compound toxicity. A previously described small molecule, D66, terminates Salmonella enterica serotype Typhimurium (S. Typhimurium) infection of macrophages and reduces tissue colonization in mice. The compound dissipates bacterial inner membrane voltage without rapid cell lysis under broth conditions that permeabilize the outer membrane or disable efflux pumps. In standard media, the cell envelope protects Gram-negative bacteria from D66. We evaluated the activity of D66 in Gram-positive bacteria because their distinct envelope structure, specifically the absence of an outer membrane, could facilitate mechanism of action studies. We observed that D66 inhibited Gram-positive bacterial cell growth, rapidly increased Staphylococcus aureus membrane fluidity, and disrupted membrane voltage while barrier function remained intact. The compound also prevented planktonic staphylococcus from forming biofilms and a disturbed three-dimensional structure in 1-day-old biofilms. D66 furthermore reduced the survival of staphylococcal persister cells and of intracellular S. aureus. These data indicate that staphylococcal cells in multiple growth states germane to infection are susceptible to changes in lipid packing and membrane conductivity. Thus, agents that subtly damage bacterial cell membranes could have utility in preventing or treating disease.IMPORTANCEAn underutilized potential antibacterial target is the cell membrane, which supports or associates with approximately half of bacterial proteins and has a phospholipid makeup distinct from mammalian cell membranes. Previously, an experimental small molecule, D66, was shown to subtly damage Gram-negative bacterial cell membranes and to disrupt infection of mammalian cells. Here, we show that D66 increases the fluidity of Gram-positive bacterial cell membranes, dissipates membrane voltage, and inhibits the human pathogen Staphylococcus aureus in several infection-relevant growth states. Thus, compounds that cause membrane damage without lysing cells could be useful for mitigating infections caused by S. aureus.
Collapse
Affiliation(s)
- Jamie L. Dombach
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Grace L. Christensen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Samual C. Allgood
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
5
|
Faure-Dupuy S, Jubrail J, Depierre M, Africano-Gomez K, Öberg L, Israelsson E, Thörn K, Delevoye C, Castellano F, Herit F, Guilbert T, Russell DG, Mayer G, Cunoosamy DM, Kurian N, Niedergang F. ARL5b inhibits human rhinovirus 16 propagation and impairs macrophage-mediated bacterial clearance. EMBO Rep 2024; 25:1156-1175. [PMID: 38332148 PMCID: PMC10933434 DOI: 10.1038/s44319-024-00069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.
Collapse
Affiliation(s)
| | - Jamil Jubrail
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
- Southampton Solent University, East Park Terrace, Southampton, SO14 0YN, UK
| | - Manon Depierre
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | | | - Lisa Öberg
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Elisabeth Israelsson
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Cédric Delevoye
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
- Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Flavia Castellano
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
- Université Paris Est Creteil, INSERM, IMRB, Creteil, 94010, France
| | - Floriane Herit
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Thomas Guilbert
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gaell Mayer
- Immunology, Late stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Danen M Cunoosamy
- Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Nisha Kurian
- Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | | |
Collapse
|
6
|
Bayer J, Becker J, Liu X, Gritsch L, Daiber E, Korn N, Oesterhelt F, Fraunholz M, Weber A, Wolz C. Differential survival of Staphylococcal species in macrophages. Mol Microbiol 2024; 121:470-480. [PMID: 37898563 DOI: 10.1111/mmi.15184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.
Collapse
Affiliation(s)
- Janina Bayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Janna Becker
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Xiao Liu
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ellen Daiber
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Filipp Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Martin Fraunholz
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Alexander Weber
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Tsang STJ, Ferreira N. The role of implant retention and conservative management in the management of fracture-related infection. J Orthop 2024; 48:47-51. [PMID: 38077474 PMCID: PMC10700830 DOI: 10.1016/j.jor.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 08/03/2024] Open
Abstract
UNLABELLED Fracture-related infection (FRI) management has advanced considerably in recent years, offering new possibilities for predictable rates of infection eradication. Debridement, antibiotics, and implant retention (DAIR) procedures have shown promise in the treatment of early FRI. This article provides an overview of the principles and indications of DAIR, including the importance of meticulous debridement and the management of dead space. The outcomes of DAIR are discussed, highlighting the range of fracture union rates reported in the literature. The role of antimicrobial suppression in optimizing host biology and facilitating surgical intervention is also explored. While further research is needed to establish optimal treatment strategies, DAIR offers a valuable treatment approach for FRI when specific criteria are met. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Shao-Ting Jerry Tsang
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Nando Ferreira
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| |
Collapse
|
8
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
9
|
Farmand S, Sender V, Karlsson J, Merkl P, Normark S, Henriques-Normark B. STAT3 Deficiency Alters the Macrophage Activation Pattern and Enhances Matrix Metalloproteinase 9 Expression during Staphylococcal Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:69-80. [PMID: 37982695 PMCID: PMC10733582 DOI: 10.4049/jimmunol.2300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
Staphylococcus aureus is a significant cause of morbidity and mortality in pulmonary infections. Patients with autosomal-dominant hyper-IgE syndrome due to STAT3 deficiency are particularly susceptible to acquiring staphylococcal pneumonia associated with lung tissue destruction. Because macrophages are involved in both pathogen defense and inflammation, we investigated the impact of murine myeloid STAT3 deficiency on the macrophage phenotype in vitro and on pathogen clearance and inflammation during murine staphylococcal pneumonia. Murine bone marrow-derived macrophages (BMDM) from STAT3 LysMCre+ knockout or Cre- wild-type littermate controls were challenged with S. aureus, LPS, IL-4, or vehicle control in vitro. Pro- and anti-inflammatory responses as well as polarization and activation markers were analyzed. Mice were infected intratracheally with S. aureus, bronchoalveolar lavage and lungs were harvested, and immunohistofluorescence was performed on lung sections. S. aureus infection of STAT3-deficient BMDM led to an increased proinflammatory cytokine release and to enhanced upregulation of costimulatory MHC class II and CD86. Murine myeloid STAT3 deficiency did not affect pathogen clearance in vitro or in vivo. Matrix metalloproteinase 9 was upregulated in Staphylococcus-treated STAT3-deficient BMDM and in lung tissues of STAT3 knockout mice infected with S. aureus. Moreover, the expression of miR-155 was increased. The enhanced inflammatory responses and upregulation of matrix metalloproteinase 9 and miR-155 expression in murine STAT3-deficient as compared with wild-type macrophages during S. aureus infections may contribute to tissue damage as observed in STAT3-deficient patients during staphylococcal pneumonia.
Collapse
Affiliation(s)
- Susan Farmand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
10
|
Ng WNI, Kalimuthu S, Law COK, Lee AHC, Lau TCK, Leung YY, Cheung GSP, Neelakantan P. Intracellular bacterial eradication using a novel peptide in vitro. Int Endod J 2023; 56:1360-1372. [PMID: 37615967 DOI: 10.1111/iej.13965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
AIM To determine the effect of a novel antimicrobial peptide (AMP; OP145) and cell-penetrating peptide (Octa-arginine/R8) conjugate on the killing of intracellular Enterococcus faecalis, compared to OP145 and an antibiotic combination recommended for regenerative endodontic procedures. METHODOLOGY The biocompatible concentrations of OP145 and OP145-R8 were determined by assessing their cytotoxicity against human macrophages and red blood cells. Spatiotemporal internalization of the peptides into macrophages was investigated qualitatively and quantitatively by confocal laser scanning microscopy and flow cytometry respectively. Killing of extracellular and intracellular E. faecalis OG1RF by the peptides was determined by counting the colony-forming units (CFU). Intracellular antibacterial activity of the peptides was compared to a double antibiotic combination. Confocal microscopy was used to confirm the intracellular bacterial eradication. Significant differences between the different test groups were analysed using one-way analysis of variance. p < .05 was considered to be statistically significant. RESULTS Peptides at a concentration of 7.5 μmol/L were chosen for subsequent experiments based on the results of the alamarBlue™ cell viability assay and haemolytic assay. OP145-R8 selectively internalized into lysosomal compartments and the cytosol of macrophages. Conjugation with R8 improved the internalization of OP145 into macrophages in a temporal manner (70.53% at 1 h to 77.13% at 2 h), while no temporal increase was observed for OP145 alone (60.53% at 1 h with no increase at 2 h). OP145-R8 demonstrated significantly greater extracellular and intracellular antibacterial activity compared to OP145 at all investigated time-points and concentrations (p < .05). OP145-R8 at 7.5 μmol/L eradicated intracellular E. faecalis after 2 h (3.5 log reduction compared to the control; p < .05), while the antibiotics could not reduce more than 0.5 log CFU compared to the control (p > .05). Confocal microscopy showed complete absence of E. faecalis within the OP145-R8 treated macrophages. CONCLUSIONS The results of this study demonstrated that the conjugation of an AMP OP145 to a cell-penetrating peptide R8 eradicated extracellular and intracellular E. faecalis OG1RF without toxic effects on the host cells.
Collapse
Affiliation(s)
- Wing Nok Isaac Ng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Gary Shun Pan Cheung
- Department of Dental Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| |
Collapse
|
11
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
12
|
Xu J, Xie L. Advances in immune response to pulmonary infection: Nonspecificity, specificity and memory. Chronic Dis Transl Med 2023; 9:71-81. [PMID: 37305110 PMCID: PMC10249196 DOI: 10.1002/cdt3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
The lung immune response consists of various cells involved in both innate and adaptive immune processes. Innate immunity participates in immune resistance in a nonspecific manner, whereas adaptive immunity effectively eliminates pathogens through specific recognition. It was previously believed that adaptive immune memory plays a leading role during secondary infections; however, innate immunity is also involved in immune memory. Trained immunity refers to the long-term functional reprogramming of innate immune cells caused by the first infection, which alters the immune response during the second challenge. Tissue resilience limits the tissue damage caused by infection by controlling excessive inflammation and promoting tissue repair. In this review, we summarize the impact of host immunity on the pathophysiological processes of pulmonary infections and discuss the latest progress in this regard. In addition to the factors influencing pathogenic microorganisms, we emphasize the importance of the host response.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
13
|
Pidwill GR, Pyrah JF, Sutton JAF, Best A, Renshaw SA, Foster SJ. Clonal population expansion of Staphylococcus aureus occurs due to escape from a finite number of intraphagocyte niches. Sci Rep 2023; 13:1188. [PMID: 36681703 PMCID: PMC9867732 DOI: 10.1038/s41598-023-27928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is a human commensal and also an opportunist pathogen causing life threatening infections. During S. aureus disease, the abscesses that characterise infection can be clonal, whereby a large bacterial population is founded by a single or few organisms. Our previous work has shown that macrophages are responsible for restricting bacterial growth such that a population bottleneck occurs and clonality can emerge. A subset of phagocytes fail to control S. aureus resulting in bacterial division, escape and founding of microabscesses that can seed other host niches. Here we investigate the basis for clonal microabscess formation, using in vitro and in silico models of S. aureus macrophage infection. Macrophages that fail to control S. aureus are characterised by formation of intracellular bacterial masses, followed by cell lysis. High-resolution microscopy reveals that most macrophages had internalised only a single S. aureus, providing a conceptual framework for clonal microabscess generation, which was supported by a stochastic individual-based, mathematical model. Once a threshold of masses was reached, increasing the number of infecting bacteria did not result in greater mass numbers, despite enhanced phagocytosis. This suggests a finite number of permissive, phagocyte niches determined by macrophage associated factors. Increased understanding of the parameters of infection dynamics provides avenues for development of rational control measures.
Collapse
Affiliation(s)
- Grace R Pidwill
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Josie F Pyrah
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
- The Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joshua A F Sutton
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alex Best
- School of Mathematics & Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Stephen A Renshaw
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- The Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
14
|
Rodrigues Lopes I, Alcantara LM, Silva RJ, Josse J, Vega EP, Cabrerizo AM, Bonhomme M, Lopez D, Laurent F, Vandenesch F, Mano M, Eulalio A. Microscopy-based phenotypic profiling of infection by Staphylococcus aureus clinical isolates reveals intracellular lifestyle as a prevalent feature. Nat Commun 2022; 13:7174. [PMID: 36418309 PMCID: PMC9684519 DOI: 10.1038/s41467-022-34790-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is increasingly recognized as a facultative intracellular pathogen, although the significance and pervasiveness of its intracellular lifestyle remain controversial. Here, we applied fluorescence microscopy-based infection assays and automated image analysis to profile the interaction of 191 S. aureus isolates from patients with bone/joint infections, bacteremia, and infective endocarditis, with four host cell types, at five times post-infection. This multiparametric analysis revealed that almost all isolates are internalized and that a large fraction replicate and persist within host cells, presenting distinct infection profiles in non-professional vs. professional phagocytes. Phenotypic clustering highlighted interesting sub-groups, including one comprising isolates exhibiting high intracellular replication and inducing delayed host death in vitro and in vivo. These isolates are deficient for the cysteine protease staphopain A. This study establishes S. aureus intracellular lifestyle as a prevalent feature of infection, with potential implications for the effective treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Ines Rodrigues Lopes
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Laura Maria Alcantara
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jerome Josse
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Elena Pedrero Vega
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Ana Marina Cabrerizo
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Melanie Bonhomme
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Daniel Lopez
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Frederic Laurent
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Francois Vandenesch
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Miguel Mano
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Department of Life Sciences, University of Coimbra, Coimbra, Portugal ,grid.13097.3c0000 0001 2322 6764British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, United Kingdom
| | - Ana Eulalio
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Nesson ET, McDowell SA. Innovations in Evaluating Statin Benefit and Efficacy in Staphylococcus aureus Intracellular Infection Management. Int J Mol Sci 2022; 23:ijms232113006. [PMID: 36361794 PMCID: PMC9657138 DOI: 10.3390/ijms232113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/23/2022] Open
Abstract
An emerging therapeutic approach in the treatment of infectious disease is to augment the host response through repurposing of well-tolerated, non-antibiotic, host-directed therapeutics. Earlier retrospective studies identify a positive association between statin use and a decreased risk of death due to sepsis or bacteremia. However, more recent randomized control trials fail to detect a therapeutic benefit in these complex infection settings. It is postulated that unrecognized biases in certain observational studies may have led to an overestimation of benefit and that statin use is instead a marker for health status, wealth, and demographic characteristics which may separately affect death due to infection. What remains unresolved is that in vitro and in vivo evidence reproducibly indicates that statin pharmacology limits infection and augments immunomodulatory responses, suggesting that therapeutic benefits may be attainable in certain infection settings, such as intracellular infection by S. aureus. Carefully considering the biological mechanisms capable of driving the relationship between statins and infections and constructing a methodology to avoid potential biases in observational studies would enable the examination of protective effects against infection and limit the risk of underestimating statin efficacy. Such an approach would rely on the examination of statin use in defined infection settings based on an underlying mode-of-action and pharmacology, where the inhibition of HMG-CoA-reductase at the rate-limiting step in cholesterol biosynthesis diminishes not only cholesterol levels but also isoprenoid intermediates central to host cell invasion by S. aureus. Therapeutic benefit in such settings, if existent, may be of clinical importance.
Collapse
Affiliation(s)
- Erik T. Nesson
- Department of Economics, Ball State University, Muncie, IN 47306, USA
| | - Susan A. McDowell
- Office of Research and Innovation, Miami University, Oxford, OH 45056, USA
- Correspondence:
| |
Collapse
|
16
|
Nyazika TK, Sibale L, Phiri J, De Ste Croix M, Jasiunaite Z, Mkandawire C, Malamba R, Kankwatira A, Manduwa M, Ferreira DM, Nyirenda TS, Oggioni MR, Mwandumba HC, Jambo KC. Intracellular survival of Streptococcus pneumoniae in human alveolar macrophages is augmented with HIV infection. Front Immunol 2022; 13:992659. [PMID: 36203580 PMCID: PMC9531125 DOI: 10.3389/fimmu.2022.992659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
People Living with HIV (PLHIV) are at an increased risk of pneumococcal pneumonia than HIV-uninfected adults, but the reasons for this are still not well understood. We investigated whether alveolar macrophages (AM) mediated control of pneumococcal infection is impaired in PLHIV compared to HIV-uninfected adults. We assessed anti-bactericidal activity against Streptococcus pneumoniae of primary human AM obtained from PLHIV and HIV-uninfected adults. We found that pneumococcus survived intracellularly in AMs at least 24 hours post ex vivo infection, and this was more frequent in PLHIV than HIV-uninfected adults. Corroborating these findings, in vivo evidence showed that PLHIV had a higher propensity for harboring S. pneumoniae within their AMs than HIV-uninfected adults. Moreover, bacterial intracellular survival in AMs was associated with extracellular propagation of pneumococcal infection. Our data suggest that failure of AMs to eliminate S. pneumoniae intracellularly could contribute to the increased risk of pneumococcal pneumonia in PLHIV.
Collapse
Affiliation(s)
- Tinashe K. Nyazika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lusako Sibale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Zydrune Jasiunaite
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christopher Mkandawire
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose Malamba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Miriam Manduwa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tonney S. Nyirenda
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Dipartimento di Farmacia e Biotecnologie, Universita di Bologna, Bologna, Italy
| | - Henry C. Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C. Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
17
|
Siwczak F, Cseresnyes Z, Hassan MIA, Aina KO, Carlstedt S, Sigmund A, Groger M, Surewaard BGJ, Werz O, Figge MT, Tuchscherr L, Loffler B, Mosig AS. Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model. Biomaterials 2022; 287:121632. [PMID: 35728409 DOI: 10.1016/j.biomaterials.2022.121632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Infections with Staphylococcus aureus (S. aureus) have been reported from various organs ranging from asymptomatic colonization to severe infections and sepsis. Although considered an extracellular pathogen, S. aureus can invade and persist in professional phagocytes such as monocytes and macrophages. Its capability to persist and manipulate macrophages is considered a critical step to evade host antimicrobial reactions. We leveraged a recently established human liver-on-chip model to demonstrate that S. aureus specifically targets macrophages as essential niche facilitating bacterial persistence and phenotype switching to small colony variants (SCVs). In vitro, M2 polarization was found to favor SCV-formation and was associated with increased intracellular bacterial loads in macrophages, increased cell death, and impaired recruitment of circulating monocytes to sites of infection. These findings expand the knowledge about macrophage activation in the liver and its impact on bacterial persistence and dissemination in the course of infection.
Collapse
Affiliation(s)
- Fatina Siwczak
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Zoltan Cseresnyes
- Applied Systems Biology Research Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 13, 07745, Jena, Germany
| | - Mohamed I Abdelwahab Hassan
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Kehinde Oluwasegun Aina
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Swen Carlstedt
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Anke Sigmund
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Marko Groger
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Bas G J Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, Canada
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology Research Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Bettina Loffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany.
| |
Collapse
|
18
|
Hommes JW, Surewaard BGJ. Intracellular Habitation of Staphylococcus aureus: Molecular Mechanisms and Prospects for Antimicrobial Therapy. Biomedicines 2022; 10:1804. [PMID: 36009351 PMCID: PMC9405036 DOI: 10.3390/biomedicines10081804] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections pose a global health threat, especially with the continuous development of antibiotic resistance. As an opportunistic pathogen, MRSA infections have a high mortality rate worldwide. Although classically described as an extracellular pathogen, many studies have shown over the past decades that MRSA also has an intracellular aspect to its infectious cycle, which has been observed in vitro in both non-professional as well as professional phagocytes. In vivo, MRSA has been shown to establish an intracellular niche in liver Kupffer cells upon bloodstream infection. The staphylococci have evolved various evasion strategies to survive the antimicrobial environment of phagolysosomes and use these compartments to hide from immune cells and antibiotics. Ultimately, the host cells get overwhelmed by replicating bacteria, leading to cell lysis and bacterial dissemination. In this review, we describe the different intracellular aspects of MRSA infection and briefly mention S. aureus evasion strategies. We discuss how this intracellular niche of bacteria may assist in antibiotic tolerance development, and lastly, we describe various new antibacterial strategies that target the intracellular bacterial niche.
Collapse
Affiliation(s)
| | - Bas G. J. Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
19
|
Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells 2022; 11:cells11111734. [PMID: 35681429 PMCID: PMC9179481 DOI: 10.3390/cells11111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome can produce metabolic products that exert diverse activities, including effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such as those released as part of quorum sensing are likely to play an important role for health and disease. In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP) and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal health and disease. QS regulates the expression of numerous genes including biofilm formation, bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role in the bacteria–host interaction. We conclude that the mechanisms of action of QS at the intestinal neuro–immune interface need to be further investigated.
Collapse
|
20
|
Gierlikowski W, Gierlikowska B. MicroRNAs as Regulators of Phagocytosis. Cells 2022; 11:cells11091380. [PMID: 35563685 PMCID: PMC9106007 DOI: 10.3390/cells11091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and thus act as important regulators of cellular phenotype and function. As their expression may be dysregulated in numerous diseases, they are of interest as biomarkers. What is more, attempts of modulation of some microRNAs for therapeutic reasons have been undertaken. In this review, we discuss the current knowledge regarding the influence of microRNAs on phagocytosis, which may be exerted on different levels, such as through macrophages polarization, phagosome maturation, reactive oxygen species production and cytokines synthesis. This phenomenon plays an important role in numerous pathological conditions.
Collapse
Affiliation(s)
- Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Correspondence:
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| |
Collapse
|
21
|
Pasman R, Krom BP, Zaat SAJ, Brul S. The Role of the Oral Immune System in Oropharyngeal Candidiasis-Facilitated Invasion and Dissemination of Staphylococcus aureus. FRONTIERS IN ORAL HEALTH 2022; 3:851786. [PMID: 35464779 PMCID: PMC9021398 DOI: 10.3389/froh.2022.851786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans and Staphylococcus aureus account for most invasive fungal and bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed to mediate S. aureus invasion of immunocompromised hosts during co-colonization of oral mucosal surfaces. The status of the oral immune system crucially contributes to this process in two distinct ways: firstly, by allowing invasive C. albicans growth during dysfunction of extra-epithelial immunity, and secondly following invasion by some remaining function of intra-epithelial immunity. Immunocompromised individuals at risk of developing invasive oral C. albicans infections could, therefore, also be at risk of contracting concordant S. aureus BSIs. Considering the crucial contribution of both oral immune function and dysfunction, the aim of this review is to provide an overview of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Stanley Brul
| |
Collapse
|
22
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
23
|
Staphylococcus aureus-A Known Opponent against Host Defense Mechanisms and Vaccine Development-Do We Still Have a Chance to Win? Int J Mol Sci 2022; 23:ijms23020948. [PMID: 35055134 PMCID: PMC8781139 DOI: 10.3390/ijms23020948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.
Collapse
|
24
|
Marro FC, Abad L, Blocker AJ, Laurent F, Josse J, Valour F. In vitro antibiotic activity against intraosteoblastic Staphylococcus aureus: a narrative review of the literature. J Antimicrob Chemother 2021; 76:3091-3102. [PMID: 34459881 PMCID: PMC8598303 DOI: 10.1093/jac/dkab301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus – a major aetiological agent of bone and joint infection (BJI) – is associated with a high risk of relapse and chronicity, in part due to its ability to invade and persist in non-professional phagocytic bone cells such as osteoblasts. This intracellular reservoir protects S. aureus from the action of the immune system and most antibiotics. To date, the choice of antimicrobial strategies for BJI treatment mostly relies on standard susceptibility testing, bone penetration of antibiotics and their ‘antibiofilm’ activity. Despite the role of intracellular persistent S. aureus in the development of chronic infection, the ability of antibiotics to target the S. aureus intraosteoblastic reservoir is not considered in therapeutic choices but might represent a key determinant of treatment outcome. This review provides an overview of the intracellular pharmacokinetics of antistaphylococcal drugs used in the treatment of BJI and of their ability to target intraosteoblastic S. aureus. Thirteen studies focusing on the intraosteoblastic activity of antibiotics against S. aureus were reviewed, all relying on in vitro models of osteoblast infection. Despite varying incubation times, multiplicities of infection, bacterial strains, and the types of infected cell lines, rifamycins and fluoroquinolones remain the two most potent antimicrobial classes for intraosteoblastic S. aureus eradication, consistent with clinical data showing a superiority of this combination therapy in S. aureus orthopaedic device-related infections.
Collapse
Affiliation(s)
- Florian C Marro
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Lélia Abad
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Ariel J Blocker
- Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France
| | - Frédéric Laurent
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France.,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc) Lyon, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc) Lyon, Hospices Civils de Lyon, Lyon, France
| | - Florent Valour
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc) Lyon, Hospices Civils de Lyon, Lyon, France.,Service des maladies infectieuses et tropicales, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
25
|
Further Insight into the Mechanism of Human PMN Lysis following Phagocytosis of Staphylococcus aureus. Microbiol Spectr 2021; 9:e0088821. [PMID: 34704790 PMCID: PMC8549732 DOI: 10.1128/spectrum.00888-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen that can cause a variety of diseases ranging from mild superficial skin infections to life-threatening conditions like necrotizing pneumonia, endocarditis, and septicemia. Polymorphonuclear leukocytes (PMNs; neutrophils in particular herein) are essential for host defense against S. aureus infections, and the microbe is phagocytosed readily. Most ingested bacteria are killed, but some S. aureus strains—such as the epidemic USA300 strain—have an enhanced ability to cause PMN lysis after phagocytosis. Although progress has been made, the mechanism for lysis after phagocytosis of S. aureus remains incompletely determined. Here, we tested the hypothesis that disruption of phagosome integrity and escape of S. aureus from the PMN phagosome into the cytoplasm precedes PMN lysis. We used USA300 wild-type and isogenic deletion strains to evaluate and/or verify the role of selected S. aureus molecules in this cytolytic process. Compared to the wild-type USA300 strain, Δagr, Δhla, ΔlukGH, and Δpsm strains each caused significantly less lysis of human PMNs 3 h and/or 6 h after phagocytosis, consistent with previous studies. Most notably, confocal microscopy coupled with selective permeabilization assays demonstrated that phagosome membrane integrity is largely maintained prior to PMN lysis after S. aureus phagocytosis. We conclude that PMN lysis does not require escape of S. aureus from the phagosome to the cytoplasm and that these are independent phenomena. The findings are consistent with the ability of S. aureus (via selected molecules) to trigger lysis of human PMNs by an undetermined signaling mechanism. IMPORTANCES. aureus strain USA300 has the ability to cause rapid lysis of human neutrophils after phagocytosis. Although this phenomenon likely contributes to the success of USA300 as a human pathogen, our knowledge of the mechanism remains incomplete. Here, we used a selective permeabilization assay coupled with confocal microscopy to demonstrate that USA300 is contained within human neutrophil phagosomes until the point of host cell lysis. Thus, consistent with a process in macrophages, S. aureus fails to escape into the neutrophil cytoplasm prior to cytolysis.
Collapse
|
26
|
Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells. PLoS Pathog 2021; 17:e1009874. [PMID: 34473800 PMCID: PMC8443034 DOI: 10.1371/journal.ppat.1009874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.
Collapse
|
27
|
Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev 2021; 176:113864. [PMID: 34271022 DOI: 10.1016/j.addr.2021.113864] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.
Collapse
|
28
|
Bogut A, Magryś A. The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections. Eur J Clin Microbiol Infect Dis 2021; 40:2249-2270. [PMID: 34296355 PMCID: PMC8520507 DOI: 10.1007/s10096-021-04315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
Bacterial small colony variants represent an important aspect of bacterial variability. They are naturally occurring microbial subpopulations with distinctive phenotypic and pathogenic traits, reported for many clinically important bacteria. In clinical terms, SCVs tend to be associated with persistence in host cells and tissues and are less susceptible to antibiotics than their wild-type (WT) counterparts. The increased tendency of SCVs to reside intracellularly where they are protected against the host immune responses and antimicrobial drugs is one of the crucial aspects linking SCVs to recurrent or chronic infections, which are difficult to treat. An important aspect of the SCV ability to persist in the host is the quiescent metabolic state, reduced immune response and expression a changed pattern of virulence factors, including a reduced expression of exotoxins and an increased expression of adhesins facilitating host cell uptake. The purpose of this review is to describe in greater detail the currently available data regarding CoNS SCV and, in particular, their clinical significance and possible mechanisms by which SCVs contribute to the pathogenesis of the chronic infections. It should be emphasized that in spite of an increasing clinical significance of this group of staphylococci, the number of studies unraveling the mechanisms of CoNS SCVs formation and their impact on the course of the infectious process is still scarce, lagging behind the studies on S. aureus SCVs.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
29
|
Duchesne C, Frescaline N, Blaise O, Lataillade JJ, Banzet S, Dussurget O, Rousseau A. Cold Atmospheric Plasma Promotes Killing of Staphylococcus aureus by Macrophages. mSphere 2021; 6:e0021721. [PMID: 34133202 PMCID: PMC8265637 DOI: 10.1128/msphere.00217-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes. However, some pathogenic microorganisms, including some drug-resistant bacteria, have evolved sophisticated mechanisms to prevent phagocytosis or escape intracellular degradation. Cold atmospheric plasma (CAP) is an emerging technology with promising bactericidal effects. Here, we investigated the effect of CAP on Staphylococcus aureus phagocytosis by RAW 264.7 macrophage-like cells. We demonstrate that CAP treatment increases intracellular concentrations of reactive oxygen species (ROS) and nitric oxide and promotes the elimination of both antibiotic-sensitive and antibiotic-resistant S. aureus by RAW 264.7 cells. This effect was inhibited by antioxidants indicating that the bactericidal effect of CAP was mediated by oxidative killing of intracellular bacteria. Furthermore, we show that CAP promotes the association of S. aureus to lysosomal-associated membrane protein 1 (LAMP-1)-positive phagosomes, in which bacteria are exposed to low pH and cathepsin D hydrolase. Taken together, our results provide the first evidence that CAP activates defense mechanisms of macrophages, ultimately leading to bacterial elimination. IMPORTANCE Staphylococcus aureus is the most frequent cause of skin and soft tissue infections. Treatment failures are increasingly common due to antibiotic resistance and the emergence of resistant strains. Macrophages participate in the first line of immune defense and are critical for coordinated defense against pathogenic bacteria. However, S. aureus has evolved sophisticated mechanisms to escape macrophage killing. In the quest to identify novel antimicrobial therapeutic approaches, we investigated the activity of cold atmospheric plasma (CAP) on macrophages infected with S. aureus. Here, we show that CAP treatment promotes macrophage ability to eliminate internalized bacteria. Importantly, CAP could trigger killing of both antibiotic-sensitive and antibiotic-resistant strains of S. aureus. While CAP did not affect the internalization capacity of macrophages, it increased oxidative-dependent bactericidal activity and promoted the formation of degradative phagosomes. Our study shows that CAP has beneficial effects on macrophage defense mechanisms and may potentially be useful in adjuvant antimicrobial therapies.
Collapse
Affiliation(s)
- Constance Duchesne
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Nadira Frescaline
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Océane Blaise
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Département de Microbiologie, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Antoine Rousseau
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| |
Collapse
|
30
|
Matter MT, Doppegieter M, Gogos A, Keevend K, Ren Q, Herrmann IK. Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages. NANOSCALE 2021; 13:8224-8234. [PMID: 33885075 PMCID: PMC8101700 DOI: 10.1039/d0nr08285f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Bacterial infections are one of the main health concerns humanity faces today and bacterial resistances and protection mechanisms are set to aggravate the issue in the coming years. An increasing number of bacterial strains evades antibiotic treatment by hiding inside cells. Conventional antimicrobial agents are unable to penetrate or be retained in the infected mammalian cells. Recent approaches to overcome these limitations have focused on load-carrier systems, requiring a triggered discharge leading to complex release kinetics. The unison of potent antimicrobial activity with high mammalian cell compatibility is a prerequisite for intracellular activity, which is not well-met by otherwise well-established inorganic systems, such as silver-based nanoparticles. In this work, load and carrier are combined into one functional inorganic nanoparticle system, which unites antimicrobial activity with mammalian cell compatibility. These multicomponent nanohybrids based on cerium oxide are produced in one step, yet unite complex materials. The nanoparticles form suprastructures of similar size and surface charge as bacteria, therefore facilitating the uptake into the same subcellular compartments, where they unleash their antibacterial effect. Such intrinsically antibacterial nanohybrids significantly reduce bacterial survival inside macrophages without harming the latter. Furthermore, blocking of nanoparticle endocytosis and subcellular electron microscopy elucidate the mechanism of action. Taken together, this work presents the first demonstration of antibacterial activity of ceria-based nanoparticles inside of mammalian cells and offers a route to straightforward and robust intracellular antibacterial agents that do not depend on payload delivery or biological constituents.
Collapse
Affiliation(s)
- Martin T. Matter
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014 St GallenSwitzerland+41 (0)58 765 71 53
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH ZurichSonneggstrasse 38092 ZurichSwitzerland
| | - Meagan Doppegieter
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014 St GallenSwitzerland+41 (0)58 765 71 53
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014 St GallenSwitzerland+41 (0)58 765 71 53
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH ZurichSonneggstrasse 38092 ZurichSwitzerland
| | - Kerda Keevend
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014 St GallenSwitzerland+41 (0)58 765 71 53
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH ZurichSonneggstrasse 38092 ZurichSwitzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014 St. GallenSwitzerland
| | - Inge K. Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014 St GallenSwitzerland+41 (0)58 765 71 53
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH ZurichSonneggstrasse 38092 ZurichSwitzerland
| |
Collapse
|
31
|
Tosetti B, Ward B, Grumme D, Herb M, Schramm M, Utermöhlen O, Heukamp LC, Krönke M, Krut O. NOX2 Deficiency Permits Sustained Survival of S. aureus in Macrophages and Contributes to Severity of Infection. Front Immunol 2021; 12:633629. [PMID: 33868252 PMCID: PMC8044967 DOI: 10.3389/fimmu.2021.633629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although the crucial role of professional phagocytes for the clearance of S. aureus infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of S. aureus during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of S. aureus metastases. Infection of bone marrow-derived macrophages (BMDM) with S. aureus revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular S. aureus. Despite of larger intracellular bacterial burden, NOX2-deficient BMDM showed significantly improved survival. Intravenous injection of mice with in vitro-infected BMDMs carrying intracellular viable S. aureus led to higher bacterial loads in kidney and liver of mice compared to injection with plain S. aureus. An even higher frequency of liver abscesses was observed in mice infected with S. aureus-loaded nox2 -/- BMDM. Thus, the improved intracellular survival of S. aureus and improved viability of NOX2-deficient BMDM is associated with an aggravated metastatic dissemination of S. aureus infection. A combination of vancomycin and the intracellularly active antibiotic rifampicin led to complete elimination of S. aureus from liver within 48 h, which was not achieved with vancomycin treatment alone, underscoring the impact of intracellular S. aureus on the course of disease. The results of our study indicate that intracellular S. aureus carried by macrophages are sufficient to establish a systemic infection. This suggests the inclusion of intracellularly active antibiotics in the therapeutic regimen of invasive S. aureus infections, especially in patients with NADPH oxidase deficiencies such as chronic granulomatous disease.
Collapse
Affiliation(s)
- Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Beate Ward
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Daniela Grumme
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research, Bonn-Cologne, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
32
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
33
|
Tiwari R, Banerjee S, Tyde D, Saha KD, Ethirajan A, Mukherjee N, Chattopadhy S, Pramanik SK, Das A. Redox-Responsive Nanocapsules for the Spatiotemporal Release of Miltefosine in Lysosome: Protection against Leishmania. Bioconjug Chem 2021; 32:245-253. [PMID: 33438999 DOI: 10.1021/acs.bioconjchem.0c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmaniasis, a vector-borne disease, is caused by intracellular parasite Leishmania donovani. Unlike most intracellular pathogens, Leishmania donovani are lodged in parasitophorous vacuoles and replicate within the phagolysosomes in macrophages. Effective vaccines against this disease are still under development, while the efficacy of the available drugs is being questioned owing to the toxicity for nonspecific distribution in human physiology and the reported drug-resistance developed by Leishmania donovani. Thus, a stimuli-responsive nanocarrier that allows specific localization and release of the drug in the lysosome has been highly sought after for addressing two crucial issues, lower drug toxicity and a higher drug efficacy. We report here a unique lysosome targeting polymeric nanocapsules, formed via inverse mini-emulsion technique, for stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line. A benign polymeric backbone, with a disulfide bonding susceptible to an oxidative cleavage, is utilized for the organelle-specific release of miltefosine. Oxidative rupture of the disulfide bond is induced by intracellular glutathione (GSH) as an endogenous stimulus. Such a stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line over a few hours helped in achieving an improved drug efficacy by 200 times as compared to pure miltefosine. Such a drug formulation could contribute to a new line of treatment for leishmaniasis.
Collapse
Affiliation(s)
- Rajeshwari Tiwari
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Deepak Tyde
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Anitha Ethirajan
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | - Sumit Kumar Pramanik
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Amitava Das
- Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal, India
| |
Collapse
|
34
|
Lallemand EA, Zemirline C, Toutain PL, Bousquet-Melou A, Ferran AA, Boullier S. Dynamic interactions between cephalexin and macrophages on different Staphylococcus aureus inoculum sizes: a tripartite in vitro model. BMC Vet Res 2021; 17:23. [PMID: 33413376 PMCID: PMC7792187 DOI: 10.1186/s12917-021-02746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The bactericidal activity of an antimicrobial drug is generally assessed by in vitro bacterial time-kill experiments which do not include any components of the immune system, even though the innate immunity, the primary host defence, is probably able to kill a large proportion of pathogenic bacteria in immunocompetent patients. We developed an in vitro tripartite model to investigate the joint action of C57Bl/6 murine bone-marrow-derived macrophages and cephalexin on the killing of Staphylococcus aureus. RESULTS By assessing the bactericidal effects on four bacterial inoculum sizes, we showed that macrophages can cooperate with cephalexin on inoculum sizes lower than 106 CFU/mL and conversely, protect S. aureus from cephalexin killing activity at the highest inoculum size. Cell analysis by flow cytometry revealed that macrophages were rapidly overwhelmed when exposed to large inoculums. Increasing the initial inoculum size from 105 to 107 CFU/mL increased macrophage death and decreased their ability to kill bacteria from six hours after exposure to bacteria. The addition of cephalexin at 16-fold MIC to 105 and 106 CFU/mL inoculums allowed the macrophages to survive and to maintain their bactericidal activity as if they were exposed to a small bacterial inoculum. However, with the highest inoculum size of 107 CFU/mL, the final bacterial counts in the supernatant were higher with macrophages plus cephalexin than with cephalexin alone. CONCLUSIONS These results suggest that if the bacterial population at the infectious site is low, as potentially encountered in the early stage of infection or at the end of an antimicrobial treatment, the observed cooperation between macrophages and cephalexin could facilitate its control.
Collapse
Affiliation(s)
- Elodie Anne Lallemand
- InTheRes, Université de Toulouse, INRAE, ENVT, 23 chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France.
| | - Claudine Zemirline
- Ceva Santé Animale, Laval Campus, Allée de la communication, 53950, Louverné, France
| | - Pierre-Louis Toutain
- InTheRes, Université de Toulouse, INRAE, ENVT, 23 chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
- The Royal Veterinary College, Hawkshead Campus, Hatfield, Herts, AL9 7TA, UK
| | - Alain Bousquet-Melou
- InTheRes, Université de Toulouse, INRAE, ENVT, 23 chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
| | - Aude A Ferran
- InTheRes, Université de Toulouse, INRAE, ENVT, 23 chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
| | - Séverine Boullier
- InTheRes, Université de Toulouse, INRAE, ENVT, 23 chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
| |
Collapse
|
35
|
Abstract
Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.
Collapse
|
36
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
37
|
Alder KD, Lee I, Munger AM, Kwon HK, Morris MT, Cahill SV, Back J, Yu KE, Lee FY. Intracellular Staphylococcus aureus in bone and joint infections: A mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 2020; 141:115568. [PMID: 32745687 DOI: 10.1016/j.bone.2020.115568] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Bone and joint infections are devastating afflictions. Although medical interventions and advents have improved their care, bone and joint infections still portend dismal outcomes. Indeed, bone and joint infections are associated with extremely high mortality and morbidity rates and, generally, occur secondary to the aggressive pathogen Staphylococcus aureus. The consequences of bone and joint infections are further compounded by the fact that although they are aggressively treated, they frequently recur and result in massive bone and articular cartilage loss. Here, we review the literature and chronicle the fact that the fundamental cellular components of the musculoskeletal system can be internally infected with Staphylococcus aureus, which explains the ready recurrence of bone and joint infections even after extensive administration of antibiotic therapy and debridement and offer potential treatment solutions for further study. Moreover, we review the ramifications of intracellular infection and expound that the massive bone and articular cartilage loss is caused by the sustained proinflammatory state induced by infection and offer potential combination therapies for further study to protect bone and cartilage.
Collapse
Affiliation(s)
- Kareme D Alder
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Department of Life Science, Chung-Ang University, Seoul, Republic of Korea; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Alana M Munger
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Montana T Morris
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - JungHo Back
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Kristin E Yu
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 330 Cedar St, TMP 523, PO Box 208071, New Haven, CT 06520-8071, USA.
| |
Collapse
|
38
|
Evans MD, Sammelson R, McDowell S. Differential effects of cotreatment of the antibiotic rifampin with host-directed therapeutics in reducing intracellular Staphylococcus aureus infection. PeerJ 2020; 8:e10330. [PMID: 33240647 PMCID: PMC7664464 DOI: 10.7717/peerj.10330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
Background Chronic infection by Staphylococcus aureus drives pathogenesis in important clinical settings, such as recurrent pulmonary infection in cystic fibrosis and relapsing infection in osteomyelitis. Treatment options for intracellular S. aureus infection are limited. Rifampin, a lipophilic antibiotic, readily penetrates host cell membranes, yet monotherapy is associated with rapid antibiotic resistance and development of severe adverse events. Antibiotic cotreatment can reduce this progression, yet efficacy diminishes as antibiotic resistance develops. ML141 and simvastatin inhibit S. aureus invasion through host-directed rather than bactericidal mechanisms. Objective To determine whether cotreatment of ML141 or of simvastatin with rifampin would enhance rifampin efficacy. Methods Assays to assess host cell invasion, host cell viability, host cell membrane permeability, and bactericidal activity were performed using the human embryonic kidney (HEK) 293-A cell line infected with S. aureus (29213) and treated with vehicle control, simvastatin, ML141, rifampin, or cotreatment of simvastatin or ML141 with rifampin. Results We found cotreatment of ML141 with rifampin reduced intracellular infection nearly 85% when compared to the no treatment control. This decrease more than doubled the average 40% reduction in response to rifampin monotherapy. In contrast, cotreatment of simvastatin with rifampin failed to improve rifampin efficacy. Also, in contrast to ML141, simvastatin increased propidium iodide (PI) positive cells, from an average of 10% in control HEK 293-A cells to nearly 20% in simvastatin-treated cells, indicating an increase in host cell membrane permeability. The simvastatin-induced increase was reversed to control levels by cotreatment of simvastatin with rifampin. Conclusion Taken together, rifampin efficacy is increased through host-directed inhibition of S. aureus invasion by ML141, while efficacy is not increased by simvastatin. Considerations regarding novel therapeutic approaches may be dependent on underlying differences in pharmacology.
Collapse
Affiliation(s)
- Melissa D Evans
- Department of Biology, Ball State University, Muncie, IN, United States of America
| | - Robert Sammelson
- Department of Chemistry, Ball State University, Muncie, IN, United States of America
| | - Susan McDowell
- Department of Biology, Ball State University, Muncie, IN, United States of America
| |
Collapse
|
39
|
Rao S, Xu T, Xia Y, Zhang H. Salmonella and S. aureus Escape From the Clearance of Macrophages via Controlling TFEB. Front Microbiol 2020; 11:573844. [PMID: 33324360 PMCID: PMC7726115 DOI: 10.3389/fmicb.2020.573844] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Phagosome- and xenophagosome-lysosome systems play a critical role in the defense of pathogenic bacteria, such as Salmonella and S. aureus, in macrophages. A great part of the bacteria escapes from the digestion and can survive through some mechanisms that are still poorly understood and which require further exploration. Here we identified that Salmonella inhibited the expression and activation of TFEB to blunt the functions of lysosomes and defense of clearance by activating caspase-1. The expression and activation of TFEB were enhanced early under the infection of S. aureus, which was followed by shrinkage to weaken lysosomal functions due to the delayed activation of ERK, mTOR, and STAT3. Thus, we have identified novel escape mechanisms for Salmonella and S. aureus to deepen and strengthen our strategies fighting with pathogens.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Pathology, Wuhan Central Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Zhang
- Department of Pathology, Wuhan Central Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Huitema L, Phillips T, Alexeev V, Tomic-Canic M, Pastar I, Igoucheva O. Intracellular escape strategies of Staphylococcus aureus in persistent cutaneous infections. Exp Dermatol 2020; 30:1428-1439. [PMID: 33179358 DOI: 10.1111/exd.14235] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic invasion of Staphylococcus aureus is a major concern in patients with chronic skin diseases like atopic dermatitis (AD), epidermolysis bullosa (EB), or chronic diabetic foot and venous leg ulcers, and can result in persistent and life-threatening chronic non-healing wounds. Staphylococcus aureus is generally recognized as extracellular pathogens. However, S. aureus can also invade, hide and persist in skin cells to contribute to wound chronicity. The intracellular life cycle of S. aureus is currently incompletely understood, although published studies indicate that its intracellular escape strategies play an important role in persistent cutaneous infections. This review provides current scientific knowledge about the intracellular life cycle of S. aureus in skin cells, which can be classified into professional and non-professional antigen-presenting cells, and its strategies to escape adaptive defense mechanisms. First, we discuss phenotypic switch of S. aureus, which affects intracellular routing and degradation. This review also evaluates potential intracellular escape mechanism of S. aureus to avoid intracellular degradation and antigen presentation, preventing an immune response. Furthermore, we discuss potential drug targets that can interfere with the intracellular life cycle of S. aureus. Taken together, this review aimed to increase scientific understanding about the intracellular life cycle of S. aureus into skin cells and its strategies to evade the host immune response, information that is crucial to reduce pathogenic invasion and life-threatening persistence of S. aureus in chronic cutaneous infections.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
41
|
Gierlikowska B, Gierlikowski W, Demkow U. Alantolactone Enhances the Phagocytic Properties of Human Macrophages and Modulates Their Proinflammatory Functions. Front Pharmacol 2020; 11:1339. [PMID: 33013371 PMCID: PMC7494907 DOI: 10.3389/fphar.2020.01339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Aim of the Study Phagocytosis is a crucial element of innate immune defense involved in bacterial killing. The aim of our study was to evaluate the influence of alantolactone on phagocytosis and cytokines release by THP1-derived macrophages. We assessed whether antimicrobial compound alantolactone (a sesquiterpene lactone present in Inula helenium L.) is able to stimulate immune functions of macrophages by increase of S. aureus uptake, phagosome acidification and further stimulation of phago-lysosomes formation. Simultaneously, we tested influence of alantolactone on cytokines/chemokines production and p65 NF-κB concentration. The activity of alantolactone was compared with clarithromycin at concentration 20 µM. Methods The cytotoxicity of alantolactone as well as S. aureus uptake, pH of phagosomes and phago-lysosomes fusion were analysed with flow cytometry. Reactive oxygen species and superoxide production were evaluated spectrophotometrically. The efficiency of phagocytosis was evaluated via quantifying viable bacteria (CFU). The effect on p65 protein concentration and cytokine production by macrophages were measured by enzyme-linked immunosorbent assay (ELISA). Results Alantolactone enhanced phagocytosis via increase of S. aureus uptake, acidification of phagosomes, and later stimulation of phago-lysosomes fusion. Alantolactone treatment resulted in ROS and superoxide production decrease. Furthermore, alantolactone inhibited production of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 as well as decreased p65 concentration, the subunit responsible for NF-κB activation and cytokine production and simultaneously stimulated release of anti-inflammatory mediators (IL-10 and TGF-β). Conclusion Results of our study indicate that alantolactone enhances clearance of S. aureus, and simultaneously modulates immune response, preventing collateral damage of the surrounding tissues. Considering the importance of phagocytosis in the pathogen killing, alantolactone may have a great potential as the supportive treatment of S. aureus infections. Further in vivo studies are warranted to confirm this hypothesis.
Collapse
Affiliation(s)
- Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
43
|
Seidel C, Moreno-Velásquez SD, Ben-Ghazzi N, Gago S, Read ND, Bowyer P. Phagolysosomal Survival Enables Non-lytic Hyphal Escape and Ramification Through Lung Epithelium During Aspergillus fumigatus Infection. Front Microbiol 2020; 11:1955. [PMID: 32973709 PMCID: PMC7468521 DOI: 10.3389/fmicb.2020.01955] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Aspergillus fumigatus is the most important mould pathogen in immunosuppressed patients. Suboptimal clearance of inhaled spores results in the colonisation of the lung airways by invasive hyphae. The first point of contact between A. fumigatus and the host is the lung epithelium. In vitro and ex vivo studies have characterised critical aspects of the interaction of invasive hyphae on the surface of epithelial cells. However, the cellular interplay between internalised A. fumigatus and the lung epithelium remains largely unexplored. Here, we use high-resolution live-cell confocal microscopy, 3D rendered imaging and transmission electron microscopy to define the development of A. fumigatus after lung epithelium internalisation in vitro. Germination, morphology and growth of A. fumigatus were significantly impaired upon internalisation by alveolar (A549) and bronchial (16HBE) lung epithelial cells compared to those growing on the host surface. Internalised spores and germlings were surrounded by the host phagolysosome membrane. Sixty per cent of the phagosomes containing germlings were not acidified at 24 h post infection allowing hyphal development. During escape, the phagolysosomal membrane was not ruptured but likely fused to host plasma membrane allowing hyphal exit from the intact host cell in an non-lytic Manner. Subsequently, escaping hyphae elongated between or through adjacent epithelial lung cells without penetration of the host cytoplasm. Hyphal tips penetrating new epithelial cells were surrounded by the recipient cell plasma membrane. Altogether, our results suggest cells of lung epithelium survive fungal penetration because the phagolysosomal and plasma membranes are never breached and that conversely, fungal spores survive due to phagosome maturation failure. Consequently, fungal hyphae can grow through the epithelial cell layer without directly damaging the host. These processes likely prevent the activation of downstream immune responses alongside limiting the access of professional phagocytes to the invading fungal hypha. Further research is needed to investigate if these events also occur during penetration of fungi in endothelial cells, fibroblasts and other cell types.
Collapse
Affiliation(s)
- Constanze Seidel
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Sergio D Moreno-Velásquez
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Nagwa Ben-Ghazzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Nick D Read
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| |
Collapse
|
44
|
Best A, Jubrail J, Boots M, Dockrell D, Marriott H. A mathematical model shows macrophages delay Staphylococcus aureus replication, but limitations in microbicidal capacity restrict bacterial clearance. J Theor Biol 2020; 497:110256. [PMID: 32304686 PMCID: PMC7262596 DOI: 10.1016/j.jtbi.2020.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022]
Abstract
S. aureus is a leading cause of bacterial infection. Macrophages, the first line of defence in the human immune response, phagocytose and kill S. aureus but the pathogen can evade these responses. Therefore, the exact role of macrophages is incompletely defined. We develop a mathematical model of macrophage - S. aureus dynamics, built on recent experimental data. We demonstrate that, while macrophages may not clear infection, they significantly delay its growth and potentially buy time for recruitment of further cells. We find that macrophage killing is a major obstacle to controlling infection and ingestion capacity also limits the response. We find bistability such that the infection can be limited at low doses. Our combination of experimental data, mathematical analysis and model fitting provide important insights in to the early stages of S. aureus infections, showing macrophages play an important role limiting bacterial replication but can be overwhelmed with large inocula.
Collapse
Affiliation(s)
- Alex Best
- School of Mathematics & Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Jamil Jubrail
- Medical School, Dept of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK; Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK; Department of Infection Medicine and MRC Centre for Inflammation Research, University of Edinburgh
| | - Mike Boots
- Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3140, USA; Biosciences, College of Life & Environmental Sciences, University of Exeter Cornwall Campus, Penryn, TR10 9EZ, UK
| | - David Dockrell
- Department of Infection Medicine and MRC Centre for Inflammation Research, University of Edinburgh
| | - Helen Marriott
- Medical School, Dept of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK
| |
Collapse
|
45
|
Stoneham SM, Cantillon DM, Waddell SJ, Llewelyn MJ. Spontaneously Occurring Small-Colony Variants of Staphylococcus aureus Show Enhanced Clearance by THP-1 Macrophages. Front Microbiol 2020; 11:1300. [PMID: 32595630 PMCID: PMC7303551 DOI: 10.3389/fmicb.2020.01300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a common cause of chronic and relapsing infection, especially when the ability of the immune system to sterilize a focus of infection is compromised (e.g., because of a foreign body or in the cystic fibrosis lung). Chronic infections are associated with slow-growing colony phenotypes of S. aureus on solid media termed small-colony variants (SCVs). Stable SCVs show characteristic mutations in the electron transport chain that convey resistance to antibiotics, particularly aminoglycosides. This can be used to identify SCVs from within mixed-colony phenotype populations of S. aureus. More recently, populations of SCVs that rapidly revert to a “wild-type” (WT) colony phenotype, in the absence of selection pressure, have also been described. In laboratory studies, SCVs accumulate through prolonged infection of non-professional phagocytes and may represent an adaptation to the intracellular environment. However, data from phagocytic cells are lacking. In this study, we mapped SCV and WT colony populations in axenic growth of multiple well-characterized methicillin-sensitive and methicillin-resistant S. aureus strains. We identified SCVs populations on solid media both in the presence and absence of gentamicin. We generated stable SCVs from Newman strain S. aureus, and infected human macrophages with WT S. aureus (Newman, 8325-4) and their SCV counterparts (SCV3, I10) to examine intracellular formation and survival of SCVs. We show that SCVs arise spontaneously during axenic growth, and that the ratio of SCV:WT morphology differs between strains. Exposure to the intracellular environment of human macrophages did not increase formation of SCVs over 5 days and macrophages were able to clear stable SCV bacteria more effectively than their WT counterparts.
Collapse
Affiliation(s)
- Simon M Stoneham
- Department of Microbiology and Infection, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Daire M Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Martin J Llewelyn
- Department of Microbiology and Infection, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
46
|
Watson K, Russell CD, Baillie JK, Dhaliwal K, Fitzgerald JR, Mitchell TJ, Simpson AJ, Renshaw SA, Dockrell DH. Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance. Front Immunol 2020; 11:786. [PMID: 32582139 PMCID: PMC7289984 DOI: 10.3389/fimmu.2020.00786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial therapy has provided the main component of chemotherapy against bacterial pathogens. The effectiveness of this strategy has, however, been increasingly challenged by the emergence of antimicrobial resistance which now threatens the sustained utility of this approach. Humans and animals are constantly exposed to bacteria and have developed effective strategies to control pathogens involving innate and adaptive immune responses. Impaired pathogen handling by the innate immune system is a key determinant of susceptibility to bacterial infection. However, the essential components of this response, specifically those which are amenable to re-calibration to improve host defense, remain elusive despite extensive research. We provide a mini-review focusing on therapeutic targeting of microbicidal responses in macrophages and neutrophils to de-stress reliance on antimicrobial therapy. We highlight pre-clinical and clinical data pointing toward potential targets and therapies. We suggest that developing focused host-directed therapeutic strategies to enhance "pauci-inflammatory" microbial killing in myeloid phagocytes that maximizes pathogen clearance while minimizing the harmful consequences of the inflammatory response merits particular attention. We also suggest the importance of One Health approaches in developing host-based approaches through model development and comparative medicine in informing our understanding of how to deliver this strategy.
Collapse
Affiliation(s)
- Katie Watson
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Clark D Russell
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kev Dhaliwal
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Stephen A Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
47
|
Watkins KE, Unnikrishnan M. Evasion of host defenses by intracellular Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:105-141. [PMID: 32762866 DOI: 10.1016/bs.aambs.2020.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.
Collapse
|
48
|
Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun 2020; 11:2200. [PMID: 32366839 PMCID: PMC7198484 DOI: 10.1038/s41467-020-15966-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/02/2020] [Indexed: 01/31/2023] Open
Abstract
Bacterial persister cells are phenotypic variants that exhibit a transient non-growing state and antibiotic tolerance. Here, we provide in vitro evidence of Staphylococcus aureus persisters within infected host cells. We show that the bacteria surviving antibiotic treatment within host cells are persisters, displaying biphasic killing and reaching a uniformly non-responsive, non-dividing state when followed at the single-cell level. This phenotype is stable but reversible upon antibiotic removal. Intracellular S. aureus persisters remain metabolically active but display an altered transcriptomic profile consistent with activation of stress responses, including the stringent response as well as cell wall stress, SOS and heat shock responses. These changes are associated with multidrug tolerance after exposure to a single antibiotic. We hypothesize that intracellular S. aureus persisters may constitute a reservoir for relapsing infection and could contribute to therapeutic failures. Bacterial persister cells exhibit a transient non-growing state and antibiotic tolerance. Here, Peyrusson et al. provide evidence of metabolically active Staphylococcus aureus persisters within infected host cells exposed to antibiotics and analyse transcriptomic alterations associated with persistence.
Collapse
|
49
|
Lacoma A, Usón L, Mendoza G, Sebastián V, Garcia-Garcia E, Muriel-Moreno B, Domínguez J, Arruebo M, Prat C. Novel intracellular antibiotic delivery system against Staphylococcus aureus: cloxacillin-loaded poly(d,l-lactide-co-glycolide) acid nanoparticles. Nanomedicine (Lond) 2020; 15:1189-1203. [DOI: 10.2217/nnm-2019-0371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: First, to compare in vitro minimum inhibitory concentrations (MIC) of free cloxacillin and cloxacillin-containing nanoparticles (NP) against methicillin-susceptible (MSSA) and resistant Staphylococcus aureus (MRSA) and second, to assess NP antimicrobial activity against intracellular S. aureus. Methods: Poly(d,l-lactide-co-glycolide) acid (PLGA)-NP were loaded with cloxacillin and physico-chemically characterized. MICs were determined for reference strains Newman-(MSSA) and USA300-(MRSA). Murine alveolar macrophages were infected, and bacterial intracellular survival was assessed after incubating with free-cloxacillin or PLGA-cloxacillin-NP. Results & conclusion: For both isolates, MICs for antibiotic-loaded-NP were lower than those obtained with free cloxacillin, indicating that the drug encapsulation improves antimicrobial activity. A sustained antibiotic release was demonstrated when using the PLGA-cloxacillin-NP. When considering the lowest concentrations, the use of drug-loaded NP enabled a higher reduction of intracellular bacterial load.
Collapse
Affiliation(s)
- Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Laura Usón
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Gracia Mendoza
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Victor Sebastián
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Esther Garcia-Garcia
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Muriel-Moreno
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jose Domínguez
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Manuel Arruebo
- Institute of Nanoscience of Aragon (INA), Department of Chemical Engineering & Environmental Technologies, University of Zaragoza & Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Fundació Institut d’Investigació en Ciències de la Salut GermansTrias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Law SM, Stanfield SJ, Hardisty GR, Dransfield I, Campbell CJ, Gray RD. Human cystic fibrosis monocyte derived macrophages display no defect in acidification of phagolysosomes when measured by optical nanosensors. J Cyst Fibros 2020; 19:203-210. [PMID: 31501051 DOI: 10.1016/j.jcf.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Defective macrophage phagolysosomal acidification is implicated in numerous lung diseases including Cystic Fibrosis (CF) and may contribute to defective pathogen killing. Conflicting reports relating to phagolysosomal pH in CF macrophages have been published, in part related to the use of pH-sensitive fluorescent probes where potential inadequacies in experimental design can be a contributing factor (e.g. employing probes with incorrect pKa for the cellular compartment of interest). We developed a reliable method to quantify macrophage phagolysosomal pH using surface-enhanced Raman spectroscopy-based nanosensors. METHODS Monocyte-derived macrophages from CF and healthy control participants were incubated with nanosensors. Live cell imaging identified phagocytosed nanosensors, and surface-enhanced Raman spectroscopy was performed using para-mercaptobenzoic acid functionalised gold nanoparticles which produce Raman spectra that change predictably with their environmental pH. Conventional fluorescence spectroscopy was carried out in comparison. Nanosensor localisation to phagolysosomes was confirmed by transmission electron microscopy. RESULTS Nanosensors were actively phagocytosed by macrophages into phagolysosomes and acidification occurred rapidly and remained stable for at least 60 min. There was no difference in phagolysosomal pH between healthy control and CF macrophages (5.41 ± 0.11 vs. 5.41 ± 0.20, p > .9999), further confirmed by inhibiting Cystic Fibrosis Transmembrane Conductance Regulator in healthy control monocyte-derived macrophages. CONCLUSIONS Optical nanosensors accurately measure macrophage phagolysosomal pH and demonstrate no phagolysosomal acidification defect in human CF monocyte-derived macrophages. Further studies using alveolar macrophages could extend the impact of our findings. Nanosensors represent a novel and precise means to measure organelle functions with widespread potential for the study and monitoring of several lung diseases.
Collapse
Affiliation(s)
- Sheonagh M Law
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Samuel J Stanfield
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Gareth R Hardisty
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian Dransfield
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Colin J Campbell
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Robert D Gray
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|