1
|
Reddy PJ, Sun Z, Wippel HH, Baxter DH, Swearingen K, Shteynberg DD, Midha MK, Caimano MJ, Strle K, Choi Y, Chan AP, Schork NJ, Varela-Stokes AS, Moritz RL. Borrelia PeptideAtlas: A proteome resource of common Borrelia burgdorferi isolates for Lyme research. Sci Data 2024; 11:1313. [PMID: 39622905 PMCID: PMC11612207 DOI: 10.1038/s41597-024-04047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Lyme disease is caused by an infection with the spirochete Borrelia burgdorferi, and is the most common vector-borne disease in North America. B. burgdorferi isolates harbor extensive genomic and proteomic variability and further comparison of isolates is key to understanding the infectivity of the spirochetes and biological impacts of identified sequence variants. Here, we applied both transcriptome analysis and mass spectrometry-based proteomics to assemble peptide datasets of B. burgdorferi laboratory isolates B31, MM1, and the infective isolate B31-5A4, to provide a publicly available Borrelia PeptideAtlas. Included are total proteome, secretome, and membrane proteome identifications of the individual isolates. Proteomic data collected from 35 different experiment datasets, totaling 386 mass spectrometry runs, have identified 81,967 distinct peptides, which map to 1,113 proteins. The Borrelia PeptideAtlas covers 86% of the total B31 proteome of 1,291 protein sequences. The Borrelia PeptideAtlas is an extensible comprehensive peptide repository with proteomic information from B. burgdorferi isolates useful for Lyme disease research.
Collapse
Affiliation(s)
- Panga J Reddy
- Institute for Systems Biology, Seattle, Washington, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | | | - Mukul K Midha
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Agnes P Chan
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Andrea S Varela-Stokes
- Tufts University Cummings School of Veterinary Medicine, Department of Comparative Pathobiology, Grafton, MA, 01536, USA
| | | |
Collapse
|
2
|
Hart TM, Sonnert ND, Tang X, Chaurasia R, Allen PE, Hunt JR, Read CB, Johnson EE, Arora G, Dai Y, Cui Y, Chuang YM, Yu Q, Rahman MS, Mendes MT, Rolandelli A, Singh P, Tripathi AK, Ben Mamoun C, Caimano MJ, Radolf JD, Lin YP, Fingerle V, Margos G, Pal U, Johnson RM, Pedra JHF, Azad AF, Salje J, Dimopoulos G, Vinetz JM, Carlyon JA, Palm NW, Fikrig E, Ring AM. An atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms. Cell 2024; 187:4113-4127.e13. [PMID: 38876107 DOI: 10.1016/j.cell.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.
Collapse
Affiliation(s)
- Thomas M Hart
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicole D Sonnert
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaotian Tang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reetika Chaurasia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Curtis B Read
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Emily E Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Gunjan Arora
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yingjun Cui
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yu-Min Chuang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Yu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pallavi Singh
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Raymond M Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeanne Salje
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1TN, UK
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph M Vinetz
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Aaron M Ring
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98102, USA.
| |
Collapse
|
3
|
Krkic-Dautovic S, Salihbegovic A, Dervisevic E, Gojak R, Hadzovic-Cengic M, Duratbegovic D, Mostarac N, Begic J, Ahmed H. Clinical Manifestations of European Borreliosis on the Skin in Acute, Subacute and Chronic Disease. Mater Sociomed 2024; 36:33-39. [PMID: 38590600 PMCID: PMC10999147 DOI: 10.5455/msm.2024.36.33-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 04/10/2024] Open
Abstract
Background Lyme borreliosis is a multisystemic infection caused by the spirochete Borrelia burgdorferi. Erythema migras is the main clinical marker of the disease. Objective This study aimed was to investigate the frequency and clinical manifestations of European borreliosis on the skin, and to determine the significance of these findings for diagnosis and therapy. Methods A retrospective-prospective clinical study of outpatients treated and monitored in a private clinic of an infectologist was conducted over nine years from to 2013-2021. The study was clinical, descriptive and analytical in nature. Results In the investigated period, 509 (30.8%) patients with borreliosis symptoms were treated. EM in our patients occurred under the following conditions: a) ringed redness, b) redness of target cels and d) continuous round or oval redness of different sizes of individual redness, or multiple occurrences with primary dissemination. Skin changes with multiorgan chronic symptoms of borreliosis occurred in 67.7% of cases the including: walking redness of different shapes and sizes, pink borreliosis stretch marks, white borreliosis stretch marks, borreliosis palms and soles, psoriatic changes, Acrodermatitis chronica atrophicans, Scleroderma circumscripta-morphae, Erythema nodosum, Granuloma anulare and Lichen striatus et atrophicans. Of the 509 patients treated for borreliosis, 32.3% with multi-organ symptomatology had no skin changes. Conclusion The skin manifestations of European borreliosis are multi-layered and Erythema migrans are basic, but not the only markers of the disease. 'Pink borreliose stretch marks, "white borreliosis striae", "borreliosis palms or soles", and intermittent redness accompanied by itching are unique markers for the diagnosis of chronic borreliosis, if they are manifested.
Collapse
Affiliation(s)
| | - Adis Salihbegovic
- Department of Forensic Medicine, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emina Dervisevic
- Department of Forensic Medicine, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Refet Gojak
- Clinic for Infectious Diseases, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Meliha Hadzovic-Cengic
- Clinic for Infectious Diseases, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Damir Duratbegovic
- Faculty of Dental Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Nermin Mostarac
- Clinic for Infectious Diseases, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Begic
- Department of Dermatology, General Hospital “Prim. Dr Abdulah Nakas,” Sarajevo, Bosnia and Herzegovina
| | - Haroon Ahmed
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shahzad, Islamabad, Pakistan
| |
Collapse
|
4
|
Ilchovska D. Lyme Disease and Autoimmune Diseases. INFECTION AND AUTOIMMUNITY 2024:473-488. [DOI: 10.1016/b978-0-323-99130-8.00041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Reddy PJ, Sun Z, Wippel HH, Baxter D, Swearingen K, Shteynberg DD, Midha MK, Caimano MJ, Strle K, Choi Y, Chan AP, Schork NJ, Moritz RL. Borrelia PeptideAtlas: A proteome resource of common Borrelia burgdorferi isolates for Lyme research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545244. [PMID: 37398146 PMCID: PMC10312716 DOI: 10.1101/2023.06.16.545244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lyme disease, caused by an infection with the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America. B. burgdorferi strains harbor extensive genomic and proteomic variability and further comparison is key to understanding the spirochetes infectivity and biological impacts of identified sequence variants. To achieve this goal, both transcript and mass spectrometry (MS)-based proteomics was applied to assemble peptide datasets of laboratory strains B31, MM1, B31-ML23, infective isolates B31-5A4, B31-A3, and 297, and other public datasets, to provide a publicly available Borrelia PeptideAtlas http://www.peptideatlas.org/builds/borrelia/. Included is information on total proteome, secretome, and membrane proteome of these B. burgdorferi strains. Proteomic data collected from 35 different experiment datasets, with a total of 855 mass spectrometry runs, identified 76,936 distinct peptides at a 0.1% peptide false-discovery-rate, which map to 1,221 canonical proteins (924 core canonical and 297 noncore canonical) and covers 86% of the total base B31 proteome. The diverse proteomic information from multiple isolates with credible data presented by the Borrelia PeptideAtlas can be useful to pinpoint potential protein targets which are common to infective isolates and may be key in the infection process.
Collapse
Affiliation(s)
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - David Baxter
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | | | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Agnes P. Chan
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
6
|
Farris LC, Torres-Odio S, Adams LG, West AP, Hyde JA. Borrelia burgdorferi Engages Mammalian Type I IFN Responses via the cGAS-STING Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1761-1770. [PMID: 37067290 PMCID: PMC10192154 DOI: 10.4049/jimmunol.2200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/23/2023] [Indexed: 04/18/2023]
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous host pathways to cause a chronic, multisystem inflammatory disease in humans. B. burgdorferi infection can lead to Lyme carditis, neurologic complications, and arthritis because of the ability of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits type I IFN (IFN-I) responses in mammalian cells and tissues that are associated with the development of severe arthritis or other Lyme-related complications. However, the innate immune sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse and human cells in culture, and we document that internalized spirochetes colocalize with the pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated in the absence of cGAS or its adaptor stimulator of IFN genes (STING), which function to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint pathology and inflammation were modestly reduced in cGAS-deficient compared with wild-type mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of mammalian IFN-I signaling and innate immune responses to B. burgdorferi.
Collapse
Affiliation(s)
- Lauren C. Farris
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - L. Garry Adams
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
7
|
Inhibition of Dopamine Activity and Response of Rhipicephalus microplus Challenged with Metarhizium anisopliae. J Fungi (Basel) 2022; 8:jof8121312. [PMID: 36547645 PMCID: PMC9785602 DOI: 10.3390/jof8121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Dopamine modulates ticks and insect hemocytes and links these arthropods' nervous and immune systems. For the first time, the present study analyzed the effect of a dopamine receptor antagonist on the survival, biological parameters, phagocytic index, and dopamine detection in the hemocytes of ticks challenged by Metarhizium anisopliae. The survival and egg production index of Rhipicephalus microplus were negatively impacted when ticks were inoculated with the antagonist and fungus. Five days after the treatment, the survival of ticks treated only with fungus was 2.2 times higher than ticks treated with the antagonist (highest concentration) and fungus. A reduction in the phagocytic index of hemocytes of 68.4% was observed in the group inoculated with the highest concentration of the antagonist and fungus compared to ticks treated only with fungus. No changes were detected in the R. microplus levels of intrahemocytic dopamine or hemocytic quantification. Our results support the hypothesis that dopamine is crucial for tick immune defense, changing the phagocytic capacity of hemocytes and the susceptibility of ticks to entomopathogenic fungi.
Collapse
|
8
|
Ronzetti MH, Baljinnyam B, Itkin Z, Jain S, Rai G, Zakharov AV, Pal U, Simeonov A. Application of temperature-responsive HIS-tag fluorophores to differential scanning fluorimetry screening of small molecule libraries. Front Pharmacol 2022; 13:1040039. [PMID: 36506591 PMCID: PMC9729254 DOI: 10.3389/fphar.2022.1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Differential scanning fluorimetry is a rapid and economical biophysical technique used to monitor perturbations to protein structure during a thermal gradient, most often by detecting protein unfolding events through an environment-sensitive fluorophore. By employing an NTA-complexed fluorophore that is sensitive to nearby structural changes in histidine-tagged protein, a robust and sensitive differential scanning fluorimetry (DSF) assay is established with the specificity of an affinity tag-based system. We developed, optimized, and miniaturized this HIS-tag DSF assay (HIS-DSF) into a 1536-well high-throughput biophysical platform using the Borrelial high temperature requirement A protease (BbHtrA) as a proof of concept for the workflow. A production run of the BbHtrA HIS-DSF assay showed a tight negative control group distribution of Tm values with an average coefficient of variation of 0.51% and median coefficient of variation of compound Tm of 0.26%. The HIS-DSF platform will provide an additional assay platform for future drug discovery campaigns with applications in buffer screening and optimization, target engagement screening, and other biophysical assay efforts.
Collapse
Affiliation(s)
- Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| |
Collapse
|
9
|
Hotinger JA, Gallagher AH, May AE. Phage-Related Ribosomal Proteases (Prps): Discovery, Bioinformatics, and Structural Analysis. Antibiotics (Basel) 2022; 11:antibiotics11081109. [PMID: 36009978 PMCID: PMC9405229 DOI: 10.3390/antibiotics11081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Many new antimicrobials are analogs of existing drugs, sharing the same targets and mechanisms of action. New antibiotic targets are critically needed to combat the growing threat of antimicrobial-resistant bacteria. Phage-related ribosomal proteases (Prps) are a recently structurally characterized antibiotic target found in pathogens such as Staphylococcus aureus, Clostridioides difficile, and Streptococcus pneumoniae. These bacteria encode an N-terminal extension on their ribosomal protein L27 that is not present in other bacteria. The cleavage of this N-terminal extension from L27 by Prp is necessary to create a functional ribosome. Thus, Prp inhibition may serve as an alternative to direct binding and inhibition of the ribosome. This bioinformatic and structural analysis covers the discovery, function, and structural characteristics of known Prps. This information will be helpful in future endeavors to design selective therapeutics targeting the Prps of important pathogens.
Collapse
|
10
|
Groshong AM, McLain MA, Radolf JD. Host-specific functional compartmentalization within the oligopeptide transporter during the Borrelia burgdorferi enzootic cycle. PLoS Pathog 2021; 17:e1009180. [PMID: 33428666 PMCID: PMC7822543 DOI: 10.1371/journal.ppat.1009180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/22/2021] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Borrelia burgdorferi must acquire all of its amino acids (AAs) from its arthropod vector and vertebrate host. Previously, we determined that peptide uptake via the oligopeptide (Opp) ABC transporter is essential for spirochete viability in vitro and during infection. Our prior study also suggested that B. burgdorferi employs temporal regulation in concert with structural variation of oligopeptide-binding proteins (OppAs) to meet its AA requirements in each biological niche. Herein, we evaluated the contributions to the B. burgdorferi enzootic cycle of three of the spirochete's five OppAs (OppA1, OppA2, and OppA5). An oppA1 transposon (tn) mutant lysed in the hyperosmolar environment of the feeding tick, suggesting that OppA1 imports amino acids required for osmoprotection. The oppA2tn mutant displayed a profound defect in hematogenous dissemination in mice, yet persisted within skin while inducing only a minimal antibody response. These results, along with slightly decreased growth of the oppA2tn mutant within DMCs, suggest that OppA2 serves a minor nutritive role, while its dissemination defect points to an as yet uncharacterized signaling function. Previously, we identified a role for OppA5 in spirochete persistence within the mammalian host. We now show that the oppA5tn mutant displayed no defect during the tick phase of the cycle and could be tick-transmitted to naïve mice. Instead of working in tandem, however, OppA2 and OppA5 appear to function in a hierarchical manner; the ability of OppA5 to promote persistence relies upon the ability of OppA2 to facilitate dissemination. Structural homology models demonstrated variations within the binding pockets of OppA1, 2, and 5 indicative of different peptide repertoires. Rather than being redundant, B. burgdorferi's multiplicity of Opp binding proteins enables host-specific functional compartmentalization during the spirochete lifecycle.
Collapse
Affiliation(s)
- Ashley M. Groshong
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- * E-mail:
| | - Melissa A. McLain
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Science, UConn Health, Farmington, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
| |
Collapse
|
11
|
Mason C, Thompson C, Ouyang Z. DksA plays an essential role in regulating the virulence of Borrelia burgdorferi. Mol Microbiol 2020; 114:172-183. [PMID: 32227372 DOI: 10.1111/mmi.14504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
The RNA polymerase-binding protein DksA, together with the alarmone nucleotides (p)ppGpp, mediates the stringent response to nutrient starvation in Borrelia burgdorferi. To date, the contribution of DksA to B. burgdorferi infection remains unknown. We report here that DksA is essential for B. burgdorferi to infect a mammalian host. dksA expression was highly induced during infection. Moreover, a dksA-deficient mutant was incapable of infecting mice. The mutant displayed growth defects when cultured in vitro and resistance to osmotic pressure was markedly reduced. These phenotypes were fully restored to those of the wild type when dksA mutation was complemented. We further showed that DksA controlled the expression of virulence-associated lipoprotein OspC, likely via the central alternative sigma factor RpoS. Synthesis of RpoS was abolished in the dksA mutant, but rpoS transcription remained unaffected. Additionally, we found that the expression of clpX, clpA, clpP, and clpP2 was significantly increased in the mutant, suggesting that DksA may post-transcriptionally regulate rpoS expression via its effect on ClpXP and/or ClpAP proteases. These combined data demonstrate that DksA regulates B. burgdorferi virulence at least partially through its influence on RpoS and OspC. This study thus elucidates that, in addition to function as a stringent response regulator, DksA promotes the transcription and/or translation of genes contributing to B. burgdorferi infectivity.
Collapse
Affiliation(s)
- Charlotte Mason
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Lin YP, Frye AM, Nowak TA, Kraiczy P. New Insights Into CRASP-Mediated Complement Evasion in the Lyme Disease Enzootic Cycle. Front Cell Infect Microbiol 2020; 10:1. [PMID: 32083019 PMCID: PMC7002432 DOI: 10.3389/fcimb.2020.00001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Lyme disease (LD), which is caused by genospecies of the Borrelia burgdorferi sensu lato complex, is the most common vector-borne disease in the Northern hemisphere. Spirochetes are transmitted by Ixodes ticks and maintained in diverse vertebrate animal hosts. Following tick bite, spirochetes initially establish a localized infection in the skin. However, they may also disseminate hematogenously to several distal sites, including heart, joints, or the CNS. Because they need to survive in diverse microenvironments, from tick vector to mammalian hosts, spirochetes have developed multiple strategies to combat the numerous host defense mechanisms. One of these strategies includes the production of a number of complement-regulator acquiring surface proteins (CRASPs) which encompass CspA, CspZ, and OspE paralogs to blunt the complement pathway. These proteins are capable of preventing complement activation on the spirochete surface by binding to complement regulator Factor H. The genes encoding these CRASPs differ in their expression patterns during the tick-to-host infection cycle, implying that these proteins may exhibit different functions during infection. This review summarizes the recent published reports which investigated the roles that each of these molecules plays in conferring tick-borne transmission and dissemination in vertebrate hosts. These findings offer novel mechanistic insights into LD pathobiology and may facilitate the identification of new targets for preventive strategies against Lyme borreliosis.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Amber M. Frye
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Tristan A. Nowak
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Sato K, Takano A, Gaowa, Ando S, Kawabata H. Epidemics of tick-borne infectious diseases in Japan. ACTA ACUST UNITED AC 2019. [DOI: 10.7601/mez.70.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kozue Sato
- National Institute of Infectious Diseases
| | - Ai Takano
- Joint Faculty of Veterinary Medicine, Yamaguchi University
| | - Gaowa
- Department of Medicine, Hetao College
| | - Shuji Ando
- National Institute of Infectious Diseases
| | | |
Collapse
|