1
|
Grijsen ML, Nguyen TH, Pinheiro RO, Singh P, Lambert SM, Walker SL, Geluk A. Leprosy. Nat Rev Dis Primers 2024; 10:90. [PMID: 39609422 DOI: 10.1038/s41572-024-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Leprosy, a neglected tropical disease, causes significant morbidity in marginalized communities. Before the COVID-19 pandemic, annual new case detection plateaued for over a decade at ~200,000 new cases. The clinical phenotypes of leprosy strongly parallel host immunity to its causative agents Mycobacterium leprae and Mycobacterium lepromatosis. The resulting spectrum spans from paucibacillary leprosy, characterized by vigorous pro-inflammatory immunity with few bacteria, to multibacillary leprosy, harbouring large numbers of bacteria with high levels of seemingly non-protective, anti-M. leprae antibodies. Leprosy diagnosis remains clinical, leaving asymptomatic individuals with infection undetected. Antimicrobial treatment is effective with recommended multidrug therapy for 6 months for paucibacillary leprosy and 12 months for multibacillary leprosy. The incubation period ranges from 2 to 6 years, although longer periods have been described. Given this lengthy incubation period and dwindling clinical expertise, there is an urgent need to create innovative, low-complexity diagnostic tools for detection of M. leprae infection. Such advancements are vital for enabling swift therapeutic and preventive interventions, ultimately transforming patient outcomes. National health-care programmes should prioritize early case detection and consider post-exposure prophylaxis for individuals in close contact with affected persons. These measures will help interrupt transmission, prevent disease progression, and mitigate the risk of nerve damage and disabilities to achieve the WHO goal 'Towards Zero Leprosy' and reduce the burden of leprosy.
Collapse
Affiliation(s)
- Marlous L Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Thuan H Nguyen
- University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Pushpendra Singh
- Microbial Pathogenesis & Genomics Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Saba M Lambert
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
- Africa Leprosy, Tuberculosis, Rehabilitation and Training (ALERT) Hospital, Addis Ababa, Ethiopia
| | - Stephen L Walker
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
| | - Annemieke Geluk
- Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Kress GT, Swerdlow M, Shin L. Lepromatous Leprosy and Charcot Neuroarthropathy of Insensate Feet: A Case Report. Cureus 2024; 16:e61362. [PMID: 38947585 PMCID: PMC11214381 DOI: 10.7759/cureus.61362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Leprosy is a chronic infection of the skin, eyes, and peripheral nerves due to the slow-growing, acid-fast bacillus Mycobacterium leprae. Devastating complications include Charcot neuroarthropathy and insensate hands and feet. We present the case of an 81-year-old female with rheumatoid arthritis and 50 years of polar lepromatous leprosy who suffered from bilateral collapsed arches, flat feet, and bone deformities of Charcot feet.
Collapse
Affiliation(s)
- Gavin T Kress
- Vascular Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Mark Swerdlow
- Vascular Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Laura Shin
- Vascular Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| |
Collapse
|
3
|
Brügger LMDO, dos Santos MML, Lara FA, Mietto BS. What happens when Schwann cells are exposed to Mycobacterium leprae - A systematic review. IBRO Neurosci Rep 2023; 15:11-16. [PMID: 38204570 PMCID: PMC10776321 DOI: 10.1016/j.ibneur.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 01/12/2024] Open
Abstract
Mycobacterium leprae, the pathogen that causes human leprosy, has a unique affinity for infecting and persisting inside Schwann cells, the principal glia of the peripheral nervous system. Several studies have focused on this intricate host-pathogen interaction as an attempt to advance the current knowledge of the mechanisms governing nerve destruction and disease progression. However, during the chronic course of leprosy neuropathy, Schwann cells can respond to and internalize both live and dead M. leprae and bacilli-derived antigens, and this may result in divergent cellular pathobiological responses. This may also distinctly contribute to tissue degeneration, failure to repair, inflammatory reactions, and nerve fibrosis, hallmarks of the disease. Therefore, the present study systematically searched for published studies on M. leprae-Schwann cell interaction in vitro to summarize the findings and provide a focused discussion of Schwann cell dynamics following challenge with leprosy bacilli.
Collapse
|
4
|
Girardi KDCDV, Mietto BS, Dos Anjos Lima K, Atella GC, da Silva DS, Pereira AMR, Rosa PS, Lara FA. Phenolic glycolipid-1 of Mycobacterium leprae is involved in human Schwann cell line ST8814 neurotoxic phenotype. J Neurochem 2023; 164:158-171. [PMID: 36349509 DOI: 10.1111/jnc.15722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.
Collapse
Affiliation(s)
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Karoline Dos Anjos Lima
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos da Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Bedoui Y, De Larichaudy D, Daniel M, Ah-Pine F, Selambarom J, Guiraud P, Gasque P. Deciphering the Role of Schwann Cells in Inflammatory Peripheral Neuropathies Post Alphavirus Infection. Cells 2022; 12:cells12010100. [PMID: 36611893 PMCID: PMC9916230 DOI: 10.3390/cells12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Old world alphaviruses (e.g., chikungunya) are known to cause severe acute and chronic debilitating arthralgia/arthritis. However, atypical neurological manifestations and, in particular, unexpected cases of acute inflammatory Guillain-Barre syndrome (GBS) have been associated with the arthritogenic alphaviruses. The pathogenesis of alphavirus-associated GBS remains unclear. We herein addressed for the first time the role of Schwann cells (SC) in peripheral neuropathy post-alphaviral infection using the prototypical ONNV alphavirus model. We demonstrated that human SC expressed the recently identified alphavirus receptor MxRA8 and granting viral entry and robust replication. A canonical innate immune response was engaged by ONNV-infected SC with elevated gene expression for RIG-I, MDA5, IFN-β, and ISG15 and inflammatory chemokine CCL5. Transcription levels of prostaglandin E2-metabolizing enzymes including cPLA2α, COX-2, and mPGES-1 were also upregulated in ONNV-infected SC. Counterintuitively, we found that ONNV failed to affect SC regenerative properties as indicated by elevated expression of the pro-myelinating genes MPZ and MBP1 as well as the major pro-myelin transcription factor Egr2. While ONNV infection led to decreased expression of CD55 and CD59, essential to control complement bystander cytotoxicity, it increased TRAIL expression, a major pro-apoptotic T cell signal. Anti-apoptotic Bcl2 transcription levels were also increased in infected SC. Hence, our study provides new insights regarding the remarkable immunomodulatory role of SC of potential importance in the pathogenesis of GBS following alphavirus infection.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Correspondence:
| | - Dauriane De Larichaudy
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Matthieu Daniel
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Service D’anatomopathologie du CHU Sud de La Réunion, 97410 Saint Pierre, France
| | - Jimmy Selambarom
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
6
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
7
|
Arenas NE, Pieffet G, Rocha-Roa C, Guerrero MI. Design of a specific peptide against phenolic glycolipid-1 from Mycobacterium leprae and its implications in leprosy bacilli entry. Mem Inst Oswaldo Cruz 2022; 117:e220025. [PMID: 35857971 PMCID: PMC9296141 DOI: 10.1590/0074-02760220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mycobacterium leprae, the causative agent of Hansen’s
disease, causes neural damage through the specific interaction between the
external phenolic glycolipid-1 (PGL-1) and laminin subunit alpha-2 (LAMA2)
from Schwann cells. OBJECTIVE To design a LAMA2-based peptide that targets PGL-1 from M.
leprae. METHODS We retrieved the protein sequence of human LAMA2 and designed a specific
peptide using the Antimicrobial Peptide Database and physicochemical
parameters for antimycobacterial peptide-lipid interactions. We used the
AlphaFold2 server to predict its three-dimensional structure, AUTODOCK-VINA
for docking, and GROMACS programs for molecular dynamics simulations. FINDINGS We analysed 52 candidate peptides from LAMA2, and subsequent screening
resulted in a single 60-mer peptide. The mapped peptide comprises four
β-sheets and a random coiled region. This peptide exhibits a 45% hydrophobic
ratio, in which one-third covers the same surface. Molecular dynamics
simulations show that our predicted peptide is stable in aqueous solution
and remains stable upon interaction with PGL-1 binding. In addition, we
found that PGL-1 has a preference for one of the two faces of the predicted
peptide, which could act as the preferential binding site of PGL-1. MAIN CONCLUSIONS Our LAMA2-based peptide targeting PGL-1 might have the potential to
specifically block this key molecule, suggesting that the preferential
region of the peptide is involved in the initial contact during the
attachment of leprosy bacilli to Schwann cells.
Collapse
Affiliation(s)
- Nelson Enrique Arenas
- Hospital Universitario, Centro Dermatológico Federico Lleras Acosta, Bogotá, Colombia
| | - Gilles Pieffet
- Universidad de los Andes, Departamento de Química, Bogotá, Colombia
| | - Cristian Rocha-Roa
- Universidad del Quindío, Facultad de Ciencias de la Salud, Grupo de Estudio en Parasitología y Micología Molecular-GEPAMOL, Armenia, Quindío, Colombia
| | | |
Collapse
|
8
|
de Souza BJ, Mendes MA, Sperandio da Silva GM, Sammarco-Rosa P, de Moraes MO, Jardim MR, Sarno EN, Pinheiro RO, Mietto BS. Gene Expression Profile of Mycobacterium leprae Contribution in the Pathology of Leprosy Neuropathy. Front Med (Lausanne) 2022; 9:861586. [PMID: 35492305 PMCID: PMC9051340 DOI: 10.3389/fmed.2022.861586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Peripheral neuropathy is the main cause of physical disability in leprosy patients. Importantly, the extension and pattern of peripheral damage has been linked to how the host cell will respond against Mycobacterium leprae (M. leprae) infection, in particular, how the pathogen will establish infection in Schwann cells. Interestingly, viable and dead M. leprae have been linked to neuropathology of leprosy by distinct mechanisms. While viable M. leprae promotes transcriptional modifications that allow the bacteria to survive through the use of the host cell's internal machinery and the subvert of host metabolites, components of the dead bacteria are associated with the generation of a harmful nerve microenvironment. Therefore, understanding the pathognomonic characteristics mediated by viable and dead M. leprae are essential for elucidating leprosy disease and its associated reactional episodes. Moreover, the impact of the viable and dead bacteria in Schwann cells is largely unknown and their gene signature profiling has, as yet, been poorly explored. In this study, we analyzed the early differences in the expression profile of genes involved in peripheral neuropathy, dedifferentiation and plasticity, neural regeneration, and inflammation in human Schwann cells challenged with viable and dead M. leprae. We substantiated our findings by analyzing this genetic profiling in human nerve biopsies of leprosy and non-leprosy patients, with accompanied histopathological analysis. We observed that viable and dead bacteria distinctly modulate Schwann cell genes, with emphasis to viable bacilli upregulating transcripts related to glial cell plasticity, dedifferentiation and anti-inflammatory profile, while dead bacteria affected genes involved in neuropathy and pro-inflammatory response. In addition, dead bacteria also upregulated genes associated with nerve support, which expression profile was similar to those obtained from leprosy nerve biopsies. These findings suggest that early exposure to viable and dead bacteria may provoke Schwann cells to behave differentially, with far-reaching implications for the ongoing neuropathy seen in leprosy patients, where a mixture of active and non-active bacteria are found in the nerve microenvironment.
Collapse
Affiliation(s)
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Bruno Siqueira Mietto
- Laboratory of Cell Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- *Correspondence: Bruno Siqueira Mietto
| |
Collapse
|
9
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
10
|
de Oliveira JADP, de Athaide MM, Rahman AU, de Mattos Barbosa MG, Jardim MM, Moraes MO, Pinheiro RO. Kynurenines in the Pathogenesis of Peripheral Neuropathy During Leprosy and COVID-19. Front Cell Infect Microbiol 2022; 12:815738. [PMID: 35281455 PMCID: PMC8907883 DOI: 10.3389/fcimb.2022.815738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.
Collapse
Affiliation(s)
| | | | - Atta Ur Rahman
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcia Maria Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
11
|
Rosa TLSA, Marques MAM, DeBoard Z, Hutchins K, Silva CAA, Montague CR, Yuan T, Amaral JJ, Atella GC, Rosa PS, Mattos KA, VanderVen BC, Lahiri R, Sampson NS, Brennan PJ, Belisle JT, Pessolani MCV, Berrêdo-Pinho M. Reductive Power Generated by Mycobacterium leprae Through Cholesterol Oxidation Contributes to Lipid and ATP Synthesis. Front Cell Infect Microbiol 2021; 11:709972. [PMID: 34395315 PMCID: PMC8355898 DOI: 10.3389/fcimb.2021.709972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3β-hydroxysteroid dehydrogenase (3β-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3β-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3β-HSD activity with the 17β-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3β-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.
Collapse
Affiliation(s)
- Thabatta L S A Rosa
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria Angela M Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zachary DeBoard
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kelly Hutchins
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Carlos Adriano A Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Christine R Montague
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Julio J Amaral
- Laboratório de Química Biológica, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia S Rosa
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Katherine A Mattos
- Departmento de Controle de Qualidade, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Ramanuj Lahiri
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Patrick J Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Maria Cristina V Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
de Oliveira MF, Medeiros RCA, Mietto BS, Calvo TL, Mendonça APM, Rosa TLSA, da Silva DS, do Carmo de Vasconcelos KG, Pereira AMR, de Macedo CS, Pereira GMB, de Berrêdo Pinho Moreira M, Pessolani MCV, Moraes MO, Lara FA. Reduction of host cell mitochondrial activity as Mycobacterium leprae's strategy to evade host innate immunity. Immunol Rev 2021; 301:193-208. [PMID: 33913182 PMCID: PMC10084840 DOI: 10.1111/imr.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.
Collapse
Affiliation(s)
- Marcus Fernandes de Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Miranda Mendonça
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Cristiana Santos de Macedo
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
van Hooij A, Geluk A. In search of biomarkers for leprosy by unraveling the host immune response to Mycobacterium leprae. Immunol Rev 2021; 301:175-192. [PMID: 33709405 PMCID: PMC8251784 DOI: 10.1111/imr.12966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium leprae, the causative agent of leprosy, is still actively transmitted in endemic areas reflected by the fairly stable number of new cases detected each year. Recognizing the signs and symptoms of leprosy is challenging, especially at an early stage. Improved diagnostic tools, based on sensitive and specific biomarkers, that facilitate diagnosis of leprosy are therefore urgently needed. In this review, we address the challenges that leprosy biomarker research is facing by reviewing cell types reported to be involved in host immunity to M leprae. These cell types can be associated with different possible fates of M leprae infection being either protective immunity, or pathogenic immune responses inducing nerve damage. Unraveling these responses will facilitate the search for biomarkers. Implications for further studies to disentangle the complex interplay between host responses that lead to leprosy disease are discussed, providing leads for the identification of new biomarkers to improve leprosy diagnostics.
Collapse
Affiliation(s)
- Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|