1
|
Middendorf PS, Zomer AL, Bergval IL, Jacobs-Reitsma WF, den Besten HMW, Abee T. Host associations of Campylobacter jejuni and Campylobacter coli isolates carrying the L-fucose or d-glucose utilization cluster. Int J Food Microbiol 2024; 425:110855. [PMID: 39191191 DOI: 10.1016/j.ijfoodmicro.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
Campylobacter was considered asaccharolytic, but is now known to carry saccharide metabolization pathways for L-fucose and d-glucose. We hypothesized that these clusters are beneficial for Campylobacter niche adaptation and may help establish human infection. We investigated the distribution of d-glucose and L-fucose clusters among ∼9600 C. jejuni and C. coli genomes of different isolation sources in the Netherlands, the United Kingdom, the United States of America and Finland. The L-fucose utilization cluster was integrated at the same location in all C. jejuni and C. coli genomes, and was flanked by the genes rpoB, rpoC, rspL, repsG and fusA, which are associated with functions in transcription as well as translation and in acquired drug resistance. In contrast, the flanking regions of the d-glucose utilization cluster were variable among the isolates, and integration sites were located within one of the three different 16S23S ribosomal RNA areas of the C. jejuni and C. coli genomes. In addition, we investigated whether acquisition of the L-fucose utilization cluster could be due to horizontal gene transfer between the two species and found three isolates for which this was the case: one C. jejuni isolate carrying a C. coli L-fucose cluster, and two C. coli isolates which carried a C. jejuni L-fucose cluster. Furthermore, L-fucose utilization cluster alignments revealed multiple frameshift mutations, most of which were commonly found in the non-essential genes for L-fucose metabolism, namely, Cj0484 and Cj0489. These findings support our hypothesis that the L-fucose cluster was integrated multiple times across the C. coli/C. jejuni phylogeny. Notably, association analysis using the C. jejuni isolates from the Netherlands showed a significant correlation between human C. jejuni isolates and C. jejuni isolates carrying the L-fucose utilization cluster. This correlation was even stronger when the Dutch isolates were combined with the isolates from the UK, the USA and Finland. No such correlations were observed for C. coli or for the d-glucose cluster for both species. This research provides insight into the spread and host associations of the L-fucose and d-glucose utilization clusters in C. jejuni and C. coli, and the potential benefits in human infection and/or proliferation in humans, conceivably after transmission from any reservoir.
Collapse
Affiliation(s)
- Pjotr S Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands; National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Aldert L Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands; WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Indra L Bergval
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands.
| |
Collapse
|
2
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Middendorf PS, Wijnands LM, Boeren S, Zomer AL, Jacobs-Reitsma WF, den Besten HM, Abee T. Activation of the l-fucose utilization cluster in Campylobacter jejuni induces proteomic changes and enhances Caco-2 cell invasion and fibronectin binding. Heliyon 2024; 10:e34996. [PMID: 39220920 PMCID: PMC11365321 DOI: 10.1016/j.heliyon.2024.e34996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most Campylobacter jejuni isolates carry the fucose utilization cluster (Cj0480c-Cj0489) that supports the metabolism of l-fucose and d-arabinose. In this study we quantified l-fucose and d-arabinose metabolism and metabolite production, and the impact on Caco-2 cell interaction and binding to fibronectin, using C. jejuni NCTC11168 and the closely related human isolate C. jejuni strain 286. When cultured with l-fucose and d-arabinose, both isolates showed increased survival and production of acetate, pyruvate and succinate, and the respective signature metabolites lactate and glycolic acid, in line with an overall upregulation of l-fucose cluster proteins. In vitro Caco-2 cell studies and fibronectin-binding experiments showed a trend towards higher invasion and a significantly higher fibronectin binding efficacy of C. jejuni NCTC11168 cells grown with l-fucose and d-arabinose, while no significant differences were found with C. jejuni 286. Both fibronectin binding proteins, CadF and FlpA, were detected in the two isolates, but were not significantly differentially expressed in l-fucose or d-arabinose grown cells. Comparative proteomics analysis linked the C. jejuni NCTC11168 phenotypes uniquely to the more than 135-fold upregulated protein Cj0608, putative TolC-like component MacC, which, together with the detected Cj0606 and Cj0607 proteins, forms the tripartite secretion system MacABC with putative functions in antibiotic resistance, cell envelope stress response and virulence in Gram negative pathogenic bacteria. Further studies are required to elucidate the role of the MacABC system in C. jejuni cell surface structure modulation and virulence.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lucas M. Wijnands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Aminov R, Aminova L. The role of the glycome in symbiotic host-microbe interactions. Glycobiology 2023; 33:1106-1116. [PMID: 37741057 PMCID: PMC10876039 DOI: 10.1093/glycob/cwad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.
Collapse
Affiliation(s)
- Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Leila Aminova
- Midwest Bioprocessing Center, 801 W Main St, Peoria, IL, 61606-1877, United States
| |
Collapse
|
5
|
Zhou B, Garber JM, Vlach J, Azadi P, Ng KKS, Escalante-Semerena JC, Szymanski CM. Campylobacter jejuni uses energy taxis and a dehydrogenase enzyme for l-fucose chemotaxis. mBio 2023; 14:e0273223. [PMID: 38032212 PMCID: PMC10746189 DOI: 10.1128/mbio.02732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE In this study, we identify a separate role for the Campylobacter jejuni l-fucose dehydrogenase in l-fucose chemotaxis and demonstrate that this mechanism is not only limited to C. jejuni but is also present in Burkholderia multivorans. We now hypothesize that l-fucose energy taxis may contribute to the reduction of l-fucose-metabolizing strains of C. jejuni from the gastrointestinal tract of breastfed infants, selecting for isolates with increased colonization potential.
Collapse
Affiliation(s)
- Bibi Zhou
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M. Garber
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jiri Vlach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | | | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Han L, Chang PV. Activity-based protein profiling in microbes and the gut microbiome. Curr Opin Chem Biol 2023; 76:102351. [PMID: 37429085 PMCID: PMC10527501 DOI: 10.1016/j.cbpa.2023.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023]
Abstract
Activity-based protein profiling (ABPP) is a powerful chemical approach for probing protein function and enzymatic activity in complex biological systems. This strategy typically utilizes activity-based probes that are designed to bind a specific protein, amino acid residue, or protein family and form a covalent bond through a reactivity-based warhead. Subsequent analysis by mass spectrometry-based proteomic platforms that involve either click chemistry or affinity-based labeling to enrich for the tagged proteins enables identification of protein function and enzymatic activity. ABPP has facilitated elucidation of biological processes in bacteria, discovery of new antibiotics, and characterization of host-microbe interactions within physiological contexts. This review will focus on recent advances and applications of ABPP in bacteria and complex microbial communities.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Kim J, Jin YS, Kim KH. L-Fucose is involved in human-gut microbiome interactions. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12527-y. [PMID: 37148338 DOI: 10.1007/s00253-023-12527-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
L-Fucose is one of the key metabolites in human-gut microbiome interactions. It is continuously synthesized by humans in the form of fucosylated glycans and fucosyl-oligosaccharides and delivered into the gut throughout their lifetime. Gut microorganisms metabolize L-fucose and produce short-chain fatty acids, which are absorbed by epithelial cells and used as energy sources or signaling molecules. Recent studies have revealed that the carbon flux in L-fucose metabolism by gut microorganisms is distinct from that in other sugar metabolisms because of cofactor imbalance and low efficiencies in energy synthesis of L-fucose metabolism. The large amounts of short-chain fatty acids produced during microbial L-fucose metabolism are used by epithelial cells to recover most of the energy used up during L-fucose synthesis. In this review, we present a detailed overview of microbial L-fucose metabolism and a potential solution for disease treatment and prevention using genetically engineered probiotics that modulate fucose metabolism. Our review contributes to the understanding of human-gut microbiome interactions through L-fucose metabolism. KEY POINTS: • Fucose-metabolizing microorganisms produce large amounts of short-chain fatty acids • Fucose metabolism differs from other sugar metabolisms by cofactor imbalance • Modulating fucose metabolism is the key to control host-gut microbiome interactions.
Collapse
Affiliation(s)
- Jungyeon Kim
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|
9
|
Islam SR, Prusty D, Maiti S, Dutta R, Chattopadhyay P, Manna SK. Effect of short-term use of FFP2 (N95) masks on the salivary metabolome of young healthy volunteers: a pilot study. Mol Omics 2023. [PMID: 36846883 DOI: 10.1039/d2mo00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of face masks has become an integral part of public life in the post-pandemic era. However, the understanding of the effect of wearing masks on physiology remains incomplete and is required for informing public health policies. For the first time, we report the effects of wearing FFP2 masks on the metabolic composition of saliva, a proximal matrix to breath, along with cardiopulmonary parameters. Un-induced saliva was collected from young (31.2 ± 6.3 years) healthy volunteers (n = 10) before and after wearing FFP2 (N95) masks for 30 minutes and analyzed using GCMS. The results showed that such short-term mask use did not cause any significant change in heart rate, pulse rate or SpO2. Three independent data normalization approaches were used to analyze the changes in metabolomic signature. The individuality of the overall salivary metabotype was found to be unaffected by mask use. However, a trend of an increase in the salivary abundance of L-fucose, 5-aminovaleric acid, putrescine and phloretic acid was indicated irrespective of the method of data normalization. Quantitative analysis confirmed increases in concentrations of these metabolites in saliva of paired samples amid high inter-individual variability. The results showed that while there was no significant change in measured physiological parameters and individual salivary metabotypes, mask use was associated with correlated changes in these metabolites plausibly originating from altered microbial metabolic activity. These results might also explain the change in odour perception reported to be associated with mask use. Potential implications of these changes on mucosal health and immunity warrants further investigation to evolve more prudent mask use policies.
Collapse
Affiliation(s)
- Sk Ramiz Islam
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Debasish Prusty
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Subhadip Maiti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Raju Dutta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Partha Chattopadhyay
- Department of Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata, India
| | - Soumen Kanti Manna
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
10
|
Structure and function of microbial α-l-fucosidases: a mini review. Essays Biochem 2023; 67:399-414. [PMID: 36805644 PMCID: PMC10154630 DOI: 10.1042/ebc20220158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/23/2023]
Abstract
Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (β/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel β-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.
Collapse
|
11
|
Lin SJH, Helm ET, Gabler NK, Burrough ER. Acute infection with Brachyspira hyodysenteriae affects mucin expression, glycosylation, and fecal MUC5AC. Front Cell Infect Microbiol 2023; 12:1042815. [PMID: 36683692 PMCID: PMC9852840 DOI: 10.3389/fcimb.2022.1042815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Infection with strongly β-hemolytic strains of Brachyspira hyodysenteriae leads to swine dysentery (SD), a production-limiting disease that causes mucohemorrhagic diarrhea and typhlocolitis in pigs. This pathogen has strong chemotactic activity toward mucin, and infected pigs often have a disorganized mucus layer and marked de novo expression of MUC5AC, which is not constitutively expressed in the colon. It has been shown that fucose is chemoattractant for B. hyodysenteriae, and a highly fermentable fiber diet can mitigate and delay the onset of SD. Methods We used lectins targeting sialic acids in α-2,6 or α-2,3 linkages, N-acetylglucosamine (GlcNAc), α-linked L-fucose, and an immunohistochemical stain targeting N-glycolylneuraminic acid (NeuGc) to investigate the local expression of these mucin glycans in colonic tissues of pigs with acute SD. We used a commercial enzyme-linked immunosorbent assay (ELISA) to quantify fecal MUC5AC in infected pigs and assess its potential as a diagnostic monitoring tool and RNA in situ hybridization to detect IL-17A in the colonic mucosa. Results Colonic mucin glycosylation during SD has an overall increase in fucose, a spatially different distribution of GlcNAc with more expression within the crypt lumens of the upper colonic mucosa, and decreased expression or a decreased trend of sialic acids in α-2,6 or α-2,3 linkages, and NeuGc compared to the controls. The degree of increased fucosylation was less in the colonic mucosa of pigs with SD and fed the highly fermentable fiber diet. There was a significant increase in MUC5AC in fecal and colonic samples of pigs with SD at the endpoint compared to the controls, but the predictive value for disease progression was limited. Discussion Fucosylation and the impact of dietary fiber may play important roles in the pathogenesis of SD. The lack of predictive value for fecal MUC5AC quantification by ELISA is possibly due to the presence of other non-colonic sources of MUC5AC in the feces. The moderate correlation between IL-17A, neutrophils and MUC5AC confirms its immunoregulatory and mucin stimulatory role. Our study characterizes local alteration of mucin glycosylation in the colonic mucosa of pigs with SD after B. hyodysenteriae infection and may provide insight into host-pathogen interaction.
Collapse
Affiliation(s)
- Susanne Je-Han Lin
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Hudson AW, Barnes AJ, Bray AS, Ornelles DA, Zafar MA. Klebsiella pneumoniae l-Fucose Metabolism Promotes Gastrointestinal Colonization and Modulates Its Virulence Determinants. Infect Immun 2022; 90:e0020622. [PMID: 36129299 PMCID: PMC9584338 DOI: 10.1128/iai.00206-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by Klebsiella pneumoniae is generally considered asymptomatic. However, gut colonization allows K. pneumoniae to either translocate to sterile site within the same host or transmit through the fecal-oral route to another host. K. pneumoniae gut colonization is poorly understood, but knowledge of this first step toward infection and spread is critical for combatting its disease manifestations. K. pneumoniae must overcome colonization resistance (CR) provided by the host microbiota to establish itself within the gut. One such mechanism of CR is through nutrient competition. Pathogens that metabolize a broad range of substrates have the ability to bypass nutrient competition and overcome CR. Herein, we demonstrate that in response to mucin-derived fucose, the conserved fucose metabolism operon (fuc) of K. pneumoniae is upregulated in the murine gut, and we subsequently show that fucose metabolism promotes robust gut colonization. Growth studies using cecal filtrate as a proxy for the gut lumen illustrate the growth advantage that the fuc operon provides K. pneumoniae. We further show that fucose metabolism allows K. pneumoniae to be competitive with a commensal Escherichia coli isolate (Nissle). However, Nissle is eventually able to outcompete K. pneumoniae, suggesting that it can be utilized to enhance CR. Finally, we observed that fucose metabolism positively modulates hypermucoviscosity, autoaggregation, and biofilm formation but not capsule biogenesis. Together, these insights enhance our understanding of the role of alternative carbon sources in K. pneumoniae gut colonization and the complex relationship between metabolism and virulence in this species.
Collapse
Affiliation(s)
- Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Andrew J. Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David A. Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
13
|
Martínez-Ocaña J, Martínez-Flores WA, Olivo-Díaz A, Romero-Valdovinos M, Martínez-Hernández F, Aguilar-Osorio G, Flisser A, Maravilla P. Identification of α-L-fucosidase (ALFuc) of Blastocystis sp. subtypes ST1, ST2 and ST3. Rev Inst Med Trop Sao Paulo 2022; 64:e40. [PMID: 35703609 PMCID: PMC9190516 DOI: 10.1590/s1678-9946202264040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Blastocystis sp. is a common intestinal microorganism. The α-L-fucosidase (ALFuc) is an enzyme long associated with the colonization of the gut microbiota. However, this enzyme has not been experimentally identified in Blastocystis cultures. The objective of the present study was to identify ALFuc in supernatants of axenic cultures of Blastocystis subtype (ST)1 ATCC-50177 and ATCC-50610 and to compare predicted ALFuc proteins of alfuc genes in sequenced STs1–3 isolates in human Blastocystis carriers. Excretion/secretion (Es/p) and cell lysate proteins were obtained by processing Blastocystis ATCC cultures and submitting them to SDS–PAGE and immunoblotting. In addition, 18 fecal samples from symptomatic Blastocystis human carriers were analyzed by sequencing of amplification products for subtyping. A complete identification of the alfuc gene and phylogenetic analysis were performed. Immunoblotting showed that the amplified band corresponding to ALFuc (~51 kDa) was recognized only in the ES/p. Furthermore, prediction analysis of ALFuc 3D structures revealed that the domain α-L-fucosidase and the GH29 family's catalytic sites were conserved; interestingly, the galactose-binding domain was recognized only in ST1 and ST2. The phylogenetic inferences of ALFuc showed that STs1–3 were clearly identifiable and grouped into specific clusters. Our results show, for the first time through experimental data that ALFuc is a secretion product of Blastocystis sp., which could have a relevant role during intestinal colonization; however, further studies are required to clarify this condition. Furthermore, the alfuc gene is a promising candidate for a phylogenetic marker, as it shows a conserved classification with the SSU-rDNA gene.
Collapse
Affiliation(s)
- Joel Martínez-Ocaña
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | | | - Angélica Olivo-Díaz
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | - Mirza Romero-Valdovinos
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | - Fernando Martínez-Hernández
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| | | | - Ana Flisser
- Universidad Autonoma de México, Facultad de Medicina, Departamento de Microbiologia y Parasitologia, Ciudad de México, México
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecología de Agentes Patógenos, Ciudad de México, México
| |
Collapse
|
14
|
Middendorf PS, Jacobs-Reitsma WF, Zomer AL, den Besten HMW, Abee T. Comparative Analysis of L-Fucose Utilization and Its Impact on Growth and Survival of Campylobacter Isolates. Front Microbiol 2022; 13:872207. [PMID: 35572645 PMCID: PMC9100392 DOI: 10.3389/fmicb.2022.872207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli were previously considered asaccharolytic, but are now known to possess specific saccharide metabolization pathways, including L-fucose. To investigate the influence of the L-fucose utilization cluster on Campylobacter growth, survival and metabolism, we performed comparative genotyping and phenotyping of the C. jejuni reference isolate NCTC11168 (human isolate), C. jejuni Ca1352 (chicken meat isolate), C. jejuni Ca2426 (sheep manure isolate), and C. coli Ca0121 (pig manure isolate), that all possess the L-fucose utilization cluster. All isolates showed enhanced survival and prolonged spiral cell morphology in aging cultures up to day seven in L-fucose-enriched MEMα medium (MEMαF) compared to MEMα. HPLC analysis indicated L-fucose utilization linked to acetate, lactate, pyruvate and succinate production, confirming the activation of the L-fucose pathway in these isolates and its impact on general metabolism. Highest consumption of L-fucose by C. coli Ca0121 is conceivably linked to its enhanced growth performance up to day 7, reaching 9.3 log CFU/ml compared to approximately 8.3 log CFU/ml for the C. jejuni isolates. Genetic analysis of the respective L-fucose clusters revealed several differences, including a 1 bp deletion in the Cj0489 gene of C. jejuni NCTC11168, causing a frameshift in this isolate resulting in two separate genes, Cj0489 and Cj0490, while no apparent phenotype could be linked to the presumed frameshift in this isolate. Additionally, we found that the L-fucose cluster of C. coli Ca0121 was most distant from C. jejuni NCTC11168, but confirmation of links to L-fucose metabolism associated phenotypic traits in C. coli versus C. jejuni isolates requires further studies.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Heidy M. W. den Besten
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- Heidy M. W. den Besten,
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Tjakko Abee,
| |
Collapse
|
15
|
Bets VD, Achasova KM, Borisova MA, Kozhevnikova EN, Litvinova EA. Role of Mucin 2 Glycoprotein and L-Fucose in Interaction of Immunity and Microbiome within the Experimental Model of Inflammatory Bowel Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:301-318. [PMID: 35527372 DOI: 10.1134/s0006297922040010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many factors underlie the development of inflammatory bowel disease (IBD) in humans. In particular, imbalance of microbiota and thinning of the mucosal layer in the large intestine play a huge role. Pathogenic microorganisms also exacerbate the course of diseases. In this research the role of mucin 2 deficiency in the formation of intestinal microflora in the experimental model using the Muc2 gene knockout mice in the presence of Helicobacter spp. was investigated. Also, restorative and anti-inflammatory effect of the dietary L-fucose in the Muc2-/- mice on microflora and immunity was evaluated. For this purpose, bacterial diversity in feces was studied in the animals before and after antibiotic therapy and role of the dietary L-fucose in their recovery was assessed. To determine the effect of bacterial imbalance and fucose on the immune system, mRNA levels of the genes encoding pro-inflammatory cytokines (Tnf, Il1a, Il1b, Il6) and transcription factors of T cells (Foxp3 - Treg, Rorc - Th17, Tbx21 - Th1) were determined in the colon tissue of the Muc2-/- mice. Significant elimination of bacteria due to antibiotic therapy caused decrease of the fucose levels in the intestine and facilitated reduction of the regulatory T cell transcription factor (Foxp3). When the dietary L-fucose was added to antibiotics, the level of bacterial DNA of Bacteroides spp. in the feces of the Muc2-/- mice was partially restored. T regulatory cells are involved in the regulation of inflammation in the Muc2-/- mice. Antibiotics reduced the number of regulatory T cell but did not decrease the inflammatory response to infection. Fucose, as a component of mucin 2, helped to maintain the level of Bacteroides spp. during antibiotic therapy of the Muc2-/- mice and restored biochemical parameters, but did not affect the inflammatory response.
Collapse
Affiliation(s)
- Victoria D Bets
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - Kseniya M Achasova
- Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mariya A Borisova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena N Kozhevnikova
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia.,Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
16
|
Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts. Molecules 2022; 27:molecules27051615. [PMID: 35268716 PMCID: PMC8911971 DOI: 10.3390/molecules27051615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Fucosidases are associated with several pathological conditions and play an important role in the health of the human gut. For example, fucosidases have been shown to be indicators and/or involved in hepatocellular carcinoma, breast cancer, and helicobacter pylori infections. A prerequisite for the detection and profiling of fucosidases is the formation of a specific covalent linkage between the enzyme of interest and the activity-based probe (ABP). The most commonly used fucosidase ABPs are limited to only one of the classes of fucosidases, the retaining fucosidases. New approaches are needed that allow for the detection of the second class of fucosidases, the inverting type. Here, we report an ortho-quinone methide-based probe with an azide mini-tag that selectively labels both retaining and inverting bacterial α-l-fucosidases. Mass spectrometry-based intact protein and sequence analysis of a probe-labeled bacterial fucosidase revealed almost exclusive single labeling at two specific tryptophan residues outside of the active site. Furthermore, the probe could detect and image extracellular fucosidase activity on the surface of live bacteria.
Collapse
|
17
|
Zhang Y, Wang L, Ocansey DKW, Wang B, Wang L, Xu Z. Mucin-Type O-Glycans: Barrier, Microbiota, and Immune Anchors in Inflammatory Bowel Disease. J Inflamm Res 2021; 14:5939-5953. [PMID: 34803391 PMCID: PMC8598207 DOI: 10.2147/jir.s327609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), which affects about 7 million people globally, is a chronic inflammatory condition of the gastrointestinal tract caused by gut microbiota alterations, immune dysregulation, and genetic and environmental factors. The association of microbial and immune molecules with mucin-type O-glycans has been increasingly noticed by researchers. Mucin is the main component of mucus, which forms a protective barrier between the microbiota and immune cells in the colon. Mucin-type O-glycans alter the diversity of gastrointestinal microorganisms, which in turn increases the level of O-glycosylation of host intestinal proteins via the utilization of glycans. Additionally, alterations in mucin-type O-glycans not only increase the activity and stability of immune cells but are also involved in the maintenance of intestinal mucosal immune tolerance. Although there is accumulating evidence indicating that mucin-type O-glycans play an important role in IBD, there is limited literature that integrates available data to present a complete picture of exactly how O-glycans affect IBD. This review emphasizes the roles of the mucin-type O-glycans in IBD. This seeks to provide a better understanding and encourages future studies on IBD glycosylation and the design of novel glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Yaqin Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Lan Wang
- Danyang Blood Station, Zhenjiang, Jiangsu, 212300, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Li Wang
- Huai'an Maternity and Children Hospital, Huaian, Jiangsu, 223002, People's Republic of China
| | - Zhiwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| |
Collapse
|
18
|
Luijkx YMCA, Jongkees S, Strijbis K, Wennekes T. Development of a 1,2-difluorofucoside activity-based probe for profiling GH29 fucosidases. Org Biomol Chem 2021; 19:2968-2977. [PMID: 33729259 DOI: 10.1039/d1ob00054c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GH29 α-l-fucosidases catalyze hydrolysis of terminal α-l-fucosyl linkages with varying specificity and are expressed by prominent members of the human gut microbiota. Both homeostasis and dysbiosis at the human intestinal microbiota interface have been correlated with altered fucosidase activity. Herein we describe the development of a 2-deoxy-2-fluoro fucosyl fluoride derivative with an azide mini-tag as an activity-based probe (ABP) for selective in vitro labelling of GH29 α-l-fucosidases. Only catalytically active fucosidases are inactivated by this ABP, allowing their functionalization with a biotin reporter group via the CuAAC reaction and subsequent in-gel detection at nanogram levels. The ABP we present here is shown to be active against a GH29 α-l-fucosidase from Bacteroides fragilis and capable of labeling two other GH29 α-l-fucosidases with different linkage specificity, illustrating its broader utility. This novel ABP is a valuable addition to the toolbox of fucosidase probes by allowing identification and functional studies of the wide variety of GH29 fucosidases, including those in the gut microbiota.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
19
|
van Muijlwijk GH, van Mierlo G, Jansen PW, Vermeulen M, Bleumink-Pluym NM, Palm NW, van Putten JP, de Zoete MR. Identification of Allobaculum mucolyticum as a novel human intestinal mucin degrader. Gut Microbes 2021; 13:1966278. [PMID: 34455931 PMCID: PMC8409761 DOI: 10.1080/19490976.2021.1966278] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiota plays a central role in intestinal health and disease. Yet, many of its bacterial constituents are functionally still largely unexplored. A crucial prerequisite for bacterial survival and proliferation is the creation and/or exploitation of an own niche. For many bacterial species that are linked to human disease, the inner mucus layer was found to be an important niche. Allobaculum mucolyticum is a newly identified, IBD-associated species that is thought be closely associated with the host epithelium. To explore how this bacterium is able to effectively colonize this niche, we screened its genome for factors that may contribute to mucosal colonization. Up to 60 genes encoding putative Carbohydrate Active Enzymes (CAZymes) were identified in the genome of A. mucolyticum. Mass spectrometry revealed 49 CAZymes of which 26 were significantly enriched in its secretome. Functional assays demonstrated the presence of CAZyme activity in A. mucolyticum conditioned medium, degradation of human mucin O-glycans, and utilization of liberated non-terminal monosaccharides for bacterial growth. The results support a model in which sialidases and fucosidases remove terminal O-glycan sugars enabling subsequent degradation and utilization of carbohydrates for A. mucolyticum growth. A. mucolyticum CAZyme secretion may thus facilitate bacterial colonization and degradation of the mucus layer and may pose an interesting target for future therapeutic intervention.
Collapse
Affiliation(s)
- Guus H. van Muijlwijk
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), LausanneCH-1015, Switzerland
| | - Pascal W.T.C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jos P.M. van Putten
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
20
|
Luijkx YMCA, Bleumink NMC, Jiang J, Overkleeft HS, Wösten MMSM, Strijbis K, Wennekes T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell Microbiol 2020; 22:e13252. [PMID: 32827216 PMCID: PMC7685106 DOI: 10.1111/cmi.13252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non‐saccharolytic, but recently it emerged that l‐fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l‐fucose utilisation. In the intestinal tract, l‐fucose is abundantly available in mucin O‐linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l‐fucose. We set out to determine how C. jejuni can gain access to these intestinal l‐fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l‐fucose while fucose permease knockout strains did not benefit from additional l‐fucose. With fucosidase assays and an activity‐based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco‐2 intestinal cells that express complex O‐linked glycan structures that contain l‐fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nancy M C Bleumink
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jianbing Jiang
- Leiden institute of Chemistry, Leiden University, Leiden, The Netherlands.,Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | | | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|