1
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Demirtaş E, Zeynalova N. A meta-analysis of animal studies evaluating the effect of hydrogen sulfide on ischemic stroke: is the preclinical evidence sufficient to move forward? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03291-5. [PMID: 39017715 DOI: 10.1007/s00210-024-03291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that has been studied for its potential therapeutic effects, including its role in the pathophysiology and treatment of stroke. This systematic review and meta-analysis aimed to determine the sufficiency of overall preclinical evidence to guide the initiation of clinical stroke trials with H2S and provide tailored recommendations for their design. PubMed, Web of Science, Scopus, EMBASE, and MEDLINE were searched for studies evaluating the effect of any H2S donor on in vivo animal models of regional ischemic stroke, and 34 publications were identified. Pooling of the effect sizes using the random-effect model revealed that H2S decreased the infarct area by 34.5% (95% confidence interval (CI) 28.2-40.8%, p < 0.0001), with substantial variability among the studies (I2 = 89.8%). H2S also caused a 37.9% reduction in the neurological deficit score (95% CI 29.0-46.8%, p < 0.0001, I2 = 63.8%) and in the brain water content (3.2%, 95% CI 1.4-4.9%, p = 0.0014, I2 = 94.6%). Overall, the studies had a high risk of bias and low quality of evidence (median quality score 5/15, interquartile range 4-9). The majority of the included studies had a "high" or "unclear" risk of bias, and none of the studies overall had a "low" risk. In conclusion, H2S significantly improves structural and functional outcomes in in vivo animal models of ischemic stroke. However, the level of evidence from preclinical studies is not sufficient to proceed to clinical trials due to the low external validity, high risk of bias, and variable design of existing animal studies.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Ariyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Elif Demirtaş
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Nargız Zeynalova
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Jin T, Lu H, Zhou Q, Chen D, Zeng Y, Shi J, Zhang Y, Wang X, Shen X, Cai X. H 2S-Releasing Versatile Montmorillonite Nanoformulation Trilogically Renovates the Gut Microenvironment for Inflammatory Bowel Disease Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308092. [PMID: 38308198 PMCID: PMC11005690 DOI: 10.1002/advs.202308092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Abnormal activation of the intestinal mucosal immune system, resulting from damage to the intestinal mucosal barrier and extensive invasion by pathogens, contributes to the pathogenesis of inflammatory bowel disease (IBD). Current first-line treatments for IBD have limited efficacy and significant side effects. An innovative H2S-releasing montmorillonite nanoformulation (DPs@MMT) capable of remodeling intestinal mucosal immune homeostasis, repairing the mucosal barrier, and modulating gut microbiota is developed by electrostatically adsorbing diallyl trisulfide-loaded peptide dendrimer nanogels (DATS@PDNs, abbreviated as DPs) onto the montmorillonite (MMT) surface. Upon rectal administration, DPs@MMT specifically binds to and covers the damaged mucosa, promoting the accumulation and subsequent internalization of DPs by activated immune cells in the IBD site. DPs release H2S intracellularly in response to glutathione, initiating multiple therapeutic effects. In vitro and in vivo studies have shown that DPs@MMT effectively alleviates colitis by eliminating reactive oxygen species (ROS), inhibiting inflammation, repairing the mucosal barrier, and eradicating pathogens. RNA sequencing revealed that DPs@MMT exerts significant immunoregulatory and mucosal barrier repair effects, by activating pathways such as Nrf2/HO-1, PI3K-AKT, and RAS/MAPK/AP-1, and inhibiting the p38/ERK MAPK, p65 NF-κB, and JAK-STAT3 pathways, as well as glycolysis. 16S rRNA sequencing demonstrated that DPs@MMT remodels the gut microbiota by eliminating pathogens and increasing probiotics. This study develops a promising nanoformulation for IBD management.
Collapse
Affiliation(s)
- Ting Jin
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Hongyang Lu
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Qiang Zhou
- Department of OtolaryngologyRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Dongfan Chen
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Youyun Zeng
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Jiayi Shi
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yanmei Zhang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xianwen Wang
- School of Biomedical EngineeringResearch and Engineering Center of Biomedical MaterialsAnhui Medical UniversityHefei230032China
| | - Xinkun Shen
- Department of OtolaryngologyRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Xiaojun Cai
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
3
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
4
|
Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges. Neurochem Res 2023; 48:1981-1996. [PMID: 36764968 PMCID: PMC10182124 DOI: 10.1007/s11064-023-03887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Central nervous system (CNS)-related conditions are currently the leading cause of disability worldwide, posing a significant burden to health systems, individuals and their families. Although the molecular mechanisms implicated in these disorders may be varied, neurological conditions have been increasingly associated with inflammation and/or impaired oxidative response leading to further neural cell damages. Therefore, therapeutic approaches targeting these defective molecular mechanisms have been vastly explored. Hydrogen sulphide (H2S) has emerged as a modulator of both inflammation and oxidative stress with a neuroprotective role, therefore, has gained interest in the treatment of neurological disorders. H2S, produced by endogenous sources, is maintained at low levels in the CNS. However, defects in the biosynthetic and catabolic routes for H2S metabolism have been identified in CNS-related disorders. Approaches to restore H2S availability using H2S-donating compounds have been recently explored in many models of neurological conditions. Nonetheless, we still need to elucidate the potential for these compounds not only to ameliorate defective biological routes, but also to better comprehend the implications on H2S delivery, dosage regimes and feasibility to successfully target CNS tissues. Here, we highlight the molecular mechanisms of H2S-dependent restoration of neurological functions in different models of CNS disease whilst summarising current administration approaches for these H2S-based compounds. We also address existing barriers in H2S donor delivery by showcasing current advances in mediating these constrains through novel biomaterial-based carriers for H2S donors.
Collapse
|
5
|
Lu D, Wang L, Liu G, Wang S, Wang Y, Wu Y, Wang J, Sun X. Role of hydrogen sulfide in subarachnoid hemorrhage. CNS Neurosci Ther 2022; 28:805-817. [PMID: 35315575 PMCID: PMC9062544 DOI: 10.1111/cns.13828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common acute and severe disease worldwide, which imposes a heavy burden on families and society. However, the current therapeutic strategies for SAH are unsatisfactory. Hydrogen sulfide (H2 S), as the third gas signaling molecule after carbon monoxide and nitric oxide, has been widely studied recently. There is growing evidence that H2 S has a promising future in the treatment of central nervous system diseases. In this review, we focus on the effects of H2 S in experimental SAH and elucidate the underlying mechanisms. We demonstrate that H2 S has neuroprotective effects and significantly reduces secondary damage caused by SAH via antioxidant, antiinflammatory, and antiapoptosis mechanisms, and by alleviating cerebral edema and vasospasm. Based on these findings, we believe that H2 S has great potential in the treatment of SAH and warrants further study to promote its early clinical application.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Yi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Yu Wu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| |
Collapse
|
6
|
Liu G, Liang Y, Xu M, Sun M, Sun W, Zhou Y, Huang X, Song W, Liang Y, Wang Z. Protective mechanism of Erigeron breviscapus injection on blood-brain barrier injury induced by cerebral ischemia in rats. Sci Rep 2021; 11:18451. [PMID: 34531475 PMCID: PMC8446017 DOI: 10.1038/s41598-021-97908-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
This study investigates the protective effect of Erigeron breviscapus injection, a classic traditional Chinese medicine most typically used by Chinese minority to treat stroke, on cerebral ischemia-reperfusion injury and the related signaling pathways. Use network pharmacology methods to study the relationship between E. breviscapus (Vant.) Hand-Mazz. and ischemic stroke, predict the mechanism and active ingredients of E. breviscapus (Vant.) Hand-Mazz. in improving ischemic stroke disease. We study the protective effect of E. breviscapus injection on blood-brain barrier (BBB) injuries induced by cerebral ischemia in rats by regulating the ROS/RNS-MMPs-TJs signaling pathway. The rat model of focal cerebral ischemia-reperfusion injury has been prepared using the wire-suppository method. Firstly, the efficacy of E. breviscapus injection, Scutellarin and 3,5-dicaffeoylquinic acid in protecting BBB injury caused by cerebral ischemia has been evaluated. Secondly, the following two methods have been used to study the mechanism of E. breviscapus injection in regulating the ROS/RNS-MMPS-TJS signaling pathway: real-time PCR and western blot for the determination of iNOS, MMP-9, claudin-5, occludin, ZO-1 mRNA and protein expression in brain tissue. We find that PI3K-Akt signaling pathway predicted by network pharmaology affects the blood-brain barrier function, so we chose the blood-brain barrier-related MMP-9, claudin-5, iNOS, occludin and ZO-1 proteins are used for research. The results of our research show that 3 drugs can reduce the rate of cerebral infarction in rats, relieve the abnormal neuroethology of rats, reduce the degree of brain tissue lesion, increase the number of the Nissl corpuscle cells and repair the neuron ultrastructure in injured rats. At the same time, it can obviously reduce the ultrastructure damage of the BBB in rats. All three drugs significantly reduced the content of Evans blue in the ischemic brain tissue caused by cerebral ischemia in rats with BBB injury. In addition, E. breviscapus injection, Scutellarin and 3,5-dicaffeoylquinic acid can decrease the protein expression of iNOS and MMP-9 in rat ischemic brain tissue. In addition, 3,5-dicaffeoylquinic acid can increase the protein expression of claudin-5. We conclude that E. breviscapus injection, Scutellarin and 3,5-dicaffeoylquinic acid have obvious therapeutic effects on BBB and neuron injury induced by cerebral ischemia in rats. Our results from studying the mechanism of action show that E. breviscapus injection and Scutellarin inhibited the activation of MMP-9 by inhibiting the synthesis of iNOS, 3,5-dicaffeoylquinic acid inhibits the expression and activation of MMP-9 by inhibiting the activation of iNOS and reducing the generation of free radicals, thus reducing the degradation of important cytoskeleton connexin claudin-5 in the tight junction (TJ) structure by inhibiting the expression and activation of MMP-9. Finally BBB structure integrity was protected.
Collapse
Affiliation(s)
- Guangli Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Hospital Pharmaceutical Department, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, 221000, Jiangsu, China
| | - Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ming Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Weijun Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xiaojuan Huang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Wenjie Song
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yuan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
7
|
Li F, Xu D, Hou K, Gou X, Lv N, Fang W, Li Y. Pretreatment of Indobufen and Aspirin and their Combinations with Clopidogrel or Ticagrelor Alleviates Inflammasome Mediated Pyroptosis Via Inhibiting NF-κB/NLRP3 Pathway in Ischemic Stroke. J Neuroimmune Pharmacol 2021; 16:835-853. [DOI: 10.1007/s11481-020-09978-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
|
8
|
Yang BB, Zou M, Zhao L, Zhang YK. Astaxanthin attenuates acute cerebral infarction via Nrf-2/HO-1 pathway in rats. Curr Res Transl Med 2021; 69:103271. [PMID: 33476935 DOI: 10.1016/j.retram.2020.103271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Acute cerebral infarction (ACI) is susceptible to cause disability or death of people. Astaxanthin (ATX) possesses the protective effect of organ injury. Therefore, the study was to explore the potential mechanism of protective effect with ATX on ACI. METHODS 30 SD rats were divided into Sham, ACI, and ATX groups. The rats in the ATX group were pretreated with ATX by gavage for three days before surgery, while the rats in the other two groups were pretreated with saline. The model of ACI was established by thread embolization. 24 h after the operation, the neurological function was scored, and cerebral infarct area and pathological morphology of brains were measured; the edema of the brain was detected by dry/wet method; Western blot was applied to measure the translocation of Nrf-2 and the protein expression of HO-1, Bax and BCL-2; Brain cell apoptosis was assessed through TUNEL; ELISA was used to detect the oxidative stress factors of catalase (CAT) superoxide dismutase (SOD), glutathione peroxidase (GPX) and malondialdehyde (MDA), and the inflammatory factors of TNF-α, IL-1β, IL-6. RESULT Compared with the ACI group, ATX pretreatment can significantly improve neurological function; reduce the edema index of the brain, cerebral infarct area, cerebral pathological damage and apoptosis of brain cells. Moreover, ATX also can increase the protein expression of nuclear Nrf-2, HO-1, BCL-2, CAT, SOD, and GPX by decreasing the content of TNF-α, IL-1β, IL-6, MDA, Bax and cytosolic Nrf-2. CONCLUSION ATX might have a protective effect of acute cerebral infarction, and the mechanism is probably associated with suppressing oxidative stress, inflammation, and apoptosis by activating Nrf-2/HO-1signalling.
Collapse
Affiliation(s)
- Bin-Bin Yang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nan Chong, 63700, China
| | - Mei Zou
- Department of Neurology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, 610072, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nan Chong, 63700, China.
| | - Ya-Kun Zhang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, 63700, China.
| |
Collapse
|
9
|
Genes Induced by Panax Notoginseng in a Rodent Model of Ischemia-Reperfusion Injury. J Immunol Res 2020; 2020:8873261. [PMID: 33294469 PMCID: PMC7714582 DOI: 10.1155/2020/8873261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke is a cerebrovascular disease that results in decreased blood flow. Although Panax notoginseng (PN), a Chinese herbal medicine, has been proven to promote stroke recovery, its molecular mechanism remains unclear. In this study, middle cerebral artery occlusion (MCAO) was induced in rats with thrombi generated by thread and subsequently treated with PN. After that, staining with 2,3,5-triphenyltetrazolium chloride was employed to evaluate the infarcted area, and electron microscopy was used to assess ultrastructural changes of the neurovascular unit. RNA-Seq was performed to determine the differential expressed genes (DEGs) which were then verified by qPCR. In total, 817 DEGs were identified to be related to the therapeutic effect of PN on stroke recovery. Further analysis by Gene Oncology analysis and Kyoto Encyclopedia of Genes and Genomes revealed that most of these genes were involved in the biological function of nerves and blood vessels through the regulation of neuroactive live receptor interactions of PI3K-Akt, Rap1, cAMP, and cGMP-PKG signaling, which included in the 18 pathways identified in our research, of which, 9 were reported firstly that related to PN's neuroprotective effect. This research sheds light on the potential molecular mechanisms underlying the effects of PN on stroke recovery.
Collapse
|
10
|
Samak NA, Selim MS, Hao Z, Xing J. Controlled-synthesis of alumina-graphene oxide nanocomposite coupled with DNA/ sulfide fluorophore for eco-friendly “Turn off/on” H2S nanobiosensor. Talanta 2020; 211:120655. [DOI: 10.1016/j.talanta.2019.120655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
|
11
|
GYY4137 protects against MCAO via p38 MAPK mediated anti-apoptotic signaling pathways in rats. Brain Res Bull 2020; 158:59-65. [DOI: 10.1016/j.brainresbull.2020.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
|
12
|
van den Born JC, Frenay ARS, Koning AM, Bachtler M, Riphagen IJ, Minovíc I, Feelisch M, Dekker MM, Bulthuis MLC, Gansevoort RT, Hillebrands JL, Pasch A, Bakker SJL, van Goor H. Urinary Excretion of Sulfur Metabolites and Risk of Cardiovascular Events and All-Cause Mortality in the General Population. Antioxid Redox Signal 2019; 30:1999-2010. [PMID: 29905081 DOI: 10.1089/ars.2017.7040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aims: Thiosulfate and sulfate are metabolites of hydrogen sulfide (H2S), a gaseous signaling molecule with cardiovascular (CV) protective properties. Urinary thiosulfate excretion and sulfate excretion are associated with favorable disease outcome in high-risk patient groups. We investigated the relationship between urinary excretion of sulfur metabolites, and risk of CV events and all-cause mortality in the general population. Results: Subjects (n = 6839) of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study were followed prospectively. At baseline, 24-h urinary excretion of thiosulfate and sulfate was determined. Median urinary thiosulfate and sulfate excretion values were 1.27 (interquartile range [IQR] 0.89-2.37) μmol/24 h and 15.7 (IQR 12.0-20.3) mmol/24 h, respectively. Neither thiosulfate nor sulfate excretion showed an independent association with risk of CV events. Sulfate, but not thiosulfate, was inversely associated with risk of all-cause mortality, independent of potential confounders (hazard ratio 0.73 [95% confidence interval 0.63-0.84], p < 0.001). This association appeared most pronounced for normolipidemic subjects (pinteraction = 0.019). Innovation: The strong association between sulfate excretion and mortality in the general population emphasizes the (patho)physiological importance of sulfate or its precursor H2S. Conclusion: We hypothesize that urinary sulfate excretion, which is inversely associated with all-cause mortality in the general population, holds clinical relevance as a beneficial modulator in health and disease. Antioxid. Redox Signal. 30, 1999-2010.
Collapse
Affiliation(s)
- Joost C van den Born
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Anne-Roos S Frenay
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Anne M Koning
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,2 Department of Surgery, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Matthias Bachtler
- 3 Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ineke J Riphagen
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,5 Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Isidor Minovíc
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Martin Feelisch
- 6 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,7 NIHR Biomedical Research Centre, University of Southampton, Southampton, United Kingdom.,8 University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Marinda M Dekker
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Marian L C Bulthuis
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Ron T Gansevoort
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Andreas Pasch
- 3 Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Stephan J L Bakker
- 4 Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.,5 Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Harry van Goor
- 1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| |
Collapse
|
13
|
Therapeutic effects of JLX001 on cerebral ischemia through inhibiting platelet activation and thrombus formation in rats. Biomed Pharmacother 2018; 106:805-812. [DOI: 10.1016/j.biopha.2018.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 02/02/2023] Open
|
14
|
Role of Nitric Oxide and Hydrogen Sulfide in Ischemic Stroke and the Emergent Epigenetic Underpinnings. Mol Neurobiol 2018; 56:1749-1769. [PMID: 29926377 DOI: 10.1007/s12035-018-1141-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are the key gasotransmitters with an imperious role in the maintenance of cerebrovascular homeostasis. A decline in their levels contributes to endothelial dysfunction that portends ischemic stroke (IS) or cerebral ischemia/reperfusion (CI/R). Nevertheless, their exorbitant production during CI/R is associated with exacerbation of cerebrovascular injury in the post-stroke epoch. NO-producing nitric oxide synthases are implicated in IS pathology and their activity is regulated, inter alia, by various post-translational modifications and chromatin-based mechanisms. These account for heterogeneous alterations in NO production in a disease setting like IS. Interestingly, NO per se has been posited as an endogenous epigenetic modulator. Further, there is compelling evidence for an ingenious crosstalk between NO and H2S in effecting the canonical (direct) and non-canonical (off-target collateral) functions. In this regard, NO-mediated S-nitrosylation and H2S-mediated S-sulfhydration of specific reactive thiols in an expanding array of target proteins are the principal modalities mediating the all-pervasive influence of NO and H2S on cell fate in an ischemic brain. An integrated stress response subsuming unfolded protein response and autophagy to cellular stressors like endoplasmic reticulum stress, in part, is entrenched in such signaling modalities that substantiate the role of NO and H2S in priming the cells for stress response. The precis presented here provides a comprehension on the multifarious actions of NO and H2S and their epigenetic underpinnings, their crosstalk in maintenance of cerebrovascular homeostasis, and their "Janus bifrons" effect in IS milieu together with plausible therapeutic implications.
Collapse
|
15
|
Abdel-Fattah MM, Messiha BAS, Mansour AM. Modulation of brain ACE and ACE2 may be a promising protective strategy against cerebral ischemia/reperfusion injury: an experimental trial in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1003-1020. [PMID: 29909460 DOI: 10.1007/s00210-018-1523-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
Abstract
The brain renin-angiotensin system (RAS) is considered a crucial regulator for physiological homeostasis and disease progression. We evaluated the protective effects of the angiotensin receptor blocker (ARB) telmisartan and the angiotensin-converting enzyme 2 (ACE2) activator xanthenone on experimental cerebral ischemia/reperfusion (I/R) injury. Rats were divided into a sham control, a cerebral I/R control, a standard treatment (nimodipine, 10 mg/kg/day, 15 days, p.o.), three telmisartan treatments (1, 3, and 10 mg/kg/day, 15 days, p.o.), and three xanthenone treatments (0.5, 1, and 2 mg/kg/day, 15 days, s.c.) groups. One hour after the last dose, all rats except the sham control group were exposed to 30-min cerebral ischemia followed by 24-h reperfusion. Brain ACE and ACE2 activities and the apoptotic marker caspase-3 levels were assessed. Glutathione (GSH), malondialdehyde (MDA), and nitric oxide end products (NOx) as oxidative markers and tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-10 as immunological markers were assessed. Histopathological examination and immunohistochemical evaluation of glial fibrillary acidic protein (GFAP) were performed in cerebral cortex and hippocampus sections. Telmisartan and xanthenone in the higher doses restored MDA, NOx, TNF-α, IL-6, caspase-3, ACE, and GFAP back to normal levels and significantly increased GSH, IL-10, and ACE2 compared to I/R control values. Histopathologically, both agents showed mild degenerative changes and necrosis of neurons in cerebral cortex and hippocampus compared with I/R control group. Modulation of brain RAS, either through suppression of the classic ACE pathway or stimulation of its antagonist pathway ACE2, may be a promising strategy against cerebral I/R damage.
Collapse
Affiliation(s)
| | | | - Ahmed Mohamed Mansour
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
16
|
Miao M, Zhang X, Zhang F, Wang C, Fang X, Bai M, Xu C, Teng L. Effects of Scrambling trumpet Creeper flavone on transient cerebral ischemia model (TIA) in rats. Saudi J Biol Sci 2018; 25:479-486. [PMID: 29686511 PMCID: PMC5910641 DOI: 10.1016/j.sjbs.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022] Open
Abstract
To investigate the effects of Scrambling Trumpet Creeper flavone on neurological function score, brain tissue lesion and related biochemical indexes in rat TIA model. Methods: TIA model was induced by tail vein injection of t-butanol (t-BHP). The rats in each administration group were given large, medium and low dose of Scrambling Trumpet Creeper flavone 0.1% CMC suspension, nimodipine and Yangxueqingnao particles group 0.1% CMC suspension, model group and blank group fed the same volume 0.1% CMC. Once a day, continuous administration of 7d. On the 3rd and 6th day after administration, t-BHP was injected into the tail vein, and then placed in a sealed 1 L jar. After 10 min of hypoxia, the neurological function score (NDS) was performed. After the first 2 days of TIA administration, the hem rheology was measured immediately after 1 h of administration, and blood rheology was measured immediately after the administration of blood, blood clotting, hematocrit, hematocrit and whole blood viscosity. After HE is staining to observe the pathological changes of hippocampus and cortex in the left-brain tissue. (LDH) and adenosine triphosphate (ATP) were measured. The right brain tissue of the cerebral cortex was observed. The expression of lactate (LD), lactate dehydrogenase (LDH) Fibroblast growth factor (FGF) and insulin growth factor (IGF) were detected by immunohistochemistry. Results Compared with the blank group, the coagulation time of the model rats was significantly shortened. The red blood cell deformation index was significantly decreased. Erythrocyte sedimentation rate, hematocrit, plasma viscosity, whole blood viscosity, erythrocyte rigidity index and blood sedimentation equation K value were significantly increased; LD content increased significantly, and LDH, ATP enzyme activity decreased significantly. The positive expression of FGF and IGF in the cortical area had a trend of increasing. Conclusion The Scrambling Trumpet Creeper flavone significantly improved the indexes of whole blood rheology; the energy metabolism of cerebral ischemia was increased, and the positive expression of neurotrophic factor in cortex was significantly increased.
Collapse
Affiliation(s)
- Mingsan Miao
- Henan University of Chinese Medicine, Zheng Zhou 450046, China
| | - Xu Zhang
- Henan University of Chinese Medicine, Zheng Zhou 450046, China
| | - Fan Zhang
- Henan University of Chinese Medicine, Zheng Zhou 450046, China
| | - Can Wang
- Henan University of Chinese Medicine, Zheng Zhou 450046, China
| | - Xiaoyan Fang
- Henan University of Chinese Medicine, Zheng Zhou 450046, China
| | - Ming Bai
- Henan University of Chinese Medicine, Zheng Zhou 450046, China
| | - Cuishan Xu
- Henan University of Chinese Medicine, Zheng Zhou 450046, China
| | - Leshang Teng
- College of Sciences, Jilin University, Jilin, Chang Chun, China
| |
Collapse
|
17
|
Ohia SE, Robinson J, Mitchell L, Ngele KK, Heruye S, Opere CA, Njie-Mbye YF. Regulation of Aqueous Humor Dynamics by Hydrogen Sulfide: Potential Role in Glaucoma Pharmacotherapy. J Ocul Pharmacol Ther 2017; 34:61-69. [PMID: 29215951 DOI: 10.1089/jop.2017.0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous transmitter with well-known biological actions in a wide variety of tissues and organs. The potential involvement of this gas in physiological and pathological processes in the eye has led to several in vitro, ex vivo, and in vivo studies to understand its pharmacological role in some mammalian species. Evidence from literature demonstrates that 4 enzymes responsible for the biosynthesis of this gas (cystathionine β-synthase, CBS; cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3MST; and d-amino acid oxidase) are present in the cornea, iris, ciliary body, lens, and retina. Studies of the pharmacological actions of H2S (using several compounds as fast- and slow-releasing gas donors) on anterior uveal tissues reveal an effect on sympathetic neurotransmission and the ability of the gas to relax precontracted iris and ocular vascular smooth muscles, responses that were blocked by inhibitors of CSE, CBS, and KATP channels. In the retina, there is evidence that H2S can inhibit excitatory amino acid neurotransmission and can also protect this tissue from a wide variety of insults. Furthermore, exogenous application of H2S-releasing compounds was reported to increase aqueous humor outflow facility in an ex vivo model of the porcine ocular anterior segment and lowered intraocular pressure (IOP) in both normotensive and glaucomatous rabbits. Taken together, the finding that H2S-releasing compounds can lower IOP and can serve a neuroprotective role in the retina suggests that H2S prodrugs could be used as tools or therapeutic agents in diseases such as glaucoma.
Collapse
Affiliation(s)
- Sunny E Ohia
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Jenaye Robinson
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Leah Mitchell
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Kalu K Ngele
- 2 Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo , Abakaliki, Nigeria
| | - Segewkal Heruye
- 3 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Catherine A Opere
- 3 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Ya Fatou Njie-Mbye
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| |
Collapse
|
18
|
Sun Y, Xu DP, Qin Z, Wang PY, Hu BH, Yu JG, Zhao Y, Cai B, Chen YL, Lu M, Liu JG, Liu X. Protective cerebrovascular effects of hydroxysafflor yellow A (HSYA) on ischemic stroke. Eur J Pharmacol 2017; 818:604-609. [PMID: 29166571 DOI: 10.1016/j.ejphar.2017.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
Abstract
The purpose of the present work was designed to explore protective cerebrovascular effects of hydroxysafflor yellow A (HSYA), and provide preclinical efficacy and mechanism data for its possible application in patients with cerebral ischemia. The protective effect of HSYA on ischemic stroke was evaluated by infarct sizes and neurological scores in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Cerebrovascular permeability was detected by Evans blue dye leakage in MCAO rats. Cerebral blood flow, as well as blood pressure and heart rate were monitored using flow probes in Beagle dogs. Basilar artery tension isolated from Beagle dogs was evaluated with an MPA 2000 data-acquisition system. Coagulation-related function was also judged, including rabbit platelet aggregation by adenosine diphosphate (ADP) and platelet-aggregating factor (PAF), rabbit blood viscosity by a blood viscometer, and thrombus formation by rat arterial-venous shunts. Results showed that HSYA treatment significantly decreased the infarct sizes, neurological scores and cerebrovascular permeability in rats with MCAO. However, cerebral blood flow, blood pressure and heart rate were not affected by HSYA. In vitro, HSYA had a strong effect on cerebrovascular vasodilatation, and significantly decreased platelet aggregation, blood viscosity, and thrombogenesis. Besides well-known anti-coagulation effects, HSYA protects against ischemic stroke by dilating cerebral vessels and improving cerebrovascular permeability.
Collapse
Affiliation(s)
- Yang Sun
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Dong-Ping Xu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhen Qin
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Peng-Yuan Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Bo-Han Hu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jian-Guang Yu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yong Zhao
- Shanghai Laboratory Animal Research Center, 3577 Jin-Ke Road, Shanghai 201203, China
| | - Ben Cai
- Zhejiang Yongning Pharmaceutical Co., Ltd., 4 Meihuajing Road, Huangyan, Taizhou 318020, China
| | - Yong-Ling Chen
- Zhejiang Yongning Pharmaceutical Co., Ltd., 4 Meihuajing Road, Huangyan, Taizhou 318020, China
| | - Min Lu
- Zhejiang Yongning Pharmaceutical Co., Ltd., 4 Meihuajing Road, Huangyan, Taizhou 318020, China
| | - Jian-Guo Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
19
|
DiNicolantonio JJ, OKeefe JH, McCarty MF. Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: a novel way to promote cardiovascular health. Open Heart 2017; 4:e000600. [PMID: 28674632 PMCID: PMC5471864 DOI: 10.1136/openhrt-2017-000600] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - James H OKeefe
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | |
Collapse
|
20
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|