1
|
Radić J, Vučković M, Đogaš H, Grubić M, Belančić A, Tandara L, Šolić Šegvić L, Novak I, Radić M. Beyond Blood Sugar: Low Awareness of Kidney Disease among Type 2 Diabetes Mellitus Patients in Dalmatia-Insights from the First Open Public Call. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1643. [PMID: 39459430 PMCID: PMC11509393 DOI: 10.3390/medicina60101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Kidney disease (KD) is a common complication of diabetes mellitus (DM) associated with adverse outcomes of renal failure, cardiovascular disease, and mortality. The aim of this study was to determine the prevalence and awareness of the KD among the DM type 2 (T2DM) patients. Materials and Methods: This cross-sectional study was conducted at the University Hospital of Split between November and December of 2023 during an open call for DM patients. For each participant, blood and urine samples, along with relevant medical information, were collected, and adherence to the Mediterranean diet (MeDi) was assessed using the Mediterranean Diet Service Score (MDSS). Furthermore, blood pressure was measured, along with body composition and anthropometric parameters. Results: Of 252 T2DM patients with a median age of 67 years (IQR: 60-73), 130 (51.6%) were women. The median duration of T2DM was 10 years (IQR: 6-20). Despite the fact that 80.95% of total participants reported receiving dietary guidelines from any source, only 53.2% reported adhering to the suggested instructions, while according to the MDSS, only 7.2% adhered to the MeDi. The median body mass index was 27.6 kg/m2 (24.2-31), with 70.1% of participants overweight or obese. Only 6% of participants believed they had KD, but after blood and urine sample analysis, 31% were found to have KD. Conclusions: This study highlights a significant gap in awareness of KD, low adherence to MeDi, and a high prevalence of obesity among T2DM patients. Due to the increasing number of T2DM patients, it is crucial to improve healthy lifestyle education and make modifications within this group, as well as perform regular screening for KD and medical check-ups.
Collapse
Affiliation(s)
- Josipa Radić
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia; (J.R.); (M.V.); (L.Š.Š.); (I.N.)
- Internal Medicine Department, School of Medicine, University of Split, 21000 Split, Croatia
| | - Marijana Vučković
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia; (J.R.); (M.V.); (L.Š.Š.); (I.N.)
| | - Hana Đogaš
- School of Medicine, University of Split, 21000 Split, Croatia;
| | - Marina Grubić
- Institute for Emergency Medicine of Split-Dalmatia County, 21000 Split, Croatia;
| | - Andrej Belančić
- Department of Basic and Clinical Pharmacology with Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Leida Tandara
- Division of Medical Laboratory Diagnostic, University Hospital of Split, 21000 Split, Croatia;
| | - Lucija Šolić Šegvić
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia; (J.R.); (M.V.); (L.Š.Š.); (I.N.)
| | - Ivana Novak
- Department of Internal Medicine, Division of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia; (J.R.); (M.V.); (L.Š.Š.); (I.N.)
| | - Mislav Radić
- Internal Medicine Department, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Internal Medicine, Division of Rheumatology, Allergology and Clinical Immunology, University Hospital of Split, 21000 Split, Croatia
| |
Collapse
|
2
|
Harej Hrkać A, Pilipović K, Belančić A, Juretić L, Vitezić D, Mršić-Pelčić J. The Therapeutic Potential of Glucagon-like Peptide 1 Receptor Agonists in Traumatic Brain Injury. Pharmaceuticals (Basel) 2024; 17:1313. [PMID: 39458954 PMCID: PMC11510130 DOI: 10.3390/ph17101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI), which is a global public health concern, can take various forms, from mild concussions to blast injuries, and each damage type has a particular mechanism of progression. However, TBI is a condition with complex pathophysiology and heterogenous clinical presentation, which makes it difficult to model for in vitro and in vivo studies and obtain relevant results that can easily be translated to the clinical setting. Accordingly, the pharmacological options for TBI management are still scarce. Since a wide spectrum of processes, such as glucose homeostasis, food intake, body temperature regulation, stress response, neuroprotection, and memory, were demonstrated to be modulated after delivering glucagon-like peptide 1 (GLP-1) or GLP-1 receptor agonists into the brain, we aimed to speculate on their potential role in TBI management by comprehensively overviewing the preclinical and clinical body of evidence. Based on promising preclinical data, GLP-1 receptor agonists hold the potential to extend beyond metabolic disorders and address unmet needs in neuroprotection and recovery after TBI, but also other types of central nervous system injuries such as the spinal cord injury or cerebral ischemia. This overview can lay the basis for tailoring new research hypotheses for future in vitro and in vivo models in TBI settings. However, large-scale clinical trials are crucial to confirm their safety and efficacy in these new therapeutic applications.
Collapse
Affiliation(s)
- Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Lea Juretić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (A.H.H.); (A.B.); (L.J.); (D.V.); (J.M.-P.)
| |
Collapse
|
3
|
Hachuła M, Kosowski M, Ryl S, Basiak M, Okopień B. Impact of Glucagon-Like Peptide 1 Receptor Agonists on Biochemical Markers of the Initiation of Atherosclerotic Process. Int J Mol Sci 2024; 25:1854. [PMID: 38339133 PMCID: PMC10855444 DOI: 10.3390/ijms25031854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis stands out as one of the leading causes of global mortality. The inflammatory response against vascular wall components plays a pivotal role in the atherogenic process. The initiation of this process is notably driven by oxidized low-density lipoprotein (oxLDL) and a range of pro-inflammatory cytokines, with interleukin-1β (Il-1β) and tumor necrosis factor α (TNFα) emerging as particularly significant in the early stages of atherosclerotic plaque formation. In recent years, researchers worldwide have been diligently exploring innovative therapeutic approaches for metabolic diseases, recognizing their impact on the atherogenesis process. Our study aimed to investigate the influence of glucagon-like peptide 1 receptor agonists (GLP-1RA) on cytokine concentrations associated with the initiation of atherosclerotic plaque formation in a group of patients with type 2 diabetes and dyslipidemia. The study encompassed 50 subjects aged 41-81 (mean: 60.7), all diagnosed with type 2 diabetes, dyslipidemia and confirmed atherosclerosis based on B-mode ultrasound. Following a 180-day treatment with dulaglutide or semaglutide, we observed a statistically significant reduction in biochemical markers (oxLDL, TNFα and Il-1β) associated with the initiation of the atherosclerotic process (p < 0.001) within our study group. In addition to the already acknowledged positive effects of GLP-1RA on the metabolic parameters of treated patients, these drugs demonstrated a notable reduction in proinflammatory cytokine concentrations and may constitute an important element of therapy aimed at reducing cardiovascular risk.
Collapse
Affiliation(s)
- Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Sabina Ryl
- Department of Anaesthesiology and Intensive Care, Municipal Hospital in Zabrze-Biskupice, Zamkowa 4, 41-803 Zabrze, Poland;
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| |
Collapse
|
4
|
Alicic RZ, Neumiller JJ. Incretin Therapies for Patients with Type 2 Diabetes and Chronic Kidney Disease. J Clin Med 2023; 13:201. [PMID: 38202209 PMCID: PMC10779638 DOI: 10.3390/jcm13010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Since the early 2000s, an influx of novel glucose-lowering agents has changed the therapeutic landscape for treatment of diabetes and diabetes-related complications. Glucagon-like peptide-1 (GLP-1) receptor agonists represent an important therapeutic class for the management of type 2 diabetes (T2D), demonstrating benefits beyond glycemic control, including lowering of blood pressure and body weight, and importantly, decreased risk of development of new or worsening chronic kidney disease (CKD) and reduced rates of atherosclerotic cardiovascular events. Plausible non-glycemic mechanisms that benefit the heart and kidneys with GLP-1 receptor agonists include anti-inflammatory and antioxidant effects. Further supporting their use in CKD, the glycemic benefits of GLP-1 receptor agonists are preserved in moderate-to-severe CKD. Considering current evidence, major guideline-forming organizations recommend the use of GLP-1 receptor agonists in cases of T2D and CKD, especially in those with obesity and/or in those with high cardiovascular risk or established heart disease. Evidence continues to build that supports benefits to the heart and kidneys of the dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist tirzepatide. Ongoing outcome and mechanistic studies will continue to inform our understanding of the role of GLP-1 and dual GLP-1/GIP receptor agonists in diverse patient populations with kidney disease.
Collapse
Affiliation(s)
- Radica Z. Alicic
- Providence Medical Research Center, Providence Inland Northwest Health, 105 W. 8th Ave, Suite 250E, Spokane, WA 99204, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joshua J. Neumiller
- Providence Medical Research Center, Providence Inland Northwest Health, 105 W. 8th Ave, Suite 250E, Spokane, WA 99204, USA
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99164, USA
| |
Collapse
|
5
|
Weinberg Sibony R, Segev O, Dor S, Raz I. Drug Therapies for Diabetes. Int J Mol Sci 2023; 24:17147. [PMID: 38138975 PMCID: PMC10742594 DOI: 10.3390/ijms242417147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The treatment of type 2 diabetes (T2D) necessitates a multifaceted approach that combines behavioral and pharmacological interventions to mitigate complications and sustain a high quality of life. Treatment encompasses the management of glucose levels, weight, cardiovascular risk factors, comorbidities, and associated complications through medication and lifestyle adjustments. Metformin, a standard in diabetes management, continues to serve as the primary, first-line oral treatment across all age groups due to its efficacy, versatility in combination therapy, and cost-effectiveness. Glucagon-like peptide-1 receptor agonists (GLP-1 RA) offer notable benefits for HbA1c and weight reduction, with significant cardiovascular benefits. Sodium-glucose cotransporter inhibitors (SGLT-2i) lower glucose levels independently of insulin while conferring notable benefits for cardiovascular, renal, and heart-failure outcomes. Combined therapies emphasizing early and sustained glycemic control are promising options for diabetes management. As insulin therapy remains pivotal, metformin and non-insulin agents such as GLP-1 RA and SGLT-2i offer compelling options. Notably, exciting novel treatments like the dual GLP-1/ glucose-dependent insulinotropic polypeptide (GIP) agonist show promise for substantially reducing glycated hemoglobin and body weight. This comprehensive review highlights the evolving landscape of pharmacotherapy in diabetes, the drugs currently available for treating diabetes, their effectiveness and efficacy, the impact on target organs, and side effects. This work also provides insights that can support the customization of treatment strategies.
Collapse
Affiliation(s)
- Roni Weinberg Sibony
- Faculty of Medicine, Ben-Gurion University, Beer Sheva 8443944, Israel; (R.W.S.); (S.D.)
| | - Omri Segev
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Saar Dor
- Faculty of Medicine, Ben-Gurion University, Beer Sheva 8443944, Israel; (R.W.S.); (S.D.)
| | - Itamar Raz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem 91240, Israel
| |
Collapse
|
6
|
Kow CS, Ramachandram DS, Hasan SS. The impact of preadmission/prediagnosis use of GLP-1 receptor agonists on COVID-19 mortality in patients with diabetes: A systematic review and meta-analysis. Health Sci Rep 2023; 6:e1549. [PMID: 37720167 PMCID: PMC10500111 DOI: 10.1002/hsr2.1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Chia Siang Kow
- Department of Pharmacy PracticeSchool of Pharmacy, International Medical UniversityKuala LumpurMalaysia
| | | | - Syed Shahzad Hasan
- Department of PharmacySchool of Applied Sciences, University of HuddersfieldHuddersfieldUK
- School of Biomedical Sciences & PharmacyUniversity of NewcastleCallaghanAustralia
| |
Collapse
|
7
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Ashour NA, Negm WA. Potential role of tirzepatide towards Covid-19 infection in diabetic patients: a perspective approach. Inflammopharmacology 2023; 31:1683-1693. [PMID: 37208555 PMCID: PMC10198595 DOI: 10.1007/s10787-023-01239-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
In Covid-19, variations in fasting blood glucose are considered a distinct risk element for a bad prognosis and outcome in Covid-19 patients. Tirazepatide (TZT), a dual glucagon-like peptide-1 (GLP-1)and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist may be effective in managing Covid-19-induced hyperglycemia in diabetic and non-diabetic patients. The beneficial effect of TZT in T2DM and obesity is related to direct activation of GIP and GLP-1 receptors with subsequent improvement of insulin sensitivity and reduction of body weight. TZT improves endothelial dysfunction (ED) and associated inflammatory changes through modulation of glucose homeostasis, insulin sensitivity, and pro-inflammatory biomarkers release. TZT, through activation of the GLP-1 receptor, may produce beneficial effects against Covid-19 severity since GLP-1 receptor agonists (GLP-1RAs) have anti-inflammatory and pulmoprotective implications in Covid-19. Therefore, GLP-1RAs could effectively treat severely affected Covid-19 diabetic and non-diabetic patients. Notably, using GLP-1RAs in T2DM patients prevents glucose variability, a common finding in Covid-19 patients. Therefore, GLP-1RAs like TZT could be a therapeutic strategy in T2DM patients with Covid-19 to prevent glucose variability-induced complications. In Covid-19, the inflammatory signaling pathways are highly activated, resulting in hyperinflammation. GLP-1RAs reduce inflammatory biomarkers like IL-6, CRP, and ferritin in Covid-19 patients. Therefore, GLP-1RAs like TZ may be effective in Covid-19 patients by reducing the inflammatory burden. The anti-obesogenic effect of TZT may reduce Covid-19 severity by ameliorating body weight and adiposity. Furthermore, Covid-19 may induce substantial alterations in gut microbiota. GLP-1RA preserves gut microbiota and prevents intestinal dysbiosis. Herein, TZT, like other GLP-1RA, may attenuate Covid-19-induced gut microbiota alterations and, by this mechanism, may mitigate intestinal inflammation and systemic complications in Covid-19 patients with either T2DM or obesity. As opposed to that, glucose-dependent insulinotropic polypeptide (GIP) was reduced in obese and T2DM patients. However, activation of GIP-1R by TZT in T2DM patients improves glucose homeostasis. Thus, TZT, through activation of both GIP and GLP-1, may reduce obesity-mediated inflammation. In Covid-19, GIP response to the meal is impaired, leading to postprandial hyperglycemia and abnormal glucose homeostasis. Therefore, using TZT in severely affected Covid-19 patients may prevent the development of glucose variability and hyperglycemia-induced oxidative stress. Moreover, exaggerated inflammatory disorders in Covid-19 due to the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α may lead to systemic inflammation and cytokine storm development. Besides, GIP-1 inhibits expression of IL-1β, IL-6, MCP-1, chemokines and TNF-α. Therefore, using GIP-1RA like TZT may inhibit the onset of inflammatory disorders in severely affected Covid-19 patients. In conclusion, TZT, through activation of GLP-1 and GIP receptors, may prevent SARS-CoV-2-induced hyperinflammation and glucose variability in diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, P.O. Box 22511, Damanhour, Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Nada A. Ashour
- Department of Clinical Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
8
|
Nassar M, Abosheaishaa H, Singh AK, Misra A, Bloomgarden Z. Noninsulin-based antihyperglycemic medications in patients with diabetes and COVID-19: A systematic review and meta-analysis. J Diabetes 2023; 15:86-96. [PMID: 36690377 PMCID: PMC9934962 DOI: 10.1111/1753-0407.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Patients with diabetes are more likely to suffer COVID-19 complications. Using noninsulin antihyperglycemic medications (AGMs) during COVID-19 infection has proved challenging. In this study, we evaluate different noninsulin AGMs in patients with COVID-19. METHODS We searched Medline, Embase, Web of Science, and Cochrane on 24 January 2022. We used the following keywords (COVID-19) AND (diabetes mellitus) AND (antihyperglycemic agent). The inclusion criteria were studies reporting one or more of the outcomes. We excluded non-English articles, case reports, and literature reviews. Study outcomes were mortality, hospitalization, and intensive care unit (ICU) admission. RESULTS The use of metformin rather than other glucose-lowering medications was associated with statistically significant lower mortality (risk ratio [RR]: 0.60, 95% confidence interval [CI]: 0.47, 0.77, p < .001). Dipeptidyl peptidase-4 inhibitor (DPP-4i) use was associated with statistically significantly higher hospitalization risk (RR: 1.44, 95% CI: 1.23, 1.68, p < .001) and higher risk of ICU admissions and/or mechanical ventilation vs nonusers (RR: 1.24, 95% CI: 1.04, 1.48, p < .02). There was a statistically significant decrease in hospitalization for SGLT-2i users vs nonusers (RR: 0.89, 95% CI: 0.84-0.95, p < .001). Glucagon-like peptide-1 receptor agonist (GLP-1RA) use was associated with a statistically significant decrease in mortality (RR: 0.56, 95% CI: 0.42, 073, p < 0.001), ICU admission, and/or mechanical ventilation (RR: 0.79, 95% CI: 0.69-0.89, p < .001), and hospitalization (RR: 0.73, 95% CI: 0.54, 0.98, p = .04). CONCLUSIONS AGM use was not associated with increased mortality. However, metformin and GLP-1RA use reduced mortality risk statistically significantly. DPP-4i use was associated with a statistically significant increase in the risk of hospitalization and admission to the ICU.
Collapse
Affiliation(s)
- Mahmoud Nassar
- Department of MedicineIcahn School of Medicine at Mount Sinai/NYC Health+Hospitals/QueensNew York CityNew YorkUSA
| | - Hazem Abosheaishaa
- Department of MedicineIcahn School of Medicine at Mount Sinai/NYC Health+Hospitals/QueensNew York CityNew YorkUSA
| | - Awadhesh Kumar Singh
- Department of Diabetes & EndocrinologyGD Hospital & Diabetes InstituteKolkataIndia
| | - Anoop Misra
- Chairman, Fortis‐C‐DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, Diabetes Foundation (India), and National Diabetes Obesity and Cholesterol Foundation (NDOC)New DelhiIndia
| | - Zachary Bloomgarden
- Department of Medicine, Division of Endocrinology, Diabetes and Bone DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
9
|
Azhar A, Khan WH, Al-Hosaini K, Zia Q, Kamal MA. Crosstalk between SARS-CoV-2 Infection and Type II Diabetes. Comb Chem High Throughput Screen 2022; 25:2429-2442. [PMID: 35293290 DOI: 10.2174/1386207325666220315114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Since the outbreak of coronavirus disease (COVID-19) in Wuhan, China, triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) in late November 2019, spreading to more than 200 countries of the world, the ensuing pandemic to an enormous loss of lives, mainly the older population with comorbidities, like diabetes, cardiovascular disease, chronic obstructive pulmonary disease, obesity, and hypertension. Amongst these immune-debilitating diseases, SARS-CoV-2 infection is the most common in patients with diabetes due to the absence of a normal active immune system to fight the COVID-19. Recovery of patients having a history of diabetes from COVID-19 encounters several complications, and their management becomes cumbersome. For control of coronavirus, antiviral medications, glucose-lowering agents, and steroids have been carefully evaluated. In the present review, we discuss the crosstalk between SARS-CoV-2 infection and patients with a history of diabetes. We mainly emphasize the molecular factors that are involved in diabetic individuals recently infected by SARS-CoV-2 and developed COVID-19 disease. Lastly, we examine the medications available for the long-term management of diabetic patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh, Uttar Pradesh, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia.,West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease- related Molecular Network, West China Hospital, Sichuan University, Chengdu 6141001, Sichuan, China
| |
Collapse
|
10
|
Ouchi D, Vilaplana-Carnerero C, de Dios V, Giner-Soriano M, Morros R. Antidiabetic treatment and COVID-19 Outcomes: A population-based cohort study in primary health care in Catalonia during the first wave of the pandemic. Prim Care Diabetes 2022; 16:753-759. [PMID: 36216752 PMCID: PMC9531669 DOI: 10.1016/j.pcd.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
AIMS To analyse if antidiabetic treatment was associated with better COVID-19 outcomes in type 2 diabetic patients, measured by hospital admission and mortality rates as severe outcomes. METHODS Cohort study including COVID-19 patients registered in the Primary Care electronic records, in March-June 2020, comparing exposed to metformin in monotherapy with exposed to any other antidiabetic. DATA SOURCE SIDIAP (Information System for Research in Primary Care), which captures clinical information of 5,8 million people from Catalonia, Spain. RESULTS We included 31,006 diabetic patients infected with COVID-19, 43.7% previously exposed to metformin, 45.5% of them in monotherapy. 16.4% were admitted to hospital and 15.1% died. Users of insulin in monotherapy (OR 1.29, 95% CI 1.11-1.50), combined with metformin (OR 1.38, 1.13-1.69) or IDPP4 alone (OR 1.29, 1.03-1.63) had higher risk of severe outcomes than those in metformin monotherapy. Users of any insulin (OR 1.61, 1.32-1.97) or combined with metformin (OR 1.69, 1.30-2.20) had a higher risk of mortality. CONCLUSIONS Patients receiving metformin monotherapy in our study showed a lower risk of hospitalization and death in comparison to those treated with other frequent antidiabetic agents. We cannot distinguish if better outcomes are related with the antidiabetic therapy or with other factors, such as metabolic control or interventions applied during the hospital admission.
Collapse
Affiliation(s)
- Dan Ouchi
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Carles Vilaplana-Carnerero
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Vanessa de Dios
- Department of Clinical Pharmacology, Medicines Area, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Maria Giner-Soriano
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Rosa Morros
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain; Institut Català de la Salut, Barcelona, Spain; Plataforma SCReN, UICEC IDIAP Jordi Gol, Barcelona, Spain
| |
Collapse
|
11
|
Salmen T, Pietroșel VA, Mihai BM, Bica IC, Teodorescu C, Păunescu H, Coman OA, Mihai DA, Pantea Stoian A. Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19. Biomedicines 2022; 10:biomedicines10102624. [PMID: 36289885 PMCID: PMC9599217 DOI: 10.3390/biomedicines10102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
The present study aimed to analyse the published data and to realize an update about the use and pathogenesis of the novel antidiabetic drugs, respectively, dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1 Ra), and sodium-glucose co-transporter-2 inhibitors (SGLT-2i), in patients with type 2 diabetes mellitus (T2DM) and coronavirus disease (COVID-19). Literature research in the PubMed and Web of Science database was performed in order to identify relevant published clinical trials and meta-analyses that include information about the treatment with novel antidiabetic agents in patients with T2DM and COVID-19. A total of seven articles were included, and their primary and secondary outcomes were reported and analysed. DPP-4i has mixed results on mortality in T2DM patients with COVID-19 but with an overall slightly favourable or neutral effect, whereas GLP-1 Ra seems to have a rather beneficial impact, while SGLT-2i may be useful in acute illness. Even if there are limited data, they seem to have favourable efficacy and safety profiles. The available evidence is heterogenous and insufficient to evaluate if the benefits of non-insulin novel antidiabetic drugs in COVID-19 treatment are due to the improvement of glycaemic control or to their intrinsic anti-inflammatory effects but highlights their beneficial effects in the pathogenesis and evolution of the disease.
Collapse
Affiliation(s)
- Teodor Salmen
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Valeria-Anca Pietroșel
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr N.C.Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Bianca-Margareta Mihai
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Cristina Bica
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Claudiu Teodorescu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Păunescu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Oana Andreia Coman
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (O.A.C.); (D.-A.M.); Tel.: +40-755507110 (O.A.C.); +40-723591283 (D.-A.M.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr N.C.Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bld. Eroii Sanitari No. 8, 050471 Bucharest, Romania
- Correspondence: (O.A.C.); (D.-A.M.); Tel.: +40-755507110 (O.A.C.); +40-723591283 (D.-A.M.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr N.C.Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bld. Eroii Sanitari No. 8, 050471 Bucharest, Romania
| |
Collapse
|
12
|
Yu L, Zhang X, Ye S, Lian H, Wang H, Ye J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J Clin Endocrinol Metab 2022; 107:1799-1811. [PMID: 35262698 PMCID: PMC8992328 DOI: 10.1210/clinem/dgac137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Obesity is associated with an increase in morbidity and mortality from coronavirus disease 2019 (COVID-19). The risk is related to the cytokine storm, a major contributor to multiorgan failure and a pathological character of COVID-19 patients with obesity. While the exact cause of the cytokine storm remains elusive, disorders in energy metabolism has provided insights into the mechanism. Emerging data suggest that adipose tissue in obesity contributes to the disorders in several ways. First, adipose tissue restricts the pulmonary function by generation of mechanical pressures to promote systemic hypoxia. Second, adipose tissue supplies a base for severe acute respiratory syndrome coronavirus 2 entry by overexpression of viral receptors [angiotensin-converting enzyme 2 and dipeptidyl peptidase 4]. Third, impaired antiviral responses of adipocytes and immune cells result in dysfunction of immunologic surveillance as well as the viral clearance systems. Fourth, chronic inflammation in obesity contributes to the cytokine storm by secreting more proinflammatory cytokines. Fifth, abnormal levels of adipokines increase the risk of a hyperimmune response to the virus in the lungs and other organs to enhance the cytokine storm. Mitochondrial dysfunction in adipocytes, immune cells, and other cell types (endothelial cells and platelets, etc) is a common cellular mechanism for the development of cytokine storm, which leads to the progression of mild COVID-19 to severe cases with multiorgan failure and high mortality. Correction of energy surplus through various approaches is recommended in the prevention and treatment of COVID-19 in the obese patients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Immunology, Institute of Precision Medicine, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Sarah Ye
- Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Hongkai Lian
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
- Corresponding author:
| |
Collapse
|
13
|
Pang J, Feng JN, Ling W, Jin T. The anti-inflammatory feature of glucagon-like peptide-1 and its based diabetes drugs—Therapeutic potential exploration in lung injury. Acta Pharm Sin B 2022; 12:4040-4055. [PMID: 36386481 PMCID: PMC9643154 DOI: 10.1016/j.apsb.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Since 2005, GLP-1 receptor (GLP-1R) agonists (GLP-1RAs) have been developed as therapeutic agents for type 2 diabetes (T2D). GLP-1R is not only expressed in pancreatic islets but also other organs, especially the lung. However, controversy on extra-pancreatic GLP-1R expression still needs to be further resolved, utilizing different tools including the use of more reliable GLP-1R antibodies in immune-staining and co-immune-staining. Extra-pancreatic expression of GLP-1R has triggered extensive investigations on extra-pancreatic functions of GLP-1RAs, aiming to repurpose them into therapeutic agents for other disorders. Extensive studies have demonstrated promising anti-inflammatory features of GLP-1RAs. Whether those features are directly mediated by GLP-1R expressed in immune cells also remains controversial. Following a brief review on GLP-1 as an incretin hormone and the development of GLP-1RAs as therapeutic agents for T2D, we have summarized our current understanding of the anti-inflammatory features of GLP-1RAs and commented on the controversy on extra-pancreatic GLP-1R expression. The main part of this review is a literature discussion on GLP-1RA utilization in animal models with chronic airway diseases and acute lung injuries, including studies on the combined use of mesenchymal stem cell (MSC) based therapy. This is followed by a brief summary.
Collapse
|
14
|
Lee JH. Potential therapeutic effect of glucagon-like peptide-1 receptor agonists on COVID-19-induced pulmonary arterial hypertension. Med Hypotheses 2021; 158:110739. [PMID: 34916733 PMCID: PMC8654461 DOI: 10.1016/j.mehy.2021.110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious diseases caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Now, it is pandemic over the world. SARS-CoV-2 often causes a “cytokine storm” in people with COVID-19, causing inflammatory lung damage and pneumonia, which eventually leads to death. Glucagon like peptide-1 (GLP-1) is well known as an incretin hormone responsible for regulation of blood glucose through its receptor. Beyond glycemic control, GLP-1 receptor agonists (GLP-1RAs) have promising anti-inflammatory actions in human and rodent pathological models. Recent studies proved that GLP-1RAs attenuate pulmonary inflammation, reduce cytokine production, and preserve lung function in mice and rats with experimental lung injury. Moreover, a thickened pulmonary vascular wall, an important characteristic of pulmonary arterial hypertension (PAH) was observed in the autopsy lung tissue of a COVID-19 patient. Thus GLP-1RAs may be a novel therapeutic strategy for combating this pandemic specifically for patient characteristics of PHA after COVID-19 infection.
Collapse
Affiliation(s)
- Jong Han Lee
- Department of Marine Bio and Medical Science, Hanseo University, Seosan, South Korea
| |
Collapse
|
15
|
Sethumadhavan DV, Jabeena CA, Govindaraju G, Soman A, Rajavelu A. The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100079. [PMID: 34725650 PMCID: PMC8550886 DOI: 10.1016/j.crmicr.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/02/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of COVID-19, caused by SARS-CoV-2 poses a significant threat to humans as it is highly contagious with increasing mortality. There exists a high degree of heterogeneity in the mortality rates of COVID-19 across the globe. There are multiple speculations on the varying degree of mortality. Still, all the clinical reports have indicated that preexisting chronic diseases like hypertension, diabetes, chronic obstructive pulmonary disease (COPD), kidney disorders, and cardiovascular diseases are associated with the increased risk for high mortality in SARS-CoV-2 infected patients. It is worth noting that host factors, mainly epigenetic factors could play a significant role in deciding the outcome of COVID-19 diseases. Over the recent years, it is evident that chronic diseases are developed due to altered epigenome that includes a selective loss/gain of DNA and histone methylation on the chromatin of the cells. Since, there is a high positive correlation between chronic diseases and elevated mortality due to SARS-CoV-2, in this review; we discuss the overall picture of the aberrant epigenome map in varying chronic ailments and its implications in COVID-19 disease severity and high mortality.
Collapse
Affiliation(s)
- Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - C A Jabeena
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Gayathri Govindaraju
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Aparna Soman
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
16
|
Hariyanto TI, Intan D, Hananto JE, Putri C, Kurniawan A. Pre-admission glucagon-like peptide-1 receptor agonist (GLP-1RA) and mortality from coronavirus disease 2019 (Covid-19): A systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract 2021; 179:109031. [PMID: 34461139 PMCID: PMC8397482 DOI: 10.1016/j.diabres.2021.109031] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
AIMS GLP-1RA has many beneficial properties, including anti-inflammatory, anti-obesogenic, pulmonary protective effects as well as beneficial impact on gut microbiome. However, the evidence regarding the benefit of GLP-1RA in Covid-19 patients with diabetes is still unclear. This study sought to analyze the benefit of pre-admission use of GLP-1RA in altering the mortality outcomes of coronavirus disease 2019 (Covid-19) patients with diabetes mellitus. METHODS Using specific keywords, we comprehensively searched the potential articles on PubMed, Europe PMC, and medRxiv database until June 12th, 2021. All published studies on Covid-19 and GLP-1RA were retrieved. Statistical analysis was conducted using Review Manager 5.4 and Comprehensive Meta-Analysis version 3 software. RESULTS A total of 9 studies with 19,660 diabetes mellitus patients who were infected by SARS-CoV-2 were included in the meta-analysis. Our data suggested that pre-admission use of GLP-1RA was associated with reduction in mortality rate from Covid-19 in patients with diabetes mellitus (OR 0.53; 95 %CI: 0.43-0.66, p < 0.00001, I2 = 0%, random-effect modelling). Further analysis showed that the associations were not influenced by age (p = 0.213), gender (p = 0.421), hypertension (p = 0.131), cardiovascular disease (p = 0.293), nor the use of metformin (p = 0.189) and insulin (p = 0.117). CONCLUSIONS Our study suggests that pre-admission use of GLP-1RA may offer beneficial effects on Covid-19 mortality in patients with diabetes mellitus. However, more randomized clinical trials are required to confirm this conclusion.
Collapse
Affiliation(s)
| | - Denny Intan
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Joshua Edward Hananto
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Cynthia Putri
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia.
| |
Collapse
|
17
|
Effects of the Na +/H + Ion Exchanger on Susceptibility to COVID-19 and the Course of the Disease. JOURNAL OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM : JRAAS 2021. [PMID: 34285709 DOI: 10.1155/2021/4754440.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Na+/H+ ion exchanger (NHE) pumps Na+ inward the cell and H+ ion outside the cell. NHE activity increases in response to a decrease in intracellular pH, and it maintains intracellular pH in a narrow range. Patients with obesity, diabetes, and hypertension and the elderly are prone to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The angiotensin II (Ang II) level is high in chronic diseases such as diabetes, hypertension, and obesity. Ang II is the main stimulator of NHE, and an increased Ang II level causes prolonged NHE activation in these patients. The long-term increase in NHE activity causes H+ ions to leave the cell in patients with diabetes, hypertension, and obesity. Increasing H+ ions outside the cell lead to an increase in oxidative stress and reactive oxygen species. H+ ion flows into the cell due to the increased oxidative stress. This vicious circle causes intracellular pH to drop. Although NHE is activated when intracellular pH decreases, there is prolonged NHE activation in chronic diseases such as aforementioned. Novel coronavirus disease 2019 (COVID-19) progression may be more severe and mortal in these patients. SARS-CoV-2 readily invades the cell at low intracellular pH and causes infection. The renin-angiotensin system and NHE play a vital role in regulating intracellular pH. The reduction of NHE activity or its prolonged activation may cause susceptibility to SARS-CoV-2 infection by lowering intracellular pH in patients with diabetes, hypertension, and obesity. Prolonged NHE activation in these patients with COVID-19 may worsen the course of the disease. Scientists continue to investigate the mechanism of the disease and the factors that affect its clinical progression.
Collapse
|
18
|
Bil J, Możeńska O. The vicious cycle: a history of obesity and COVID-19. BMC Cardiovasc Disord 2021; 21:332. [PMID: 34229605 PMCID: PMC8258476 DOI: 10.1186/s12872-021-02134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, we face a surge in the fast-forward Coronavirus Disease 2019 (COVID-19) pandemic with nearly 170 million confirmed cases and almost 3.5 million confirmed deaths at the end of May 2021. Obesity, also known as the pandemic of the 21st century, has been evolving as an adverse prognostic marker. Obesity is associated with a higher risk of being SARS-CoV-2-positive (46%), as well as hospitalization (113%) and death (48%) due to COVID-19. It is especially true for subjects with morbid obesity. Also, observational studies suggest that in the case of COVID-19, no favorable “obesity paradox” is observed. Therefore, it is postulated to introduce a new entity, i.e., coronavirus disease-related cardiometabolic syndrome (CIRCS). In theory, it applies to all stages of COVID-19, i.e., prevention, acute proceedings (from COVID-19 diagnosis to resolution or three months), and long-term outcomes. Consequently, lifestyle changes, glycemic control, and regulation of the renin-angiotensin-aldosterone pathway have crucial implications for preventing and managing subjects with COVID-19. Finally, it is crucial to use cardioprotective drugs such as angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers and statins. Nevertheless, there is the need to conduct prospective studies and registries better to evaluate the issue of obesity in COVID-19 patients.
Collapse
Affiliation(s)
- Jacek Bil
- Department of Invasive Cardiology, Centre of Postgraduate Medical Education, Woloska Street 137, 02-507, Warsaw, Poland.
| | - Olga Możeńska
- Department of Internal Medicine, Hypertension and Angiology, Independent Public Central Clinical Hospital, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Kashyap S, Bala R, Madaan R, Behl T. Uncurtaining the effect of COVID-19 in diabetes mellitus: a complex clinical management approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35429-35436. [PMID: 34021454 PMCID: PMC8139544 DOI: 10.1007/s11356-021-14480-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 04/12/2023]
Abstract
The aim of the present review is to overview the common properties of corona virus and hence proofs well beginning of corona virus in persons with diabetes, and its treatment. Globally, it has been observed that according to the statistics, India has the second largest number of people with diabetes. Literature review has been implemented within the databases using suitable keywords. For persons suffering from diabetic disorder, the COVID-19 infection becomes a dual challenge. Diabetes is a severe metabolic situation which causes the sugar levels in the blood to increase than the normal level. Normally, communicable disease like COVID-19 is more prevailing in patients with diabetes. Diabetic patient has poor immune response to infections. The different bacterial, viral, parasitic, and mycotic infections showed increased probability in diabetic patients as compared to non-diabetic patient. All these conclusions clear out the intention that the diabetic patients are more susceptible to enhanced inflammatory response that may lead to rapid spreading of COVID-19 infection with high rate of mortality. In the present situation of pandemic, managing diabetes seems to be quite challenging and diabetic patient having COVID-19 infection should follow normal course of antihypertensive and antidiabetic drugs prescribed with the exception of sodium glucose co-transpoters-2 inhibitors which would increase the risk of dehydration and ketoacidosis. In view of above discussion, this article highlights the proposed mechanism of COVID-19 infection linking it with diabetes, antidiabetic drugs to be used in COVID-19 infection along with their advantages, and disadvantages and management of COVID-19 infection diabetic patient.
Collapse
Affiliation(s)
- Shilpi Kashyap
- Pharmaceutics, Himachal Institute of Pharmacy, Paonta Sahib, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
20
|
Belančić A, Kresović A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin Obes 2021; 11:e12439. [PMID: 33423388 PMCID: PMC7995087 DOI: 10.1111/cob.12439] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present manuscript is to discuss on potential pros and cons of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as glucose-lowering agents during COVID-19 pandemic, and what is more to evaluate them as potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without diabetes mellitus type 2. Besides being important glucose-lowering agents, GLP-1RAs pose promising anti-inflammatory and anti-obesogenic properties, pulmonary protective effects, as well as beneficial impact on gut microbiome composition. Hence, taking everything previously mentioned into consideration, GLP-1RAs seem to be potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without type 2 diabetes mellitus, as well as excellent antidiabetic (glucose-lowering) agents during COVID-19 pandemic times.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Clinical PharmacologyUniversity Hospital Centre RijekaRijekaCroatia
| | - Andrea Kresović
- Division of Gastroenterology, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| | - Marija Troskot Dijan
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| |
Collapse
|
21
|
Cumhur Cure M, Cure E. Effects of the Na +/H + Ion Exchanger on Susceptibility to COVID-19 and the Course of the Disease. J Renin Angiotensin Aldosterone Syst 2021; 2021:4754440. [PMID: 34285709 PMCID: PMC8265032 DOI: 10.1155/2021/4754440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The Na+/H+ ion exchanger (NHE) pumps Na+ inward the cell and H+ ion outside the cell. NHE activity increases in response to a decrease in intracellular pH, and it maintains intracellular pH in a narrow range. Patients with obesity, diabetes, and hypertension and the elderly are prone to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The angiotensin II (Ang II) level is high in chronic diseases such as diabetes, hypertension, and obesity. Ang II is the main stimulator of NHE, and an increased Ang II level causes prolonged NHE activation in these patients. The long-term increase in NHE activity causes H+ ions to leave the cell in patients with diabetes, hypertension, and obesity. Increasing H+ ions outside the cell lead to an increase in oxidative stress and reactive oxygen species. H+ ion flows into the cell due to the increased oxidative stress. This vicious circle causes intracellular pH to drop. Although NHE is activated when intracellular pH decreases, there is prolonged NHE activation in chronic diseases such as aforementioned. Novel coronavirus disease 2019 (COVID-19) progression may be more severe and mortal in these patients. SARS-CoV-2 readily invades the cell at low intracellular pH and causes infection. The renin-angiotensin system and NHE play a vital role in regulating intracellular pH. The reduction of NHE activity or its prolonged activation may cause susceptibility to SARS-CoV-2 infection by lowering intracellular pH in patients with diabetes, hypertension, and obesity. Prolonged NHE activation in these patients with COVID-19 may worsen the course of the disease. Scientists continue to investigate the mechanism of the disease and the factors that affect its clinical progression.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- 1Department of Biochemistry, Private Kucukcekmece Hospital, Istanbul, Turkey
| | - Erkan Cure
- 2Department of Internal Medicine, Ota&Jinemed Hospital, Istanbul, Turkey
| |
Collapse
|