1
|
Li C, Meng Y, Zhou B, Zhang Y, Xia Q, Huang Y, Meng L, Shan C, Xia J, Zhang X, Wang Q, Lv M, Long W. ITGB3 is reduced in pregnancies with preeclampsia and its influence on biological behavior of trophoblast cells. Mol Med 2024; 30:275. [PMID: 39721996 DOI: 10.1186/s10020-024-01050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a serious pregnancy complication associated with impaired trophoblast function. Integrin β3 (ITGB3) is a cell adhesion molecule that plays a role in cell movement. The objective of this study was to identify the biological function and expression level of ITGB3 in PE. METHODS Cell proliferation, migration, invasion, adhesion, and apoptosis were estimated by CCK8 assay, transwell, scratch assays, and flow cytometry, respectively. The expression levels of ITGB3 were determined by qRT-PCR, western blot, and immunohistochemistry (IHC). Co-immunoprecipitation and Alphafold-Multimer protein complex structure prediction software were employed to identify the molecules that interact with ITGB3. RESULTS Cell functional experiments conducted on HTR8/SVneo cells demonstrated that ITGB3 significantly enhanced proliferation, migration, invasion, and adhesion, while simultaneously inhibiting apoptosis. Relative ITGB3 expression levels were observed to be lower in PE placental tissue than in normal tissue and similarly reduced in hypoxic HTR8/SVneo cells. RNA-sequencing data from PE placental samples in the GEO database were analyzed to identify differentially expressed genes associated with the disease. We identified a total of 1460 mRNAs that were significantly differentially expressed in PE patients. Specifically, 798 mRNAs were significantly upregulated, and 662 mRNAs were significantly downregulated. Notably, the ITGB3 exhibited a pronounced down-regulation among the differential expression mRNA. CONCLUSIONS This study suggested that ITGB3 plays an important role in promoting the proliferative, migratory, invasive, and adhesive capabilities of trophoblast cells. These findings may facilitate a more in-depth understanding of the molecular mechanisms that promote PE progression.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yanan Meng
- Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Beibei Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yanrong Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Qing Xia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yu Huang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Li Meng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Chunjian Shan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Jiaai Xia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Xiangdi Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Qiuhong Wang
- Department of Clinical Laboratory, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, China
| | - Mingming Lv
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.
| |
Collapse
|
2
|
Chen D, Yang J, Zhang T, Li X, Xiong Q, Jiang S, Yi C. Mechanistic Investigation of Calcium Channel Regulation-Associated Genes in Pulmonary Arterial Hypertension and Signatures for Diagnosis. Mol Biotechnol 2024:10.1007/s12033-024-01112-x. [PMID: 38461180 DOI: 10.1007/s12033-024-01112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disorder with complex causes. Calcium channel blockers have long been used in its treatment. Our study aimed to validate experimental results showing increased calcium ion concentration in PAH patients. We investigated the impact of genes related to calcium channel regulation on PAH development and developed an accurate diagnostic model. Clinical trial data from serum of 18 healthy individuals and 18 patients with PAH were retrospectively analyzed. Concentrations of calcium and potassium ions were determined and compared. Datasets were retrieved, selecting genes associated with calcium ion release. R packages processed the datasets, filtering 174 common genes, and conducting Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Six hub genes were identified, and nomogram and logistic regression prediction models were constructed. Random forest filtered cross genes, and a diagnostic model was developed and validated using an artificial neural network. The 174 intersection genes related to calcium ions showed significant correlations with biological processes, cellular components, and molecular functions. Six key genes were obtained by constructing a protein-protein interaction network. A diagnostic model with high accuracy (> 90%) and diagnostic capability (AUC = 0.98) was established using a neural network algorithm. This study validated the experimental results, identified key genes associated with calcium ions, and developed a highly accurate diagnostic model using a neural network algorithm. These findings provide insights into the role of calcium release genes in PAH and demonstrate the potential of the diagnostic model for clinical application. However, due to limitations in sample size and a lack of prognosis data, the regulatory mechanisms of calcium ions in PAH patients and their impact on the clinical prognosis of PAH patients still need further exploration in the future.
Collapse
Affiliation(s)
- Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Xuemei Li
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China.
| |
Collapse
|
3
|
He YZG, Wang YX, Ma JS, Li RN, Wang J, Lian TY, Zhou YP, Yang HP, Sun K, Jing ZC. MicroRNAs and their regulators: Potential therapeutic targets in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107216. [PMID: 37699495 DOI: 10.1016/j.vph.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by pulmonary arterial remodeling. Despite that current combination therapy has shown improvement in morbidity and mortality, a better deciphering of the underlying pathological mechanisms and novel therapeutic targets is urgently needed to combat PAH. MicroRNA, the critical element in post-transcription mechanisms, mediates cellular functions mainly by tuning downstream target gene expression. Meanwhile, upstream regulators can regulate miRNAs in synthesis, transcription, and function. In vivo and in vitro studies have suggested that miRNAs and their regulators are involved in PAH. However, the miRNA-related regulatory mechanisms governing pulmonary vascular remodeling and right ventricular dysfunction remain elusive. Hence, this review summarized the controversial roles of miRNAs in PAH pathogenesis, focused on different miRNA-upstream regulators, including transcription factors, regulatory networks, and environmental stimuli, and finally proposed the prospects and challenges for the therapeutic application of miRNAs and their regulators in PAH treatment.
Collapse
Affiliation(s)
- Yang-Zhi-Ge He
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yi-Xuan Wang
- Laboratory Department of Qingzhou People's Hospital, Qingzhou 262500, Shandong, China
| | - Jing-Si Ma
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Ruo-Nan Li
- Department of School of Pharmacy, Henan University, Kaifeng 475100, Henan, China
| | - Jia Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong, China
| | - Tian-Yu Lian
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| | - Hao-Pu Yang
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Kai Sun
- Medical Science Research Center, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
4
|
Mutgan AC, Jandl K, Radic N, Valzano F, Kolb D, Hoffmann J, Foris V, Wilhelm J, Boehm PM, Hoetzenecker K, Olschewski A, Olschewski H, Heinemann A, Wygrecka M, Marsh LM, Kwapiszewska G. Pentastatin, a matrikine of the collagen IVα5, is a novel endogenous mediator of pulmonary endothelial dysfunction. Am J Physiol Cell Physiol 2023; 325:C1294-C1312. [PMID: 37694286 PMCID: PMC11550886 DOI: 10.1152/ajpcell.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to β1-integrin subunit clustering and Rho/ROCK activation. Blockage of the β1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the β1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Radic
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jochen Wilhelm
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
5
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
6
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
7
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Samsami M. The key roles of non-coding RNAs in the pathophysiology of hypertension. Eur J Pharmacol 2022; 931:175220. [PMID: 35995213 DOI: 10.1016/j.ejphar.2022.175220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is a multifactorial condition in which several genetic and environmental elements contribute. Recent investigations have revealed contribution of non-coding region of the transcriptome in this trait. CDKN2B-AS1, AK098656, MEG3, H19, PAXIP1-AS1, TUG1, GAS5, CASC2 and CPS1-IT are among long non-coding RNAs participating in the pathophysiology of hypertension. Several miRNAs have also been found to be implicated in this disorder. miR-296, miR-637, miR-296, miR-637, hsa-miR-361-5p, miR-122-5p, miR-199a-3p, miR-208a-3p, miR-423-5p, miR-223-5p and miR-140-5p are among dysregulated miRNAs in this condition whose application as diagnostic biomarkers for hypertension has been evaluated. Finally, hsa-circ-0005870, hsa_circ_0037911 and hsa_circ_0014243 are examples of dysregulated circular RNAs in hypertensive patients. In the current review, we describe the role of these non-coding RNAs in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Khomtchouk BB, Lee YS, Khan ML, Sun P, Mero D, Davidson MH. Targeting the cytoskeleton and extracellular matrix in cardiovascular disease drug discovery. Expert Opin Drug Discov 2022; 17:443-460. [PMID: 35258387 PMCID: PMC9050939 DOI: 10.1080/17460441.2022.2047645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Currently, cardiovascular disease (CVD) drug discovery has focused primarily on addressing the inflammation and immunopathology aspects inherent to various CVD phenotypes such as cardiac fibrosis and coronary artery disease. However, recent findings suggest new biological pathways for cytoskeletal and extracellular matrix (ECM) regulation across diverse CVDs, such as the roles of matricellular proteins (e.g. tenascin-C) in regulating the cellular microenvironment. The success of anti-inflammatory drugs like colchicine, which targets microtubule polymerization, further suggests that the cardiac cytoskeleton and ECM provide prospective therapeutic opportunities. AREAS COVERED Potential therapeutic targets include proteins such as gelsolin and calponin 2, which play pivotal roles in plaque development. This review focuses on the dynamic role that the cytoskeleton and ECM play in CVD pathophysiology, highlighting how novel target discovery in cytoskeletal and ECM-related genes may enable therapeutics development to alter the regulation of cellular architecture in plaque formation and rupture, cardiac contractility, and other molecular mechanisms. EXPERT OPINION Further research into the cardiac cytoskeleton and its associated ECM proteins is an area ripe for novel target discovery. Furthermore, the structural connection between the cytoskeleton and the ECM provides an opportunity to evaluate both entities as sources of potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bohdan B. Khomtchouk
- University of Chicago, Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology, Chicago, IL USA
| | - Yoon Seo Lee
- The College of the University of Chicago, Chicago, IL USA
| | - Maha L. Khan
- The College of the University of Chicago, Chicago, IL USA
| | - Patrick Sun
- The College of the University of Chicago, Chicago, IL USA
| | | | - Michael H. Davidson
- University of Chicago, Department of Medicine, Section of Cardiology, Chicago, IL USA
| |
Collapse
|
9
|
Integrative analysis of transcriptome-wide association study and mRNA expression profile identified candidate genes and pathways associated with aortic aneurysm and dissection. Gene 2022; 808:145993. [PMID: 34626721 DOI: 10.1016/j.gene.2021.145993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Aortic aneurysm and dissection (AAD) are a set of life-threatening diseases. This study aimed to investigate the genetic mechanisms of AAD by integrating transcriptome-wide association study (TWAS) and mRNA expression profile. METHODS The genome-wide association study (GWAS) summary data of AAD was obtained from the UK Biobank, which contains 452,264 White British individuals, including 1470 AAD patients. The TWAS analysis was performed by integrating expression quantitative trait loci (eQTL) data of aorta and the GWAS dataset of AAD using the FUSION software. The TWAS significant genes and differentially expressed genes (DEGs) identified by mRNA expression profile of aortic dissection were integrated to find common genes and biological process. For TWAS significant genes, protein-protein interaction (PPI) network analysis was further conducted based on STRING database. RESULTS TWAS identified 423 genes with P < 0.05. After comparing the results of TWAS and mRNA expression profile, 11 overlapping genes (PDE8B, IKBKE, HMGA1, PKM, CHST1, DUS3L, S100A16, PTGS1, RAB38, PDLIM5, NOL6) and 15 common gene ontology (GO) terms (including extracellular matrix organization, external encapsulating structure organization, cell-substrate adhesion, actin filament-based process, focal adhesion, protein kinase activity) were identified. 9 hub genes of the TWAS results were identified via PPI network analysis, including RPS9, RPS18, RSRC1, DNAJC3, HBS1L, PRKCA, NCAM1, ITGB3, FTSJ3. CONCLUSION Multiple candidate genes and biological processes associated with AAD were identified by the present integrative study of TWAS and mRNA expression profile. Further studies are needed to elucidate the genetic mechanisms of AAD.
Collapse
|
10
|
Wang M, Su L, Sun J, Cai L, Li X, Zhu X, Song L, Li J, Tong S, He Q, Cai M, Yang L, Chen Y, Wang L, Huang X. FGF21 attenuates pulmonary arterial hypertension via downregulation of miR-130, which targets PPARγ. J Cell Mol Med 2022; 26:1034-1049. [PMID: 34989130 PMCID: PMC8831951 DOI: 10.1111/jcmm.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
The proliferation, migration and apoptotic resistance of pulmonary artery smooth muscle cells (PASMCs) are central to the progression of pulmonary arterial hypertension (PAH). Our previous study identified that fibroblast growth factor 21 (FGF21) regulates signalling pathway molecules, such as peroxisome proliferator‐activated receptor gamma (PPARγ), to play an important role in PAH treatment. However, the biological roles of miRNAs in these effects are not yet clear. In this study, using miRNA sequencing and real‐time PCR, we found that FGF21 treatment inhibited miR‐130 elevation in hypoxia‐induced PAH in vitro and in vivo. Dual luciferase reporter gene assays showed that miR‐130 directly negatively regulates PPARγ expression. Inhibition of miR‐130 expression suppressed abnormal proliferation, migration and apoptotic resistance in hypoxic PASMCs, and this effect was corrected upon PPARγ knockdown. Both the ameliorative effect of FGF21 on pulmonary vascular remodelling and the inhibitory effect on proliferation, migration and apoptotic resistance in PASMCs were observed following exogenous administration of miR‐130 agomir. In conclusion, this study revealed the protective effect and mechanism of FGF21 on PAH through regulation of the miR‐130/PPARγ axis, providing new ideas for the development of potential drugs for PAH based on FGF21.
Collapse
Affiliation(s)
- Meibin Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihuang Su
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junwei Sun
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luqiong Cai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuchun Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiayan Zhu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lanlan Song
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingyin Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuolan Tong
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinlian He
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengsi Cai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lehe Yang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanfan Chen
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Olutoye Ii OO, Short WD, Gilley J, Hammond Ii JD, Belfort MA, Lee TC, King A, Espinoza J, Joyeux L, Lingappan K, Gleghorn JP, Keswani SG. The Cellular and Molecular Effects of Fetoscopic Endoluminal Tracheal Occlusion in Congenital Diaphragmatic Hernia. Front Pediatr 2022; 10:925106. [PMID: 35865706 PMCID: PMC9294219 DOI: 10.3389/fped.2022.925106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a complex disease associated with pulmonary hypoplasia and pulmonary hypertension. Great strides have been made in our ability to care for CDH patients, specifically in the prenatal improvement of lung volume and morphology with fetoscopic endoluminal tracheal occlusion (FETO). While the anatomic effects of FETO have been described in-depth, the changes it induces at the cellular and molecular level remain a budding area of CDH research. This review will delve into the cellular and molecular effects of FETO in the developing lung, emphasize areas in which further research may improve our understanding of CDH, and highlight opportunities to optimize the FETO procedure for improved postnatal outcomes.
Collapse
Affiliation(s)
- Oluyinka O Olutoye Ii
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Walker D Short
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jamie Gilley
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - J D Hammond Ii
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - Michael A Belfort
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Timothy C Lee
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Alice King
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Jimmy Espinoza
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Luc Joyeux
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Zang H, Zhang Q, Li X. Non-Coding RNA Networks in Pulmonary Hypertension. Front Genet 2021; 12:703860. [PMID: 34917122 PMCID: PMC8669616 DOI: 10.3389/fgene.2021.703860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are involved in various cellular processes. There are several ncRNA classes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The detailed roles of these molecules in pulmonary hypertension (PH) remain unclear. We systematically collected and reviewed reports describing the functions of ncRNAs (miRNAs, lncRNAs, and circRNAs) in PH through database retrieval and manual literature reading. The characteristics of identified articles, especially the experimental methods, were carefully reviewed. Furthermore, regulatory networks were constructed using ncRNAs and their interacting RNAs or genes. These data were extracted from studies on pulmonary arterial smooth muscle cells, pulmonary artery endothelial cells, and pulmonary artery fibroblasts. We included 14 lncRNAs, 1 circRNA, 74 miRNAs, and 110 mRNAs in the constructed networks. Using these networks, herein, we describe the current knowledge on the role of ncRNAs in PH. Moreover, these networks actively provide an improved understanding of the roles of ncRNAs in PH. The results of this study are crucial for the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Hongbin Zang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiongyu Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Wang H, Jiang W, Hu Y, Wan Z, Bai H, Yang Q, Zheng Q. Quercetin improves atrial fibrillation through inhibiting TGF-β/Smads pathway via promoting MiR-135b expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153774. [PMID: 34656066 DOI: 10.1016/j.phymed.2021.153774] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE To investigate the role and mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF). STUDY DESIGN Rat cardiac fibroblasts (RCFs) models and RCFs were used to explore the effect and underlying mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF) in vivo and in vitro by a series of experiments. METHODS Differentially expressed microRNAs were screened from human AF tissues using the GEO2R and RT-qPCR. The expressions of TGF-β/Smads pathway molecules (TGFβ1, TGFBR1, Tgfbr1, Tgfbr2, Smad2, Smad3, Smad4) in AF tissues were detected by RT-qPCR and Western blot. The relationships between miR-135b and genes (Tgfbr1, Tgfbr2, Smad2) were analyzed by Pearson correlation, TargetScan and dual-luciferase activity assay. RCFs induced by ISO were treated with quercetin (20 or 50 μM), miR-135b mimic and inhibitor, siTgfbr1 and their corresponding controls, then the cell viability was determined by MTT and the expressions of cyclin D1, α-SMA, collagen-related molecules, TGF-β/Smads pathway molecules, and miR-135b were measured by RT-qPCR and Western blot. ISO-induced rats were treated with quercetin (25 mg/kg/day) via gavage, miR-135b antagomir, agomir and their corresponding controls. The treated rats were used for the detection of miR-135b expression by RT-qPCR, histopathological observation by HE and Masson staining, and the detection of Col1A1 and fibronectin contents by immunohistochemical technique. RESULTS The expression of miR-135b was downregulated, and those of TGFBR1, TGFBR2, target genes of miR-135b were upregulated in human AF tissues and negatively regulated by miR-135b in RCFs. Through inhibiting TGF-β/Smads pathway via promoting miR-135b expression, quercetin treatment inhibited proliferation, myofibroblast differentiation and collagen deposition in ISO-treated RCFs, as evidenced by reduced expressions of cyclin D1, α-SMA, collagen-related genes and proteins, and alleviated fibrosis and collagen deposition of atrial tissues in ISO-treated rats. CONCLUSION Quercetin may alleviate AF by inhibiting fibrosis of atrial tissues through inhibiting TGF-β/Smads pathway via promoting miR-135b expression.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Wei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Yanchao Hu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Zhaofei Wan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Hongyuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China.
| |
Collapse
|
14
|
Xu B, Xu G, Yu Y, Lin J. The role of TGF-β or BMPR2 signaling pathway-related miRNA in pulmonary arterial hypertension and systemic sclerosis. Arthritis Res Ther 2021; 23:288. [PMID: 34819148 PMCID: PMC8613994 DOI: 10.1186/s13075-021-02678-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication of connective tissue disease (CTD), causing death in systemic sclerosis (SSc). The past decade has yielded many scientific insights into microRNA (miRNAs) in PAH and SSc. This growth of knowledge has well-illustrated the complexity of microRNA (miRNA)-based regulation of gene expression in PAH. However, few miRNA-related SSc-PAH were elucidated. This review firstly discusses the role of transforming growth factor-beta (TGF-β) signaling and bone morphogenetic protein receptor type II (BMPR2) in PAH and SSc. Secondly, the miRNAs relating to TGF-β and BMPR2 signaling pathways in PAH and SSc or merely PAH were subsequently summarized. Finally, future studies might develop early diagnostic biomarkers and target-oriented therapeutic strategies for SSc-PAH and PAH treatment.
Collapse
Affiliation(s)
- Bei Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Guanhua Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Ye Yu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003.
| |
Collapse
|
15
|
Tang L, Chen P, Yang L, Liu J, Zheng Y, Lin J, Chen S, Luo Y, Chen Y, Ma X, Zhang L. Transgenerational inheritance of promoter methylation changes in extrauterine growth restriction-induced pulmonary arterial pressure disorders. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1551. [PMID: 34790757 PMCID: PMC8576681 DOI: 10.21037/atm-21-4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/02/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the influence of extrauterine growth restriction (EUGR) on pulmonary arterial pressure (PAP) and the transgenerational inheritance of promoter methylation changes in pulmonary vascular endothelial cells (PVECs) of 2 consecutive generations under EUGR stress. Methods After modeling, PAP values of F1 and F2 pups were investigated at 9-week-old. The methyl-DNA immune precipitation chip was used to analyze DNA methylation profiling. Differential enrichment peaks (DEPs) and regions of interest (ROIs) were identified, based on which Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and reactome pathway enrichments were analyzed. Results The F1 male rats in the EUGR group had significantly increased PAP levels compared to the control group; however, this increase was not observed in female rats. Interestingly, in F2 female rats, the EUGR group had decreased PAP. In the X chromosome of the F1 males, there were 16 differential ROI genes in the F1 generation, while in F2 females, there were 86 differential ROI genes. Similarly, there were 105 DEPs in the F1 generation and 38 DEPs in the F2 generation. In combination with the 5 common ROIs and 14 common DEPs, 18 genes were regarded as the key candidate genes associated with hereditable PAP variation in the EUGR model. Enrichment analysis showed that synaptic and neurotransmitter relative pathways might be involved in the process of EUGR-induced PAH development. Among common DEPs, Smad1 and Serpine1 were also found in 102 PAH-associated genes in the MalaCards database. Conclusions Together, there is a transgenerational inheritance of promoter methylation changes in the X chromosome in EUGR-induced PAP disorders, which involves the participation of synaptic and neurotransmitter relative pathways. Also, attenuated methylation of Smad1 and Serpine1 in the promoter region may be a partial driver of PAH in later life.
Collapse
Affiliation(s)
- Lili Tang
- Department of Neonatology, Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc., Wuxi, China
| | - Jiyuan Liu
- Fujian Medical University, Fuzhou, China
| | - Yuanfang Zheng
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Jincai Lin
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Senhua Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yinzhu Luo
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yanyan Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoying Ma
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liyan Zhang
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Qiu L, Gong G, Wu W, Li N, Li Z, Chen S, Li P, Chen T, Zhao H, Hu C, Fang Z, Wang Y, Liu H, Cui P, Zhang G. A novel prognostic signature for idiopathic pulmonary fibrosis based on five-immune-related genes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1570. [PMID: 34790776 PMCID: PMC8576669 DOI: 10.21037/atm-21-4545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a highly fatal lung disease of unknown etiology with a median survival after diagnosis of only 2–3 years. Its poor prognosis is due to the limited therapy options available as well as the lack of effective prognostic indicators. This study aimed to construct a novel prognostic signature for IPF to assist in the personalized management of IPF patients during treatment. Methods Differentially-expressed genes (DEGs) in IPF patients versus healthy individuals were analyzed using the “limma” package of R software. Immune-related genes (IRGs) were obtained from the ImmPort database. Univariate Cox regression analysis was adopted to screen significantly prognostic IRGs for IPF patients. Multiple Cox regression analysis was used to identify optimal prognostic IRGs and construct a prognostic signature. Results Compared with healthy individuals, there were a total of 52 prognosis-related DEGs in the bronchoalveolar lavage (BAL) samples of IPF patients, of which 37 genes were identified as IRGs. Of these, five genes (CXCL14, SLC40A1, RNASE3, CCR3, and RORA) were significantly associated with overall survival (OS) in IPF patients, and were utilized for establishment of the prognostic signature. IPF patients were divided into high- and low-risk groups based on the prognostic signature. Marked differences in the OS probability were observed between high- and low-risk IPF patients. The area under curves (AUCs) of the receiver operating characteristic (ROC) curve for the prognostic signature in the training and validation cohorts were 0.858 and 0.837, respectively. The expression levels between RNASE3 and SLC40A1 (P<0.01, r=0.394), between RORA and CXCL14 (P<0.01, r=−0.355), between CCR3 and CXCL14 (P<0.01, r=0.258), as well as between RNASE3 and CCR3 (P<0.01, r=0.293) were significantly correlated. Conclusions We developed a validated and reproducible IRG-based prognostic signature that should be helpful in the personalized management of patients with IPF, providing new insights into the relationship between the immune system and IPF.
Collapse
Affiliation(s)
- Lingxiao Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Medical Key Laboratory for Interstitial Lung Disease and Lung Transplantation, Zhengzhou, China
| | - Gencheng Gong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjuan Wu
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Nana Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaonan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Medical Key Laboratory for Interstitial Lung Disease and Lung Transplantation, Zhengzhou, China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Medical Key Laboratory for Interstitial Lung Disease and Lung Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Chronic Respiratory Disease, Zhengzhou, China
| | - Tengfei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huasi Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunling Hu
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zeming Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongping Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panpan Cui
- School of Nursing and Heath, Zhengzhou University, Zhengzhou, China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Medical Key Laboratory for Interstitial Lung Disease and Lung Transplantation, Zhengzhou, China.,Zhengzhou Key Laboratory for Chronic Respiratory Disease, Zhengzhou, China
| |
Collapse
|
17
|
Houshmandfar S, Saeedi-Boroujeni A, Rashno M, Khodadadi A, Mahmoudian-Sani MR. miRNA-223 as a regulator of inflammation and NLRP3 inflammasome, the main fragments in the puzzle of immunopathogenesis of different inflammatory diseases and COVID-19. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2187-2195. [PMID: 34590186 PMCID: PMC8481106 DOI: 10.1007/s00210-021-02163-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
Millions of people around the world are involved with COVID-19 due to infection with SARS-CoV-2. Virological features of SARS-CoV-2, including its genomic sequence, have been identified but the mechanisms governing COVID-19 immunopathogenesis have remained uncertain. miR-223 is a hematopoietic cell-derived miRNA that is implicated in regulating monocyte-macrophage differentiation, neutrophil recruitment, and pro-inflammatory responses. The miR-223 controls inflammation by targeting a variety of factors, including TRAF6, IKKα, HSP-70, FOXO1, TLR4, PI3K/AKT, PARP-1, HDAC2, ITGB3, CXCL2, CCL3, IL-6, IFN-I, STMN1, IL-1β, IL-18, Caspase-1, NF-κB, and NLRP3. The key role of miR-223 in regulating the inflammatory process and its antioxidant and antiviral role can suggest this miRNA as a potential regulatory factor in the process of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Sheyda Houshmandfar
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Abadan University of Medical Sciences, Abadan, Iran.,Immunology Today, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9934951. [PMID: 34306317 PMCID: PMC8263248 DOI: 10.1155/2021/9934951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular "sponge" in organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics, and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great assistance to the etiologic research of AAAs.
Collapse
|
19
|
Extracellular Vesicles and Their miRNA Content in Amniotic and Tracheal Fluids of Fetuses with Severe Congenital Diaphragmatic Hernia Undergoing Fetal Intervention. Cells 2021; 10:cells10061493. [PMID: 34198576 PMCID: PMC8231823 DOI: 10.3390/cells10061493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) are at high risk of postnatal mortality due to lung hypoplasia and arterial pulmonary hypertension. In severe cases, prenatal intervention by fetal endoscopic tracheal occlusion (FETO) can improve survival by accelerating lung growth. However, postnatal mortality remains in the range of about 50% despite fetal treatment, and there is currently no clear explanation for this different clinical response to FETO. We evaluated the concentration of extracellular vesicles (EVs) and associated microRNA expression in amniotic and tracheal fluids of fetuses with CDH undergoing FETO, and we examined the association between molecular findings and postnatal survival. We observed a higher count of EVs in the amniotic fluid of non-survivors and in the tracheal fluid sampled in utero at the time of reversal of tracheal occlusion, suggesting a pro-inflammatory lung reactivity that is already established in utero and that could be associated with a worse postnatal clinical course. In addition, we observed differential regulation of four EV-enclosed miRNAs (miR-379-5p, miR-889-3p; miR-223-3p; miR-503-5p) in relation to postnatal survival, with target genes possibly involved in altered lung development. Future research should investigate molecular therapeutic agents targeting differentially regulated miRNAs to normalize their expression and potentially improve clinical outcomes.
Collapse
|
20
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Su F, Shi M, Zhang J, Zheng Q, Wang H, Li X, Chen J. MiR-223/NFAT5 signaling suppresses arterial smooth muscle cell proliferation and motility in vitro. Aging (Albany NY) 2020; 12:26188-26198. [PMID: 33373321 PMCID: PMC7803580 DOI: 10.18632/aging.202395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/31/2020] [Indexed: 01/11/2023]
Abstract
Aberrant proliferation and migration of vascular smooth muscle cells contributes to cardiovascular diseases (CVDs), including atherosclerosis. MicroRNA-223 (miR-223) protects against atherosclerotic CVDs. We investigated the contribution of miR-223 to platelet-derived growth factor-BB (PDGF-BB)-induced proliferation and migration of human aortic smooth muscle cells (HASMCs). We found that miR-223 was downregulated in PDGF-BB-treated HASMCs in a dose- and time-dependent manner, while nuclear factor of activated T cells 5 (NFAT5) was upregulated. Gain- and loss-of-function studies demonstrated that miR-223 treatment reduced PDGF-BB-induced HASMC proliferation and motility, whereas miR-223 inhibitor enhanced these processes. Moreover, NFAT5 was identified as a direct target of miR-223 in HASMC. The inhibitory effects of miR-223 on HASMC proliferation and migration were partly rescued by NFAT5 restoration. Overall, these findings suggest that miR-223 inhibits the PDGF-BB-induced proliferation and motility of HASMCs by targeting NFAT5 and that miR-223 and NFAT5 may be potential therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China.,Department of Cardiology, Air Force General Hospital, PLA, Beijing 100142, China
| | - Miaoqian Shi
- Department of Cardiology, PLA Army General Hospital, Beijing 100700, China
| | - Jian Zhang
- Department of Cardiology, Beijing Chest Hospital Heart Center, Capital Medical University, Beijing 101149, China
| | - Qiangsun Zheng
- Division of Cardiology, Second Affiliated Hospital of Xi’an Jiao Tong University, Xi'an 710004, Shaanxi, China
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
| | - Jianghong Chen
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
| |
Collapse
|
22
|
Wu Z, Geng J, Qi Y, Li J, Bai Y, Guo Z. MiR-193-3p attenuates the vascular remodeling in pulmonary arterial hypertension by targeting PAK4. Pulm Circ 2020; 10:2045894020974919. [PMID: 33354317 PMCID: PMC7734527 DOI: 10.1177/2045894020974919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease associated with dysfunction of pulmonary artery endothelial cells and pulmonary artery smooth muscle cells (PASMCs). To explore the potential mechanism of miR-193-3p in pulmonary arterial hypertension, human PASMCs and rats were respectively stimulated by hypoxia and monocrotaline to establish PAH model in vivo and in vitro. The expressions of miR-193-3p and p21-activated protein kinase 4 (PAK4) in the lung samples of PAH patients and paired healthy samples from the healthy subjects in PHA cells and rats were detected by quantitative reverse transcriptase-PCR. Morphological changes in lung tissues were determined using hematoxylin and eosin staining. Right ventricular systolic pressure (RVSP) and ratio of right ventricle to left ventricle plus septum (RV/LV p S) were measured. The binding relationship between miR-193-3p and PAK4 was analyzed by TargetScan and verified by luciferase reporter assay. Cell viability, apoptosis, and migration were detected by 3-(4, 5-Dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) flow cytometry, and wound-healing assays, respectively. The protein expressions of PAK4, proliferating cell nuclear antigen (PCNA), P21, p-AKT, and AKT in vivo or in vitro were determined by Western blot. In this study, we found that in pulmonary arterial hypertension, miR-193-3p expression was downregulated and PAK4 expression was up-regulated. MiR-193-3p directly targeted PAK4 and negatively regulated its expression. Hypoxia condition promoted cell proliferation, migration, and inhibited apoptosis accompanied with increased expressions of PCNA and p-AKT/AKT and decreased expression of P21 in PASMCs. MiR-193-3p overexpression attenuated the effects of hypoxia on PASMCs via downregulating PAK4. Monocrotaline treatment increased p-AKT/AKT and decreased P21 expression and caused pulmonary vascular remodeling in the model rats. MiR-193-3p overexpression attenuated pulmonary vascular remodeling, decreased p-AKT/AKT, and increased P21 levels via downregulating PAK4 in monocrotaline-induced rats. The results in this study demonstrated that upregulation of miR-193-3p reduced cell proliferation, migration, and apoptosis of PAH in vitro and pulmonary vascular remodeling in PAH in vivo through downregulating PAK4.
Collapse
Affiliation(s)
- Zhenhua Wu
- Department of Cardiac Surgery, ICU, Tianjin Chest Hospital, Tianjin, China
| | - Jie Geng
- Department of Cardiac Surgery, CICU, Tianjin Chest Hospital, Tianjin, China
| | - Yujuan Qi
- Department of Cardiac Surgery, ICU, Tianjin Chest Hospital, Tianjin, China
| | - Jian Li
- Department of Cardiac Surgery, ICU, Tianjin Chest Hospital, Tianjin, China
| | - Yaobang Bai
- Department of Cardiac Surgery, ICU, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
23
|
Guo J, Zhang L, Lian L, Hao M, Chen S, Hong Y. CircATP2B4 promotes hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells via the miR-223/ATR axis. Life Sci 2020; 262:118420. [DOI: 10.1016/j.lfs.2020.118420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
24
|
Santos-Ferreira CA, Abreu MT, Marques CI, Gonçalves LM, Baptista R, Girão HM. Micro-RNA Analysis in Pulmonary Arterial Hypertension: Current Knowledge and Challenges. ACTA ACUST UNITED AC 2020; 5:1149-1162. [PMID: 33294743 PMCID: PMC7691282 DOI: 10.1016/j.jacbts.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023]
Abstract
The role of miRNAs in PAH is fast expanding, and it is increasingly difficult to identify which molecules have the highest translational potential. This review discusses the challenges in miRNA analysis and interpretation in PAH and highlights 4 promising miRNAs in this field. Additional pre-clinical studies and clinical trials are urgently needed to bring miRNAs from the bench to the bedside soon.
Pulmonary arterial hypertension (PAH) is a rare, chronic disease of the pulmonary vasculature that is associated with poor outcomes. Its pathogenesis is multifactorial and includes micro-RNA (miRNA) deregulation. The understanding of the role of miRNAs in PAH is expanding quickly, and it is increasingly difficult to identify which miRNAs have the highest translational potential. This review summarizes the current knowledge of miRNA expression in PAH, discusses the challenges in miRNA analysis and interpretation, and highlights 4 promising miRNAs in this field (miR-29, miR-124, miR-140, and miR-204).
Collapse
Key Words
- BMPR2, bone morphogenetic protein receptor type 2
- EPC, endothelial progenitor cell
- HIF, hypoxia-inducible factor
- HPAH, hereditary pulmonary arterial hypertension
- MCT, monocrotaline
- PAAF, pulmonary arterial adventitial fibroblast
- PAEC, pulmonary artery endothelial cell
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cells
- PH, pulmonary hypertension
- RV, right ventricle
- SU/Hx/Nx, association of Sugen 5416 with chronic hypoxia followed by normoxia
- WHO, World Health Organization
- animal model
- lncRNA, long noncoding RNA
- mRNA, messenger RNA
- miRNA, micro-RNA
- micro-RNA
- microarray
- ncRNAs, noncoding RNAs
- pulmonary arterial hypertension
Collapse
Affiliation(s)
- Cátia A Santos-Ferreira
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Mónica T Abreu
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Carla I Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Lino M Gonçalves
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Rui Baptista
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal.,Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria de Feira, Portugal
| | - Henrique M Girão
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Li A, Zhu Z, He Y, Dong Q, Tang D, Chen Z, Huang W. DDCI-01, a novel long acting phospdiesterase-5 inhibitor, attenuated monocrotaline-induced pulmonary hypertension in rats. Pulm Circ 2020; 10:2045894020939842. [PMID: 33240482 PMCID: PMC7672744 DOI: 10.1177/2045894020939842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive, malignant heart disease, characterized by pulmonary arteriole remodeling and increased pulmonary vascular resistance, which eventually leads to right heart failure. This study sought to evaluate the effects of a novel long-acting phospdiesterase-5 inhibitor, namely DDCI-01, as an early intervention for monocrotaline-induced pulmonary hypertensive rats. To establish this model, 50 mg/kg of monocrotaline was intraperitoneally injected into rats. At Day 7 after monocrotaline injection, two doses of DDCI-01 (3 or 9 mg/kg/day) or tadalafil (at 3 or 9 mg/kg/day) were intragastrically administered. The rats were anesthetized with pentobarbital for hemodynamic and echocardiographic measurements, at Day 21 after monocrotaline injection. Compared to the monocrotaline group, DDCI-01 at 3 and 9 mg/kg/day (P) reduced the mean pulmonary arterial pressure (mPAP), right ventricular systolic pressure, right ventricular transverse diameter, pulmonary arterial medial wall thickness (WT%), and right ventricle hypertrophy. However, no significant difference in the indices mentioned as above was found between DDCI-01 (3 mg/kg/day) and tadalafil (3 mg/kg/day). In addition, DDCI-01 at 9 mg/kg/day resulted in lower mPAP and WT%, as well as higher cyclic guanosine monophosphate levels in the lung and plasma compared with the same dose of tadalafil (9 mg/kg/day) (all P < 0.05). These findings suggested that DDCI-01 improved monocrotaline-induced pulmonary hypertension in rats, and a dose of DDCI-01 of 9 mg/kg/day might be more effective than the same dose of tadalafil in monocrotaline-induced pulmonary hypertension in rats.
Collapse
Affiliation(s)
- Ailing Li
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Zhongkai Zhu
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Yangke He
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Qian Dong
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dianyong Tang
- Internation Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Zhongzhu Chen
- Internation Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Wei Huang
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
26
|
Sun YN, Liu B, Wang JJ, Li XM, Zhu JY, Liu C, Yao J, Zhong YL, Jiang Q, Yan B. Identification of aberrantly expressed circular RNAs in hyperlipidemia-induced retinal vascular dysfunction in mice. Genomics 2020; 113:593-600. [PMID: 32991963 DOI: 10.1016/j.ygeno.2020.09.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Hyperlipidemia-induced retinal vascular dysfunction is a complex pathological process. circRNAs are important regulators of biological processes and disease progression. However, the expression pattern of circRNAs in hyperlipidemia-induced retinal vascular dysfunction remains unclear. Herein, we used a murine model of hyperlipidemia and identified 317 differentially expressed circRNAs between hyperlipidemic retinas and normolipidemic retinas by circRNA microarrays. GO analysis indicated that the host genes of dysregulated circRNAs were targeted to cell differentiation (ontology: biological process), cytoplasm (ontology: cellular component), and protein binding (ontology: molecular function). Pathway analysis revealed that circRNAs-mediated network was mostly enriched in focal adhesion signaling. Notably, circLDB1 was significantly up-regulated in the serum of coronary artery disease patients and aqueous humor of age-related macular degeneration patients. circLDB1 regulated endothelial cell viability, proliferation, and apoptosis in vitro. Thus, circRNAs are the promising targets for the prediction and diagnosis of hyperlipidemia-induced vascular diseases.
Collapse
Affiliation(s)
- Ya-Nan Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Jian Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xiu-Miao Li
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Jun-Ya Zhu
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jin Yao
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yu-Ling Zhong
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| |
Collapse
|
27
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
28
|
Zhou Y, Fang XL, Zhang Y, Feng YN, Wang SS. miR-20a-5p promotes pulmonary artery smooth muscle cell proliferation and migration by targeting ABCA1. J Biochem Mol Toxicol 2020; 34:e22589. [PMID: 32720422 DOI: 10.1002/jbt.22589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND The function of miR-20a-5p in pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism remains largely unknown. METHODS C57BL/6J mice and PASMCs were used for constructing pulmonary artery hypertension (PAH) animal and cell models, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was employed to detect miR-20a-5p and ATP-binding cassette subfamily A member 1 (ABCA1) messenger RNA expression. CCK-8, Transwell, and TUNEL experiments were used to determine PASMCs proliferation, migration, and apoptosis. The relationship between miR-20a-5p and ABCA1 was detected by luciferase reporter experiment, Western blot analysis, and qRT-PCR. RESULTS miR-20a-5p was remarkably elevated in PASMCs of PAH mice and human PASMCs treated by hypoxia, while ABCA1 was remarkably decreased. After transfection of miR-20a-5p mimics, PASMCs proliferation and migration were promoted and PASMCs apoptosis was suppressed. ABCA1 was confirmed to be a target of miR-20a-5p and restoration of ABCA1 reversed the function of miR-20a-5p. CONCLUSION miR-20a-5p enhances the proliferation and migration of PASMCs to promote the development of PAH via targeting ABCA1.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Xuan-Liang Fang
- Department of Orthopedics, Ningbo City, Zhejiang Province, China
| | - Yun Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Medical School of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Yan-Ni Feng
- Department of Emergency, Ningbo Seventh Hospital, Ningbo City, Zhejiang Province, China
| | - Shan-Shan Wang
- Intensive Care Unit, The Affiliated Hospital of Medical School of Ningbo University, Ningbo City, Zhejiang Province, China
| |
Collapse
|
29
|
Liu JJ, Tang MM, Zhu ML, Xie CX, Kang PF, Ling X, Zhang H, Wang XJ, Tang B. Docosahexaenoic acid inhibits Ca 2+ influx and downregulates CaSR by upregulating microRNA-16 in pulmonary artery smooth muscle cells. J Biochem Mol Toxicol 2020; 34:e22573. [PMID: 32659049 DOI: 10.1002/jbt.22573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022]
Abstract
Docosahexaenoic acid (DHA) is reported to have the potential to ameliorate pulmonary arterial hypertension (PAH), while the specific mechanism is still obscure. This study aims to investigate the function of DHA in pulmonary artery smooth muscle cells (PASMCs) and explore the underlying mechanism. In our study, DHA was used to incubate PASMCs. Cytosolic-free Ca2+ concentration ([Ca2+ ]cyt) was measured using Fluo-3 AM method. Real-time polymerase chain reaction was used to detect microRNA-16 (miR-16) and calcium-sensing receptor (CaSR) messenger RNA expression levels. CCK-8 assay, BrdU assay, and Transwell assay were employed to detect the effects of DHA on proliferation and migration of PASMCs. CaSR was confirmed as a direct target of miR-16 using dual-luciferase assay, polymerase chain reaction, and Western blot analysis. It was found that DHA significantly inhibited PASMC proliferation and migration and decreased [Ca2+ ]cyt. After transfection of miR-16 mimics, proliferation and migration ability of PASMCs were significantly inhibited, whereas opposite effects were observed after miR-16 inhibition. [Ca2+ ]cyt was also inhibited by miR-16 transfection. DHA then promoted the expression of miR-16, and the effects of DHA on PASMCs were annulled when miR-16 was inhibited. CaSR was identified as a direct target of miR-16. CaSR was inhibited directly by miR-16 and indirectly by DHA. In conclusion, DHA inhibits the proliferation and migration of PASMCs, and probably ameliorates PAH via regulating miR-16/CaSR axis.
Collapse
Affiliation(s)
- Jin-Jun Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Ming-Ming Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Ming-Li Zhu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Cai-Xia Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Pin-Fang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Xuan Ling
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Heng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Xiao-Jing Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| |
Collapse
|
30
|
Su M, Fan S, Ling Z, Fan X, Xia L, Liu Y, Li S, Zhang Y, Zeng Z, Tang WH. Restoring the Platelet miR-223 by Calpain Inhibition Alleviates the Neointimal Hyperplasia in Diabetes. Front Physiol 2020; 11:742. [PMID: 32733269 PMCID: PMC7359912 DOI: 10.3389/fphys.2020.00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Platelet hyperactivity is the hallmark of diabetes, and platelet activation plays a crucial role in diabetic vascular complications. Recent studies have shown that upon activation, platelet-derived miRNAs are incorporated into vascular smooth muscle cells (VSMCs), regulating the phenotypic switch of VSMC. Under diabetes, miRNA deficiency in platelets fails to regulate the VSMC phenotypic switch. Therefore, manipulation of platelet-derived miRNAs expression may provide therapeutic option for diabetic vascular complications. We seek to investigate the effect of calpeptin (calpain inhibitor) on the expression of miRNAs in diabetic platelets, and elucidate the downstream signaling pathway involved in protecting from neointimal formation in diabetic mice with femoral wire injury model. Using human cell and platelet coculture, we demonstrate that diabetic platelet deficient of miR-223 fails to suppress VSMC proliferation, while overexpression of miR-223 in diabetic platelets suppressed the proliferation of VSMC to protect intimal hyperplasia. Mechanistically, miR-223 directly targets the insulin-like growth factor-1 receptor (IGF-1R), which inhibits the phosphorylation of GSK3β and activates the phosphorylation of AMPK, resulting in reduced VSMC dedifferentiation and proliferation. Using a murine model of vascular injury, we show that calpeptin restores the platelet expression of miR-223 in diabetes, and the horizontal transfer of platelet miR-223 into VSMCs inhibits VSMC proliferation in the injured artery by targeting the expression of IGF-1R. Our data present that the platelet-derived miR-223 suppressed VSMC proliferation via the regulation miR-223/IGF-1R/AMPK signaling pathways, and inhibition of calpain alleviates neointimal formation by restoring the expression of miR-223 in diabetic platelet.
Collapse
Affiliation(s)
- Meiling Su
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenwei Ling
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xuejiao Fan
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Luoxing Xia
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yingying Liu
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Shaoying Li
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhang
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Zhi Zeng
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Wai Ho Tang
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Yi XH, Zhang B, Fu YR, Yi ZJ. STAT1 and its related molecules as potential biomarkers in Mycobacterium tuberculosis infection. J Cell Mol Med 2020; 24:2866-2878. [PMID: 32048448 PMCID: PMC7077527 DOI: 10.1111/jcmm.14856] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a severe infectious disease that seriously endangers human health. The immune defence mechanism of the body against TB is still unclear. The purpose of this study was to find the key molecules involved in the immune defence response during TB infection, and provide reference for the treatment of TB and further understanding of the immune defence mechanism of the body. Data from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83456 were downloaded from GEO data sets for analysis, and a total of 192 differentially expressed genes were screened out. Most of these genes are enriched in the interferon signalling pathway and are defence response–related. We also found that STAT1 plays an important role in the immune defence of TB infection and it is one of the key genes related to interferon signalling pathway. STAT1‐related molecules including hsa‐miR‐448, hsa‐miR‐223‐3p, SAMD8_hsa_circRNA 994 and TWF1_hsa_circRNA 9897 were therefore screened out. Furthermore, expression levels of hsa‐miR‐448 and hsa‐miR‐223‐3p were then verified by qRT‐PCR. Results showed that both hsa‐miR‐448 and hsa‐miR‐223‐3p were down‐regulated in plasma from patients with pulmonary TB. Taken together, our data indicate that an mRNA‐miRNA‐circRNA interaction chain may play an important role in the infection of MTB, and STAT1 and related molecules including hsa‐miR‐223‐3p, has‐miR‐448, SAMD8_hsa_circRNA994 and TWF1_hsa_circRNA9897 were identified as potential biomarkers in the development of active TB.
Collapse
Affiliation(s)
- Xing-Hao Yi
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine and clinical medical collegue, Weifang Medical University, Weifang, China.,Clinical Medical College, Jining Medical University, Jining, China
| | - Bo Zhang
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine and clinical medical collegue, Weifang Medical University, Weifang, China.,Weifang No. 2 People's Hospital, Weifang, China
| | - Yu-Rong Fu
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine and clinical medical collegue, Weifang Medical University, Weifang, China
| | - Zheng-Jun Yi
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine and clinical medical collegue, Weifang Medical University, Weifang, China
| |
Collapse
|
32
|
Han L, Song N, Hu X, Zhu A, Wei X, Liu J, Yuan S, Mao W, Chen X. Inhibition of RELM-β prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sci 2020; 246:117419. [PMID: 32045592 DOI: 10.1016/j.lfs.2020.117419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
AIMS Although resistin-like molecule β (RELM-β) is involved in the pathological processes of various lung diseases, such as pulmonary inflammation, asthma and fibrosis, its potential roles in hypoxic pulmonary arterial hypertension (PAH) remain largely unknown. The study aims to investigate whether RELM-β contributes to hypoxia-induced excessive proliferation of human pulmonary artery smooth muscle cells (PASMCs) and to explore the potential mechanisms of this process. MAIN METHODS Human PASMCs were exposed to normoxia or hypoxia (1% O2) for 24 h. siRNA targeting RELM-β was transfected into cells. Protein levels of KCNK3, RELM-β, pSTAT3 and STAT3 were determined by immunoblotting. The translocation of NFATc2 and expression of KCNK3 were visualized by immunofluorescence. 5-ethynyl-2'-deoxyuridine assays and cell counting kit-8 assays were performed to assess the proliferation of PASMCs. KEY FINDINGS (1) Chronic hypoxia significantly decreased KCNK3 protein levels while upregulating RELM-β protein levels in human PASMCs, which was accompanied by excessive proliferation of cells. (2) RELM-β could promote human PASMCs proliferation and activate the STAT3/NFAT axis by downregulating KCNK3 protein under normoxia. (3) Inhibition of RELM-β expression effectively prevented KCNK3-mediated cell proliferation under hypoxia. (4) Phospholipase C (PLC) inhibitor U-73122 could not only prevent the hypoxia/RELM-β-induced decrease in KCNK3 protein, but also inhibit the enhanced cell viability caused by hypoxia/RELM-β. (5) Both hypoxia and RELM-β could downregulate membrane KCNK3 protein levels by enhancing endocytosis. SIGNIFICANCE RELM-β activation is responsible for hypoxia-induced excessive proliferation of human PASMCs. Interfering with RELM-β may alleviate the progression of hypoxic PAH by upregulating PLC-dependent KCNK3 expression.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nannan Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomin Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, CAMS&PUMC, Beijing, China
| | - Xin Wei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinmin Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
33
|
Zhu Y, Li K, Yan L, He Y, Wang L, Sheng L. miR-223-3p promotes cell proliferation and invasion by targeting Arid1a in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:150-159. [PMID: 31912865 DOI: 10.1093/abbs/gmz151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has indicated that microRNAs can regulate downstream signaling pathways and play an important role in various tumors. In this study, we found that miR-223-3p was differentially expressed in 40 paired gastric cancer tissues and adjacent tissues and that miR-223-3p was positively correlated with tumor invasion depth and lymph node metastasis. Luciferase reporter assay confirmed that Arid1a was the target gene of miR-223-3p. Functional assays showed that miR-223-3p promoted the proliferation and invasion of gastric cancer cells by regulating the expression of Arid1a. We also confirmed that miR-223-3p regulated the growth of gastric cancer cells in vivo, while an antagomir against miR-223-3p significantly inhibited tumor growth. In conclusion, our results demonstrated that miR-223-3p inhibits gastric cancer cell progression by decreasing the expression of Arid1a. Therefore, miR-223-3p may act as a potential therapeutic target for patients with gastric cancer.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Kai Li
- School of Graduate Studies, Wannan Medical College, Wuhu 241000, China
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241000, China
| | - Liang Yan
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241000, China
| | - Yang He
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Lili Sheng
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| |
Collapse
|
34
|
Bisserier M, Janostiak R, Lezoualc’h F, Hadri L. Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2020; 2:R17-R34. [PMID: 32161845 PMCID: PMC7065685 DOI: 10.1530/vb-19-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial cardiopulmonary disease characterized by an elevation of pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR), which can lead to right ventricular (RV) failure, multi-organ dysfunction, and ultimately to premature death. Despite the advances in molecular biology, the mechanisms underlying pulmonary hypertension (PH) remain unclear. Nowadays, there is no curative treatment for treating PH. Therefore, it is crucial to identify novel, specific therapeutic targets and to offer more effective treatments against the progression of PH. Increasing amounts of evidence suggest that epigenetic modification may play a critical role in the pathogenesis of PAH. In the presented paper, we provide an overview of the epigenetic mechanisms specifically, DNA methylation, histone acetylation, histone methylation, and ncRNAs. As the recent identification of new pharmacological drugs targeting these epigenetic mechanisms has opened new therapeutic avenues, we also discuss the importance of epigenetic-based therapies in the context of PH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Frank Lezoualc’h
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, University of Toulouse, Toulouse Cedex 4, France
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
35
|
Wei Y, Chen S, Sun D, Li X, Wei R, Li X, Nian H. miR-223-3p promotes autoreactive T h17 cell responses in experimental autoimmune uveitis (EAU) by inhibiting transcription factor FOXO3 expression. FASEB J 2019; 33:13951-13965. [PMID: 31645142 DOI: 10.1096/fj.201901446r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathogenic T helper (Th)17 cells are key mediators of autoimmune diseases such as uveitis and its animal model, experimental autoimmune uveitis (EAU). However, the contribution of microRNAs (miRs) to the intrinsic control of pathogenic Th17 cells in EAU remains largely unknown. Here, we have reported that miR-223-3p was significantly up-regulated in interphotoreceptor retinoid-binding protein-specific Th17 cells, and its expression was enhanced by IL-23-signal transducer and activator of transcription 3 signaling. Knockdown of miR-223-3p decreased the pathogenicity of Th17 cells in a T-cell transfer model of EAU. Mechanistic studies showed that miR-223-3p directly repressed the expression of forkhead box O3 (FOXO3), and FOXO3 negatively regulated pathogenic Th17 cell responses partially via suppression of IL-23 receptor expression. Thus, our results reveal an important role for miR-223-3p in autoreactive Th17 cell responses and suggest a potential therapeutic avenue for uveitis.-Wei, Y., Chen, S., Sun, D., Li, X., Wei, R., Li, X., Nian, H. miR-223-3p promotes autoreactive Th17 cell responses in experimental autoimmune uveitis (EAU) by inhibiting transcription factor FOXO3 expression.
Collapse
Affiliation(s)
- Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA.,Doheny Eye Institute, Los Angeles, California, USA
| | - Xue Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
36
|
Liu W, Chen B, Zheng Y, Shi Y, Shi Z. Effect of Platelet-rich Plasma on Implant Bone Defects in Rabbits Through the FAK/PI3K/AKT Signaling Pathway. Open Life Sci 2019; 14:311-317. [PMID: 33817164 PMCID: PMC7874784 DOI: 10.1515/biol-2019-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Platelet-rich plasma (PRP) has been shown to be a beneficial growth factor for bone tissue healing and is used in implantology. The aim of this study was to investigate the effects of PRP on bone defects in rabbits. Twenty rabbits were used to establish the implant bone defect model in this study. An intrabony defect (5mm × 5mm × 3mm) was created in alveolar bone in the lower jar of each rabbit. The wound was treated with PRP. The expression of platelet-derived growth factor BB (PDGFBB) was assessed by enzyme-linked immunosorbent assay (ELISA). Focal adhesion kinase (FAK) and related phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B) levels were measured by Western blot. The results show that PRP could significantly improve the bone healing process when compared with control, and 10% PRP could markedly increase fibroblast proliferation 48-h post treatment. PDGFBB was higher in the PRP group than that in the control group. PRP treatment also could elevate the phosphorylation of FAK and PI3K/AKT, although the inhibitor of PDGFR could reverse this trend. These results suggest that PRP treatment improves the bone healing process through the FAK/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ben Chen
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Youyang Zheng
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuehua Shi
- School of Stomatology, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| | - Zhuojin Shi
- School of Stomatology, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| |
Collapse
|
37
|
Liu A, Liu Y, Li B, Yang M, Liu Y, Su J. Role of miR-223-3p in pulmonary arterial hypertension via targeting ITGB3 in the ECM pathway. Cell Prolif 2018; 52:e12550. [PMID: 30507047 PMCID: PMC6496671 DOI: 10.1111/cpr.12550] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
Objectives To investigate the functions of miR‐223‐3p and ITGB3 in pulmonary arterial hypertension (PAH). Materials and Methods Microarray analysis was used to detect differentially expressed genes and microRNAs. In in vitro models, the expressions of miR‐223‐3p and ITGB3 were detected by qRT‐PCR and Western blot. α‐SMA expression and cell proliferation were analysed by immunofluorescence and MTT assay, respectively. In in vivo models, PAH progressions were determined by measuring the levels of mPAP and RVSP. Lung and myocardial tissues were subjected to HE staining and Masson and Sirius red‐saturated carbazotic acid staining to investigate the pathological features. Results The microarray analysis revealed that ITGB3 was upregulated, while hsa‐miR‐223‐3p was downregulated in PAH. After the induction of hypoxia, miR‐223‐3p was downregulated and ITGB3 was upregulated in PASMCs. Hypoxia induction promoted cell proliferation and inhibited α‐SMA expression in PASMCs. Both the upregulation of miR‐223‐3p and the downregulation of ITGB3 attenuated the aberrant proliferation induced by hypoxia conditions. After approximately 4 weeks, the mPAP and RVSP levels of rats injected with MCT were decreased by the overexpression of miR‐223‐3p or the silencing of ITGB3. The staining results revealed that both miR‐223‐3p overexpression and ITGB3 knockdown alleviated the pulmonary vascular remodelling and improved the PAH pathological features of rats. Conclusions MiR‐223‐3p alleviated the progression of PAH by suppressing the expression of ITGB3, a finding which provides novel targets for clinical treatment.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yifan Liu
- Weifang Medicial University, Weifang, China
| | - Bin Li
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Yang
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junwu Su
- Department of Pediatric Cardiac Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|