1
|
Zhang Y, Long Y, Li Y, Liao D, Hu L, Peng K, Liu H, Ji F, Shan X. Remote ischemic conditioning may improve graft function following kidney transplantation: a systematic review and meta-analysis with trial sequential analysis. BMC Anesthesiol 2024; 24:168. [PMID: 38702625 PMCID: PMC11067269 DOI: 10.1186/s12871-024-02549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Remote ischemic conditioning (RIC) has the potential to benefit graft function following kidney transplantation by reducing ischemia-reperfusion injury; however, the current clinical evidence is inconclusive. This meta-analysis with trial sequential analysis (TSA) aimed to determine whether RIC improves graft function after kidney transplantation. METHODS A comprehensive search was conducted on PubMed, Cochrane Library, and EMBASE databases until June 20, 2023, to identify all randomized controlled trials that examined the impact of RIC on graft function after kidney transplantation. The primary outcome was the incidence of delayed graft function (DGF) post-kidney transplantation. The secondary outcomes included the incidence of acute rejection, graft loss, 3- and 12-month estimated glomerular filtration rates (eGFR), and the length of hospital stay. Subgroup analyses were conducted based on RIC procedures (preconditioning, perconditioning, or postconditioning), implementation sites (upper or lower extremity), and graft source (living or deceased donor). RESULTS Our meta-analysis included eight trials involving 1038 patients. Compared with the control, RIC did not significantly reduce the incidence of DGF (8.8% vs. 15.3%; risk ratio = 0.76, 95% confidence interval [CI], 0.48-1.21, P = 0.25, I2 = 16%), and TSA results showed that the required information size was not reached. However, the RIC group had a significantly increased eGFR at 3 months after transplantation (mean difference = 2.74 ml/min/1.73 m2, 95% CI: 1.44-4.05 ml/min/1.73 m2, P < 0.0001, I2 = 0%), with a sufficient evidence suggested by TSA. The secondary outcomes were comparable between the other secondary outcomes. The treatment effect of RIC did not differ between the subgroup analyses. CONCLUSION In this meta-analysis with trial sequential analysis, RIC did not lead to a significant reduction in the incidence of DGF after kidney transplantation. Nonetheless, RIC demonstrated a positive correlation with 3-month eGFR. Given the limited number of patients included in this study, well-designed clinical trials with large sample sizes are required to validate the renoprotective benefits of RIC. TRIAL REGISTRATION This systematic review and meta-analysis was registered at the International Prospective Register of Systematic Reviews (Number CRD42023464447).
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yuqin Long
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongjun Li
- Department of Anesthesiology, Lianshui County People's Hospital, Huaian, China
| | - Dawei Liao
- Department of Anesthesiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Linkun Hu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Peng
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Fuhai Ji
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China.
| | - Xisheng Shan
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Guo H, Zhang Y, Chu Y, Yang S, Zhang J, Qiao R. Recombinant protein diannexin prevents preeclampsia-like symptoms in a pregnant mouse model via reducing the release of microparticles. Front Med 2022; 16:919-931. [PMID: 36331793 DOI: 10.1007/s11684-021-0918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022]
Abstract
Preeclampsia (PE) is characterized by placenta-mediated pregnancy complication. The only effective treatment for PE is the delivery of the placenta. However, this treatment may cause preterm birth and neonatal death. Therefore, preventing PE is needed. The mechanism of PE involves abnormal placentation, which leads to the release of anti-angiogenic and inflammatory mediators into maternal circulation. These mediators contribute to systemic vascular dysfunction, inflammatory responses, and excessive thrombin generation. Microparticles (MPs) are reportedly involved in PE by promoting the thromboinflammatory response. This study describes a strategy to prevent PE by reducing MP release using the recombinant protein, diannexin. Results showed that the patients with PE had elevated MP number and procoagulant activity and increased NLRP3 inflammasome activation. Additionally, diannexin remarkably reduced the release of MPs from activated cells by binding to phosphatidylserine exposed on the surface of activated cells. Moreover, in vivo results showed that diannexin could prevent PE-like symptoms by decreasing MPs and NLRP3 inflammasome activation in pregnant mice. Furthermore, diannexin effectively inhibited trophoblast cell activation and NLRP3 inflammasome activation in vitro. These findings suggested that diannexin inhibited MP release and might be an effective therapeutic strategy for preventing PE.
Collapse
Affiliation(s)
- Han Guo
- Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yuncong Zhang
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, 102206, China
| | - Yaxin Chu
- Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Shuo Yang
- Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Zhang
- Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Qiao
- Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Abstract
The cytokine storm (CS) in hyperinflammation is characterized by high levels of cytokines, extreme activation of innate as well as adaptive immune cells and initiation of apoptosis. High levels of apoptotic cells overwhelm the proper recognition and removal system of these cells. Phosphatidylserine on the apoptotic cell surface, which normally provides a recognition signal for removal, becomes a target for hemostatic proteins and secretory phospholipase A2. The dysregulation of these normal pathways in hemostasis and the inflammasome result in a prothrombotic state, cellular death, and end-organ damage. In this review, we provide the argument that this imbalance in recognition and removal is a common denominator regardless of the inflammatory trigger. The complex reaction of the immune defense system in hyperinflammation leads to self-inflicted damage. This common endpoint may provide additional options to monitor the progression of the inflammatory syndrome, predict severity, and may add to possible treatment strategies.
Collapse
|
4
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Kuypers FA, Rostad CA, Anderson EJ, Chahroudi A, Jaggi P, Wrammert J, Mantus G, Basu R, Harris F, Hanberry B, Camacho-Gonzalez A, Manoranjithan S, Vos M, Brown LA, Morris CR. Secretory phospholipase A2 in SARS-CoV-2 infection and multisystem inflammatory syndrome in children (MIS-C). Exp Biol Med (Maywood) 2021; 246:2543-2552. [PMID: 34255566 PMCID: PMC8649422 DOI: 10.1177/15353702211028560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could contribute to COVID-19 inflammasome activation and cellular damage. We present the first report of plasma sPLA2 levels in adults and children with COVID-19 compared with controls. Currently asymptomatic adults with a history of recent COVID-19 infection (≥4 weeks before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who were seronegative (9 ± 6 vs.17 ± 28 ng/mL, P = 0.26). In contrast, children hospitalized with severe COVID-19 had significantly elevated sPLA2 compared with those with mild or asymptomatic SARS-CoV-2 infection (269 ± 137 vs. 2 ± 3 ng/mL, P = 0.01). Among children hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were significantly higher in those with acute illness <10 days versus convalescent disease ≥10 days (540 ± 510 vs. 2 ± 1, P = 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activation warrant consideration.
Collapse
Affiliation(s)
- Frans A Kuypers
- Division of Hematology, Department of Pediatrics, University of California, San Francisco, CA 94609, USA
| | - Christina A Rostad
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Evan J Anderson
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA.,Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Preeti Jaggi
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Grace Mantus
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rajit Basu
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Frank Harris
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bradley Hanberry
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Andres Camacho-Gonzalez
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | | | - Miriam Vos
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Clinical and Translational Research, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Lou Ann Brown
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia R Morris
- Department of Pediatrics1371, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.,Center for Clinical and Translational Research, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Emmerich F, Zschiedrich S, Reichenbach-Braun C, Süsal C, Minguet S, Pauly MC, Seidl M. Low Pre-Transplant Caveolin-1 Serum Concentrations Are Associated with Acute Cellular Tubulointerstitial Rejection in Kidney Transplantation. Molecules 2021; 26:molecules26092648. [PMID: 33946587 PMCID: PMC8125494 DOI: 10.3390/molecules26092648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
Acute and chronic transplant rejections due to alloreactivity are essential contributors to graft loss. However, the strength of alloreactivity is biased by non-immunological factors such as ischemia reperfusion injury (IRI). Accordingly, protection from IRI could be favorable in terms of limiting graft rejection. Caveolin-1 (Cav-1) is part of the cell membrane and an important regulator of intracellular signaling. Cav-1 has been demonstrated to limit IRI and to promote the survival of a variety of cell types including renal cells under stress conditions. Accordingly, Cav-1 could also play a role in limiting anti-graft immune responses. Here, we evaluated a possible association between pre-transplant serum concentrations of Cav-1 and the occurrence of rejection during follow-up in a pilot study. Therefore, Cav-1-serum concentrations were analyzed in 91 patients at the time of kidney transplantation and compared to the incidence of acute and chronic rejection. Higher Cav-1 levels were associated with lower occurrence of acute cellular tubulointerstitial rejection episodes.
Collapse
Affiliation(s)
- Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.R.-B.); (M.-C.P.)
- Correspondence: ; Tel.: +49-761-270-34710
| | - Stefan Zschiedrich
- Nephrology, Department of Internal Medicine, Bürgerspital Solothurn, 4500 Solothurn, Switzerland;
- Department of Medicine, Renal Division, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christine Reichenbach-Braun
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.R.-B.); (M.-C.P.)
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Susana Minguet
- Signaling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Marie-Christin Pauly
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.R.-B.); (M.-C.P.)
| | - Maximilian Seidl
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Wymann S, Dai Y, Nair AG, Cao H, Powers GA, Schnell A, Martin-Roussety G, Leong D, Simmonds J, Lieu KG, de Souza MJ, Mischnik M, Taylor S, Ow SY, Spycher M, Butcher RE, Pearse M, Zuercher AW, Baz Morelli A, Panousis C, Wilson MJ, Rowe T, Hardy MP. A novel soluble complement receptor 1 fragment with enhanced therapeutic potential. J Biol Chem 2020; 296:100200. [PMID: 33334893 PMCID: PMC7948397 DOI: 10.1074/jbc.ra120.016127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Sandra Wymann
- Research and Development, CSL Behring AG, Bern, Switzerland
| | - Yun Dai
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Anup G Nair
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Helen Cao
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Anna Schnell
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | - David Leong
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Kim G Lieu
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Marcel Mischnik
- Research and Development, CSL Behring GmbH, Marburg, Germany
| | | | - Saw Yen Ow
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Martin Spycher
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | | | | | | | | | | | - Tony Rowe
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | |
Collapse
|
9
|
Abstract
Because of the high demand of organs, the usage of marginal grafts has increased. These marginal organs have a higher risk of developing ischemia-reperfusion injury, which can lead to posttransplant complications. Ex situ machine perfusion (MP), compared with the traditional static cold storage, may better protect these organs from ischemia-reperfusion injury. In addition, MP can also act as a platform for dynamic administration of pharmacological agents or gene therapy to further improve transplant outcomes. Numerous therapeutic agents have been studied under both hypothermic (1-8°C) and normothermic settings. Here, we review all the therapeutics used during MP in different organ systems (lung, liver, kidney, heart). The major categories of therapeutic agents include vasodilators, mesenchymal stem cells, antiinflammatory agents, antiinfection agents, siRNA, and defatting agents. Numerous animal and clinical studies have examined MP therapeutic agents, some of which have even led to the successful reconditioning of discarded grafts. More clinical studies, especially randomized controlled trials, will need to be conducted in the future to solidify these promising results and to define the role of MP therapeutic agents in solid organ transplantation.
Collapse
|
10
|
Relaxin Positively Influences Ischemia-Reperfusion Injury in Solid Organ Transplantation: A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21020631. [PMID: 31963613 PMCID: PMC7013572 DOI: 10.3390/ijms21020631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, solid organ transplantation (SOT) has increased the survival and quality of life for patients with end-stage organ failure by providing a potentially long-term treatment option. Although the availability of organs for transplantation has increased throughout the years, the demand greatly outweighs the supply. One possible solution for this problem is to extend the potential donor pool by using extended criteria donors. However, organs from such donors are more prone to ischemia reperfusion injury (IRI) resulting in higher rates of delayed graft function, acute and chronic graft rejection and worse overall SOT outcomes. This can be overcome by further investigating donor preconditioning strategies, graft perfusion and storage and by finding novel therapeutic agents that could reduce IRI. relaxin (RLX) is a peptide hormone with antifibrotic, antioxidant, anti-inflammatory and cytoprotective properties. The main research until now focused on heart failure; however, several preclinical studies showed its potentials for reducing IRI in SOT. The aim of this comprehensive review is to overview currently available literature on the possible role of RLX in reducing IRI and its positive impact on SOT.
Collapse
|
11
|
Chen H, Busse LW. Novel Therapies for Acute Kidney Injury. Kidney Int Rep 2017; 2:785-799. [PMID: 29270486 PMCID: PMC5733745 DOI: 10.1016/j.ekir.2017.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology. The old paradigm of identifying renal injury based on location-prerenal, intrarenal, and postrenal-is now being supplanted with a new paradigm based on observable kidney injury patterns. The pathophysiology of AKI on a molecular and microanatomical level includes inflammation, immune dysregulation, oxidative injury, and impaired microcirculation. Treatment has traditionally been supportive, including the avoidance of nephrotoxins, judicious volume and blood pressure management, hemodynamic monitoring, and renal replacement therapy. Fluid overload and chloride-rich fluids are now implicated in the development of AKI, and resuscitation with a balanced, buffered solution at a conservative rate will mitigate risk. Novel therapies, which address specific observable kidney injury patterns include direct oxygen-free radical scavengers such as α-lipoic acid, curcumin, sodium-2-mercaptoethane sulphonate, propofol, and selenium. In addition, angiotensin II and adenosine receptor antagonists hope to ameliorate kidney injury via manipulation of renal hemodynamics and tubulo-glomerular feedback. Alkaline phosphatase, sphingosine 1 phosphate analogues, and dipeptidylpeptidase-4 inhibitors counteract kidney injury via manipulation of inflammatory pathways. Finally, genetic modifiers such as 5INP may mitigate AKI via transcriptive processes.
Collapse
Affiliation(s)
- Huaizhen Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laurence William Busse
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Zhou CC, Ge YZ, Yao WT, Wu R, Xin H, Lu TZ, Li MH, Song KW, Wang M, Zhu YP, Zhu M, Geng LG, Gao XF, Zhou LH, Zhang SL, Zhu JG, Jia RP. Limited Clinical Utility of Remote Ischemic Conditioning in Renal Transplantation: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2017; 12:e0170729. [PMID: 28129389 PMCID: PMC5271340 DOI: 10.1371/journal.pone.0170729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE We conducted this meta-analysis of randomized controlled trials (RCTs) to investigate whether remote ischemic conditioning (RIC) could improve graft functions in kidney transplantation. METHODS PubMed, Web of Science, and Cochrane Library were comprehensively searched to identify all eligible studies by October 5, 2016. The treatment effects were examined with risk ratio (RR) and weighted mean difference with the corresponding 95% confidence intervals (CI). The statistical significance and heterogeneity were assessed with both Z-test and Q-test. RESULTS A total of six RCTs including 651 recipients, were eventually identified. Compared to the controls, RIC could reduce the incidence of delayed graft function (DGF) after kidney transplantation (random-effects model: RR = 0.89; fixed-effect model: RR = 0.84). However, the decrease did not reveal statistical significance. The subgroup analysis by RIC type demonstrated no significant difference among the three interventions in protecting renal allografts against DGF. Furthermore, no significant difference could be observed in the incidence of acute rejection, graft loss, 50% fall in serum creatinine, as well as the estimated glomerular filtration rate and hospital stay between the RIC and Control groups. CONCLUSIONS This meta-analysis suggested that RIC might exert renoprotective functions in human kidney transplantation, and further well-designed RCTs with large sample size are warranted to assess its clinical efficacy.
Collapse
Affiliation(s)
- Chang-Cheng Zhou
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Yu-Zheng Ge
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Wen-Tao Yao
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Ran Wu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Hui Xin
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Tian-Ze Lu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Ming-Hao Li
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Kai-Wei Song
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Min Wang
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Yun-Peng Zhu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li-Guo Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu-Hua Zhou
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Sheng-Li Zhang
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| | - Rui-Peng Jia
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University,Nanjing, Jiangsu, China
| |
Collapse
|
13
|
5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int Immunopharmacol 2015; 37:71-78. [PMID: 26643355 DOI: 10.1016/j.intimp.2015.11.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
5-Aminolevulinic acid (5-ALA) is a naturally occurring amino acid and precursor of heme and protoporphyrin IX (PpIX). Exogenously administrated 5-ALA increases the accumulation of PpIX in tumor cells specifically due to the compromised metabolism of 5-ALA to heme in mitochondria. PpIX emits red fluorescence by the irradiation of blue light and the formation of reactive oxygen species and singlet oxygen. Thus, performing a photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using 5-ALA have given rise to a new strategy for tumor diagnosis and therapy. In addition to the field of tumor therapy, 5-ALA has been implicated in the treatment of inflammatory disease, autoimmune disease and transplantation due to the anti-inflammation and immunoregulation properties that are elicited with the expression of heme oxygenase (HO)-1, an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide (CO), in combination with sodium ferrous citrate (SFC), because an inhibitor of HO-1 abolishes the effects of 5-ALA. Furthermore, NF-E2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and heme are involved in the HO-1 expression. Biliverdin and CO are also known to have anti-apoptotic, anti-inflammatory and immunoregulatory functions. We herein review the current use of 5-ALA in inflammatory diseases, transplantation medicine, and tumor therapy.
Collapse
|
14
|
Decruyenaere A, Decruyenaere P, Peeters P, Vermassen F, Dhaene T, Couckuyt I. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods. BMC Med Inform Decis Mak 2015; 15:83. [PMID: 26466993 PMCID: PMC4607098 DOI: 10.1186/s12911-015-0206-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
Background Predictive models for delayed graft function (DGF) after kidney transplantation are usually developed using logistic regression. We want to evaluate the value of machine learning methods in the prediction of DGF. Methods 497 kidney transplantations from deceased donors at the Ghent University Hospital between 2005 and 2011 are included. A feature elimination procedure is applied to determine the optimal number of features, resulting in 20 selected parameters (24 parameters after conversion to indicator parameters) out of 55 retrospectively collected parameters. Subsequently, 9 distinct types of predictive models are fitted using the reduced data set: logistic regression (LR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machines (SVMs; using linear, radial basis function and polynomial kernels), decision tree (DT), random forest (RF), and stochastic gradient boosting (SGB). Performance of the models is assessed by computing sensitivity, positive predictive values and area under the receiver operating characteristic curve (AUROC) after 10-fold stratified cross-validation. AUROCs of the models are pairwise compared using Wilcoxon signed-rank test. Results The observed incidence of DGF is 12.5 %. DT is not able to discriminate between recipients with and without DGF (AUROC of 52.5 %) and is inferior to the other methods. SGB, RF and polynomial SVM are mainly able to identify recipients without DGF (AUROC of 77.2, 73.9 and 79.8 %, respectively) and only outperform DT. LDA, QDA, radial SVM and LR also have the ability to identify recipients with DGF, resulting in higher discriminative capacity (AUROC of 82.2, 79.6, 83.3 and 81.7 %, respectively), which outperforms DT and RF. Linear SVM has the highest discriminative capacity (AUROC of 84.3 %), outperforming each method, except for radial SVM, polynomial SVM and LDA. However, it is the only method superior to LR. Conclusions The discriminative capacities of LDA, linear SVM, radial SVM and LR are the only ones above 80 %. None of the pairwise AUROC comparisons between these models is statistically significant, except linear SVM outperforming LR. Additionally, the sensitivity of linear SVM to identify recipients with DGF is amongst the three highest of all models. Due to both reasons, the authors believe that linear SVM is most appropriate to predict DGF.
Collapse
Affiliation(s)
| | | | - Patrick Peeters
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Frank Vermassen
- Department of Thoracic and Vascular Surgery, Ghent University Hospital, Ghent, Belgium
| | - Tom Dhaene
- Department of Information Technology (INTEC), Ghent University - iMinds, Ghent, Belgium
| | - Ivo Couckuyt
- Department of Information Technology (INTEC), Ghent University - iMinds, Ghent, Belgium
| |
Collapse
|
15
|
Ratigan ED, McKay DB. Exploring principles of hibernation for organ preservation. Transplant Rev (Orlando) 2015; 30:13-9. [PMID: 26613668 DOI: 10.1016/j.trre.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/19/2015] [Accepted: 08/30/2015] [Indexed: 11/25/2022]
Abstract
Interest in mimicking hibernating states has led investigators to explore the biological mechanisms that permit hibernating mammals to survive for months at extremely low ambient temperatures, with no food or water, and awaken from their hibernation without apparent organ injury. Hibernators have evolved mechanisms to adapt to dramatic reductions in core body temperature and metabolic rate, accompanied by prolonged periods without nutritional intake and at the same time tolerate the metabolic demands of arousal. This review discusses the inherent resilience of hibernators to kidney injury and provides a potential framework for new therapies targeting ex vivo preservation of kidneys for transplantation.
Collapse
Affiliation(s)
- Emmett D Ratigan
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Dianne B McKay
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
16
|
Zhang Y, Fu Z, Zhong Z, Wang R, Hu L, Xiong Y, Wang Y, Ye Q. Hypothermic Machine Perfusion Decreases Renal Cell Apoptosis During Ischemia/Reperfusion Injury via the Ezrin/AKT Pathway. Artif Organs 2015; 40:129-35. [PMID: 26263023 DOI: 10.1111/aor.12534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to explore the potential mechanisms of hypothermic machine perfusion (HMP)-a more efficient way to preserve kidneys from donors after cardiac death than static cold storage (CS), then to provide the basis for further improving donor quality. Twelve healthy male New Zealand rabbits (12 weeks old, weighing 3.0 ± 0.3 kg) were randomly divided into two groups: the HMP group and CS group (n = 6). Rabbits' left kidney was subjected to 35 min of warm ischemic time by clamping the left renal pedicle and 1 h of reperfusion. The kidneys were then hypothermically (4-8°C) preserved in vivo for 4 h with HCA-II solution using HMP or CS methods. Then rabbits underwent a right nephrectomy and the kidney tissues were collected after 24 h of reperfusion. TUNEL staining was performed on paraffin sections to detect apoptosis, and the expressions of cleaved caspase-3, ezrin, AKT, and p-AKT in frozen kidney tissues were detected by Western blotting. The ezrin expression was further confirmed by immunohistochemistry analysis. The apoptosis rate and expression of cleaved caspase-3 in the HMP group were significantly lower than the CS group (P < 0.001 and P = 0.002), meanwhile the expression of cleaved caspase-3 in the HMP and CS groups was significantly increased compared with the normal group (P = 0.035 and P < 0.001), and the expression of ezrin and p-AKT in the HMP group was significantly higher than the CS group (P = 0.005, 0.014). HMP decreased the renal cell apoptosis rate during ischemia/reperfusion injury via the ezrin/AKT pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Zhen Fu
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Zibiao Zhong
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei
| | - Ren Wang
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Long Hu
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Yan Xiong
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei
| | - Yanfeng Wang
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei
| | - Qifa Ye
- Zhongnan Hospital, Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan University, Wuhan, Hubei.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
17
|
Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant 2015; 5:52-67. [PMID: 26131407 PMCID: PMC4478600 DOI: 10.5500/wjt.v5.i2.52] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/12/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
Ischemia/reperfusion injury is an unavoidable relevant consequence after kidney transplantation and influences short term as well as long-term graft outcome. Clinically ischemia/reperfusion injury is associated with delayed graft function, graft rejection, chronic rejection and chronic graft dysfunction. Ischemia/reperfusion affects many regulatory systems at the cellular level as well as in the renal tissue that result in a distinct inflammatory reaction of the kidney graft. Underlying factors of ischemia reperfusion include energy metabolism, cellular changes of the mitochondria and cellular membranes, initiation of different forms of cell death-like apoptosis and necrosis together with a recently discovered mixed form termed necroptosis. Chemokines and cytokines together with other factors promote the inflammatory response leading to activation of the innate immune system as well as the adaptive immune system. If the inflammatory reaction continues within the graft tissue, a progressive interstitial fibrosis develops that impacts long-term graft outcome. It is of particular importance in kidney transplantation to understand the underlying mechanisms and effects of ischemia/reperfusion on the graft as this knowledge also opens strategies to prevent or treat ischemia/reperfusion injury after transplantation in order to improve graft outcome.
Collapse
|
18
|
O'Neill S, Gallagher K, Hughes J, Wigmore SJ, Ross JA, Harrison EM. Challenges in early clinical drug development for ischemia-reperfusion injury in kidney transplantation. Expert Opin Drug Discov 2015; 10:753-62. [PMID: 25947288 DOI: 10.1517/17460441.2015.1044967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In an effort to expand the donor pool, kidneys from donation after cardiac death (DCD) donors are increasingly utilised in renal transplantation. These kidneys suffer greater ischemia-reperfusion injury (IRI) and have a higher incidence of delayed graft function. In the last 25 years, relatively few pharmacological therapies to reduce IRI have been tested in randomised controlled trials in renal transplantation and currently no pharmacological agents are routinely utilised for this purpose. AREAS COVERED The authors look at why promising treatments in pre-clinical studies have not translated to significant clinical benefit in human trials. This may reflect a translational disconnect between the pre-clinical models used and clinical problems that are encountered in the transplant population. They also discuss the issues in conducting clinical trials and its implication on drug development. EXPERT OPINION Translating pharmacological strategies for reducing IRI is highly challenging at every stage of development from pre-clinical studies to clinical trials. Scientific knowledge of the complexity of IRI is rapidly evolving and new treatments are expected to emerge. There are ethical barriers that prevent donor treatments, particularly in the DCD setting. However, new clinical techniques such as normothermic regional and ex-vivo perfusion represent exciting opportunities to utilise pharmacological agents earlier in the process of transplantation.
Collapse
Affiliation(s)
- Stephen O'Neill
- University of Edinburgh, Chancellor's Building, MRC Centre for Inflammation Research, Tissue Injury and Repair Group, Royal Infirmary of Edinburgh , 49 Little France Crescent, Edinburgh EH16 4SA , UK +44 78 4959 2113 ; +44 13 1242 6520 ;
| | | | | | | | | | | |
Collapse
|
19
|
Chen HH, Yuan H, Cho H, Sosnovik DE, Josephson L. Cytoprotective nanoparticles by conjugation of a polyhis tagged annexin V to a nanoparticle drug. NANOSCALE 2015; 7:2255-9. [PMID: 25572921 PMCID: PMC4312233 DOI: 10.1039/c4nr06861k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We synthesized a cytoprotective magnetic nanoparticle by reacting a maleimide functionalized Feraheme (FH) with a disulfide linked dimer of a polyhis tagged annexin V. Following reductive cleavage of disulfide, the resulting annexin-nanoparticle (diameter = 28.0 ± 2.0 nm by laser light scattering, 7.6 annexin's/nanoparticle) was cytoprotective to cells subjected to plasma membrane disrupting chemotherapeutic or mechanical stresses, and significantly more protective than the starting annexin V. Annexin-nanoparticles provide an approach to the design of nanomaterials which antagonize the plasma membrane permeability characteristic of necrosis and which may have applications as cytoprotective agents.
Collapse
Affiliation(s)
- Howard H. Chen
- Center for Advanced Medical Imaging Sciences, Massachusetts
General Hospital, Boston, MA 02129
| | - Hushan Yuan
- Martinos Center for Biomedical Imaging, Massachusetts General
Hospital, Boston, MA 02129
| | - Hoonsung Cho
- Martinos Center for Biomedical Imaging, Massachusetts General
Hospital, Boston, MA 02129
- School of material science and engineering, Chonnam National
University, Gwangju 500-757, Republic of Korea
| | - David E. Sosnovik
- Center for Advanced Medical Imaging Sciences, Massachusetts
General Hospital, Boston, MA 02129
| | - Lee Josephson
- Center for Advanced Medical Imaging Sciences, Massachusetts
General Hospital, Boston, MA 02129
- Martinos Center for Biomedical Imaging, Massachusetts General
Hospital, Boston, MA 02129
| |
Collapse
|
20
|
Yang C, Zhang C, Zhao Z, Zhu T, Yang B. Fighting against kidney diseases with small interfering RNA: opportunities and challenges. J Transl Med 2015; 13:39. [PMID: 25637948 PMCID: PMC4354745 DOI: 10.1186/s12967-015-0387-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/12/2015] [Indexed: 11/21/2022] Open
Abstract
The significant improvements in siRNA therapy have been achieved, which have great potential applications in humans. The kidney is a comparatively easy target organ of siRNA therapy due to its unique structural and functional characteristics. Here, we reviewed recent achievements in siRNA design, delivery and application with focuses on kidney diseases, in particular kidney transplant-related injuries. In addition, the strategy for increasing serum stability and immune tolerance of siRNA was also discussed. At last, the future challenges of siRNA therapy including organ/tissue/cell-specific delivery and time-controlled silence, as well as selecting therapeutic targets, were addressed as well.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Bin Yang
- Transplant Group, Department of Infection, Immunity and Inflammation, University Hospitals of Leicester, University of Leicester, Leicester, UK. .,Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China. .,Basic Medical Research Centre, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
21
|
Khader A, Yang WL, Kuncewitch M, Prince JM, Marambaud P, Nicastro J, Coppa GF, Wang P. Novel resveratrol analogues attenuate renal ischemic injury in rats. J Surg Res 2015; 193:807-15. [PMID: 25214260 PMCID: PMC4268227 DOI: 10.1016/j.jss.2014.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/20/2014] [Accepted: 08/08/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) is a severe clinical complication with no specific treatment. Resveratrol has been shown as a promising experimental agent in renal I/R due to its effect on cellular energy metabolism, oxidative stress, and inflammation. Recently, we identified two biologically active resveratrol analogues (RSVAs), RSVA405 and RSVA314. We hypothesized that both RSAVs would attenuate I/R-induced renal injury. METHODS Adult male rats were subjected to renal I/R through bilateral renal pedicle clamping for 60 min, followed by reperfusion. RSVA405 (3 mg/kg Body Weight), RSVA314 (3 mg/kg Body Weight), or vehicle (10% dimethyl sulfoxide and 33% Solutol in phosphate buffered saline) were administered by intraperitoneal injection 1 h before ischemia. Blood and renal tissues were collected 24 h after I/R for evaluation. RESULTS Administration of RSVA405 and RSVA314 significantly reduced the serum levels of renal dysfunction and injury markers, including creatinine, blood urea nitrogen, aspartate aminotransferase, and lactate dehydrogenase, compared with vehicle. The protective effect of RSVA405 and RSVA314 was also reflected on histologic evaluation. Both RSVAs reduced the number of apoptotic cells by more than 60% as determined by transferase dUTP nick end labeling assay, compared with vehicle. The renal adenosine triphosphate levels of the vehicle group was decreased to 52.4% of control, whereas those of the RSVA405 and RSVA314 groups were restored to 72.3% and 79.6% of control, respectively. Both RSVAs significantly reduced the protein expression of inducible nitric oxide synthase and nitrotyrosine and the messenger RNA levels of tumor necrosis factor-α, interleukin-6, and interleukin-1β. CONCLUSIONS RSVA405 and RSVA314 attenuate I/R-induced renal injury through the modulation of energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Adam Khader
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Weng-Lang Yang
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Michael Kuncewitch
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Jose M Prince
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Gene F Coppa
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Ping Wang
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York.
| |
Collapse
|
22
|
Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int 2015; 87:343-9. [DOI: 10.1038/ki.2014.304] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 02/03/2023]
|
23
|
Weissenbacher A, Oberhuber R, Cardini B, Weiss S, Ulmer H, Bösmüller C, Schneeberger S, Pratschke J, Öllinger R. The faster the better: anastomosis time influences patient survival after deceased donor kidney transplantation. Transpl Int 2015; 28:535-43. [DOI: 10.1111/tri.12516] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/17/2014] [Accepted: 12/30/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Sascha Weiss
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics; Innsbruck Medical University; Innsbruck Austria
| | - Claudia Bösmüller
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
| | - Johann Pratschke
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
- Department of General Visceral and Transplant Surgery; Charité Campus Virchow-Klinikum; Berlin Germany
| | - Robert Öllinger
- Department of Visceral, Transplant and Thoracic Surgery; Center of Operative Medicine; Innsbruck Medical University; Innsbruck Austria
- Department of General Visceral and Transplant Surgery; Charité Campus Virchow-Klinikum; Berlin Germany
| |
Collapse
|
24
|
Xin H, Ge YZ, Wu R, Yin Q, Zhou LH, Shen JW, Lu TZ, Hu ZK, Wang M, Zhou CC, Wu JP, Li WC, Zhu JG, Jia RP. Effect of high-dose erythropoietin on graft function after kidney transplantation: a meta-analysis of randomized controlled trials. Biomed Pharmacother 2014; 69:29-33. [PMID: 25661334 DOI: 10.1016/j.biopha.2014.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Current evidence suggests that preconditioning with erythropoietin (EPO) can protect against ischemia reperfusion injury in rodents. However, randomized controlled trials (RCTs) assessing the efficacy and safety of high-dose EPO in kidney transplantation have yielded inconclusive results. Herein, we performed a meta-analysis of RCTs to assess whether the administration of high-dose EPO can improve graft function and the potential adverse events. METHODS Relevant RCT studies that investigated high-dose EPO on graft function after kidney transplantation were comprehensively searched in Pubmed, Embase, and Cochrane Library until July 10, 2014. All statistical analyses were performed using Review Manager 5.0 and STATA 12.0. RESULTS A total of 4 RCTs involving 356 patients were identified. Comprehensively, a trend of reduction in the incidence of delayed graft function could be observed in the EPO group (EPO vs. placebo groups: RR=0.88); however, the result did not reach the significance level (95% CI, 0.72-1.08; P=0.21). Furthermore, no significant difference in the incidences of adverse events was observed between the two groups. CONCLUSIONS The current meta-analysis indicates that the administration of high-dose EPO is, to some extent, prone to protect kidney function without increasing the susceptibility to adverse events.
Collapse
Affiliation(s)
- Hui Xin
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Yu-Zheng Ge
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Ran Wu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Qian Yin
- Department of Pharmacology, Nanjing Medical University School of Pharmacy, 140 Hanzhong Road, 210029 Nanjing, PR China; Central Laboratory, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Jiang-Wei Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Tian-Ze Lu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Zhi-Kai Hu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Min Wang
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Chang-Cheng Zhou
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Jian-Ping Wu
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Wen-Cheng Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China
| | - Rui-Peng Jia
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China; Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, PR China.
| |
Collapse
|
25
|
Orci LA, Lacotte S, Oldani G, Morel P, Mentha G, Toso C. The role of hepatic ischemia-reperfusion injury and liver parenchymal quality on cancer recurrence. Dig Dis Sci 2014; 59:2058-68. [PMID: 24795038 DOI: 10.1007/s10620-014-3182-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/20/2014] [Indexed: 12/29/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a common clinical challenge. Despite accumulating evidence regarding its mechanisms and potential therapeutic approaches, hepatic I/R is still a leading cause of organ dysfunction, morbidity, and resource utilization, especially in those patients with underlying parenchymal abnormalities. In the oncological setting, there are growing concerns regarding the deleterious impact of I/R injury on the risk of post-surgical tumor recurrence. This review aims at giving the last updates regarding the role of hepatic I/R and liver parenchymal quality injury in the setting of oncological liver surgery, using a "bench-to-bedside" approach. Relevant medical literature was identified by searching PubMed and hand scanning of the reference lists of articles considered for inclusion. Numerous preclinical models have depicted the impact of I/R injury and hepatic parenchymal quality (steatosis, age) on increased cancer growth in the injured liver. Putative pathophysiological mechanisms linking I/R injury and liver cancer recurrence include an increased implantation of circulating cancer cells in the ischemic liver and the upregulation of proliferation and angiogenic factors following the ischemic insult. Although limited, there is growing clinical evidence that I/R injury and liver quality are associated with the risk of post-surgical cancer recurrence. In conclusion, on top of its harmful early impact on organ function, I/R injury is linked to increased tumor growth. Therapeutic strategies tackling I/R injury could not only improve post-surgical organ function, but also allow a reduction in the risk of cancer recurrence.
Collapse
Affiliation(s)
- Lorenzo A Orci
- Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland,
| | | | | | | | | | | |
Collapse
|
26
|
Sirtuin 1 Activation Stimulates Mitochondrial Biogenesis and Attenuates Renal Injury After Ischemia-Reperfusion. Transplantation 2014; 98:148-56. [DOI: 10.1097/tp.0000000000000194] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Alluri H, Stagg HW, Wilson RL, Clayton RP, Sawant DA, Koneru M, Beeram MR, Davis ML, Tharakan B. Reactive Oxygen Species-Caspase-3 Relationship in Mediating Blood-Brain Barrier Endothelial Cell Hyperpermeability Following Oxygen-Glucose Deprivation and Reoxygenation. Microcirculation 2014; 21:187-95. [DOI: 10.1111/micc.12110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/21/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Himakarnika Alluri
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Hayden W. Stagg
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Rickesha L. Wilson
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Robert P. Clayton
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Devendra A. Sawant
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Madhavi Koneru
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Madhava R. Beeram
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Matthew L. Davis
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| | - Binu Tharakan
- Departments of Surgery and Pediatrics; Texas A&M University Health Science Center College of Medicine and Scott & White Healthcare; Temple Texas USA
| |
Collapse
|
28
|
Tsapepas DS, Powell JT, Martin ST, Hardy MA, Ratner LE. An update to managing renal transplant ischemia reperfusion injury: novel therapies in the pipeline. Clin Transplant 2013; 27:647-8. [PMID: 23924169 DOI: 10.1111/ctr.12204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Demetra S Tsapepas
- Department of Pharmacy, New-York Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA.
| | | | | | | | | |
Collapse
|
29
|
Hou J, Cai S, Kitajima Y, Fujino M, Ito H, Takahashi K, Abe F, Tanaka T, Ding Q, Li XK. 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2013; 305:F1149-57. [PMID: 23904222 DOI: 10.1152/ajprenal.00275.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia reperfusion injury (IRI) is a major factor responsible for acute renal failure. An intermediate in heme synthesis, 5-aminolevulinic acid (5-ALA) is fundamental in aerobic energy metabolism. Heme oxygenase (HO)-1 cleaves heme to form biliverdin, carbon monoxide (CO), and iron (Fe(2+)), which is used with 5-ALA. In the present study, we investigated the role of 5-ALA in the attenuation of acute renal IRI using a mouse model. Male Balb/c mice received 30 mg/kg 5-ALA with Fe(2+) 48, 24, and 2 h before IRI and were subsequently subjected to bilateral renal pedicle occlusion for 45 min. The endogenous CO concentration of the kidneys from the mice administered 5-ALA/Fe(2+) increased significantly, and the peak concentrations of serum creatinine and blood urea nitrogen decreased. 5-ALA/Fe(2+) treatments significantly decreased the tubular damage and number of apoptotic cells. IRI-induced renal thiobarbituric acid-reactive substance levels were also significantly decreased in the 5-ALA/Fe(2+) group. Furthermore, mRNA expression of HO-1, TNF-α, and interferon-γ was significantly increased after IRI. Levels of HO-1 were increased and levels of TNF-α and interferon-γ were decreased in the 5-ALA/Fe(2+)-pretreated renal parenchyma after IRI. F4/80 staining showed reduced macrophage infiltration, and TUNEL staining revealed that there were fewer interstitial apoptotic cells. These findings suggest that 5-ALA/Fe(2+) can protect the kidneys against IRI by reducing macrophage infiltration and decreasing renal cell apoptosis via the generation of CO.
Collapse
Affiliation(s)
- Jiangang Hou
- Div. of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The importance of C4d in biopsies of kidney transplant recipients. Clin Dev Immunol 2013; 2013:678180. [PMID: 23935649 PMCID: PMC3722852 DOI: 10.1155/2013/678180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/15/2013] [Accepted: 06/23/2013] [Indexed: 12/11/2022]
Abstract
Antibody-mediated rejection (AMR) is highly detrimental to the prolonged survival of transplanted kidneys. C4d has been regarded as a footprint of AMR tissue damage, and the introduction of C4d staining in daily clinical practice aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. Despite the general acceptance of the usefulness of C4d in the identification of acute AMR, the data for C4d staining in chronic AMR is variable. The presence of C4d in the majority of the biopsies with features of chronic antibody-mediated rejection is reported, but this rejection without C4d staining is observed as well, suggesting that C4d is specific but not sensitive. Further studies on AMR with positive C4d staining in biopsy specimens are really important, as well as the study of novel routine markers that may participate in the pathogenesis of this process.
Collapse
|