1
|
Xu AM, Haro M, Walts AE, Hu Y, John J, Karlan BY, Merchant A, Orsulic S. Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadk8805. [PMID: 38630822 PMCID: PMC11023532 DOI: 10.1126/sciadv.adk8805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the deadliest form of ovarian cancer, is typically diagnosed after it has metastasized and often relapses after standard-of-care platinum-based chemotherapy, likely due to advanced tumor stage, heterogeneity, and immune evasion and tumor-promoting signaling from the tumor microenvironment. To understand how spatial heterogeneity contributes to HGSOC progression and early relapse, we profiled an HGSOC tissue microarray of patient-matched longitudinal samples from 42 patients. We found spatial patterns associated with early relapse, including changes in T cell localization, malformed tertiary lymphoid structure (TLS)-like aggregates, and increased podoplanin-positive cancer-associated fibroblasts (CAFs). Using spatial features to compartmentalize the tissue, we found that plasma cells distribute in two different compartments associated with TLS-like aggregates and CAFs, and these distinct microenvironments may account for the conflicting reports about the role of plasma cells in HGSOC prognosis.
Collapse
Affiliation(s)
- Alexander M. Xu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marcela Haro
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joshi John
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Akil Merchant
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Stanley J, Lohith A, Debiaso L, Wang K, Ton M, Cui W, Gu W, Fu A, Pourmand N. High throughput isolation of RNA from single-cells within an intact tissue for spatial and temporal sequencing a reality. PLoS One 2023; 18:e0289279. [PMID: 37527243 PMCID: PMC10393160 DOI: 10.1371/journal.pone.0289279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
Single-cell transcriptomics is essential for understanding biological variability among cells in a heterogenous population. Acquiring high-quality single-cell sequencing data from a tissue sample has multiple challenges including isolation of individual cells as well as amplification of the genetic material. Commercially available techniques require the isolation of individual cells from a tissue through extensive manual manipulation before single cell sequence data can be acquired. However, since cells within a tissue have different dissociation constants, enzymatic and mechanical manipulation do not guarantee the isolation of a homogenous population of cells. To overcome this drawback, in this research we have developed a revolutionary approach that utilizes a fully automated nanopipette technology in combination with magnetic nanoparticles to obtain high quality sequencing reads from individual cells within an intact tissue thereby eliminating the need for manual manipulation and single cell isolation. With the proposed technology, it is possible to sample an individual cell within the tissue multiple times to obtain longitudinal information. Single-cell RNAseq was achieved by aspirating only1-5% of sub-single-cell RNA content from individual cells within fresh frozen tissue samples. As a proof of concept, aspiration was carried out from 22 cells within a breast cancer tissue slice using quartz nanopipettes. The mRNA from the aspirate was then selectively captured using magnetic nanoparticles. The RNAseq data from aspiration of 22 individual cells provided high alignment rates (80%) with 2 control tissue samples. The technology is exceptionally simple, quick and efficient as the entire cell targeting and aspiration process is fully automated.
Collapse
Affiliation(s)
- John Stanley
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| | - Akshar Lohith
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| | - Lucca Debiaso
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| | - Kevan Wang
- NVIGEN Inc, Campbell, California, United States of America
| | - Minh Ton
- NVIGEN Inc, Campbell, California, United States of America
| | - Wenwu Cui
- NVIGEN Inc, Campbell, California, United States of America
| | - Weiwei Gu
- NVIGEN Inc, Campbell, California, United States of America
| | - Aihua Fu
- NVIGEN Inc, Campbell, California, United States of America
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
3
|
Barker AD, Alba MM, Mallick P, Agus DB, Lee JSH. An Inflection Point in Cancer Protein Biomarkers: What Was and What's Next. Mol Cell Proteomics 2023:100569. [PMID: 37196763 PMCID: PMC10388583 DOI: 10.1016/j.mcpro.2023.100569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Biomarkers remain the highest value proposition in cancer medicine today - especially protein biomarkers. Yet despite decades of evolving regulatory frameworks to facilitate the review of emerging technologies, biomarkers have been mostly about promise with very little to show for improvements in human health. Cancer is an emergent property of a complex system and deconvoluting the integrative and dynamic nature of the overall system through biomarkers is a daunting proposition. The last two decades have seen an explosion of multi-omics profiling and a range of advanced technologies for precision medicine, including the emergence of liquid biopsy, exciting advances in single cell analysis, artificial intelligence (machine and deep learning) for data analysis and many other advanced technologies that promise to transform biomarker discovery. Combining multiple omics modalities to acquire a more comprehensive landscape of the disease state, we are increasingly developing biomarkers to support therapy selection and patient monitoring. Furthering precision medicine, especially in oncology, necessitates moving away from the lens of reductionist thinking towards viewing and understanding that complex diseases are, in fact, complex adaptive systems. As such, we believe it is necessary to re-define biomarkers as representations of biological system states at different hierarchical levels of biological order. This definition could include traditional molecular, histologic, radiographic, or physiological characteristics, as well as emerging classes of digital markers and complex algorithms. To succeed in the future, we must move past purely observational individual studies and instead start building a mechanistic framework to enable integrative analysis of new studies within the context of prior studies. Identifying information in complex systems and applying theoretical constructs, such as information theory, to study cancer as a disease of dysregulated communication could prove to be "game changing" for the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Anna D Barker
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA; Complex Adaptive Systems Initiative and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Mario M Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA; Department of Radiology, Stanford University, Stanford, CA
| | - David B Agus
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA; Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Jerry S H Lee
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA; Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| |
Collapse
|
4
|
Wang M, Liang H, Chen X, Chen D, Wang J, Zhang Y, Chen J. Developments of Conventional and Microfluidic Flow Cytometry Enabling High-Throughput Characterization of Single Cells. BIOSENSORS 2022; 12:bios12070443. [PMID: 35884246 PMCID: PMC9313373 DOI: 10.3390/bios12070443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
This article first reviews scientific meanings of single-cell analysis by highlighting two key scientific problems: landscape reconstruction of cellular identities during dynamic immune processes and mechanisms of tumor origin and evolution. Secondly, the article reviews clinical demands of single-cell analysis, which are complete blood counting enabled by optoelectronic flow cytometry and diagnosis of hematologic malignancies enabled by multicolor fluorescent flow cytometry. Then, this article focuses on the developments of optoelectronic flow cytometry for the complete blood counting by comparing conventional counterparts of hematology analyzers (e.g., DxH 900 of Beckman Coulter, XN-1000 of Sysmex, ADVIA 2120i of Siemens, and CELL-DYN Ruby of Abbott) and microfluidic counterparts (e.g., microfluidic impedance and imaging flow cytometry). Future directions of optoelectronic flow cytometry are indicated where intrinsic rather than dependent biophysical parameters of blood cells must be measured, and they can replace blood smears as the gold standard of blood analysis in the near future.
Collapse
Affiliation(s)
- Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| |
Collapse
|
5
|
Welslau M, Müller V, Lüftner D, Schütz F, Stickeler E, Fasching PA, Janni W, Thomssen C, Witzel I, Fehm TN, Belleville E, Bader S, Seitz K, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Schneeweiss A, Harbeck N, Würstlein R, Hartkopf AD, Wöckel A, Seliger B, Massa C, Kolberg HC. Update Breast Cancer 2022 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2022; 82:580-589. [PMID: 35903719 PMCID: PMC9315400 DOI: 10.1055/a-1811-6106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 10/26/2022] Open
Abstract
Evidence relating to the treatment of breast cancer patients with early-stage disease has increased significantly in the past year. Abemaciclib, olaparib, and pembrolizumab are new drugs with good efficacy in the relevant patient groups. However, some questions remain unanswered. In particular, it remains unclear which premenopausal patients with hormone receptor-positive breast cancer should be spared unnecessary treatment. The question of the degree to which chemotherapy exerts a direct cytotoxic effect on the tumor or reduces ovarian function through chemotherapy could be of key importance. This group of patients could potentially be spared chemotherapy. New, previously experimental biomarker analysis methods, such as spatial analysis of gene expression (spatial transcriptomics) are gradually finding their way into large randomized phase III trials, such as the NeoTRIP trial. This in turn leads to a better understanding of the predictive factors of new therapies, for example immunotherapy. This review summarizes the scientific innovations from recent congresses such as the San Antonio Breast Cancer Symposium 2021 but also from recent publications.
Collapse
Affiliation(s)
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Diana Lüftner
- Charité University Hospital, Department of Hematology, Oncology and Tumour Immunology, University Medicine Berlin, Berlin, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, RWTH University Hospital Aachen, Aachen, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabell Witzel
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Simon Bader
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Katharina Seitz
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Genecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt am Main
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Germany
| | - Bahriye Aktas
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Seliger
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | - Chiara Massa
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | | |
Collapse
|
6
|
Punjiya M, Mocker A, Napier B, Zeeshan A, Gutsche M, Sonkusale S. CMOS microcavity arrays for single-cell electroporation and lysis. Biosens Bioelectron 2020; 150:111931. [DOI: 10.1016/j.bios.2019.111931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/03/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
|
7
|
Hartshorn CM, Russell LM, Grodzinski P. National Cancer Institute Alliance for nanotechnology in cancer-Catalyzing research and translation toward novel cancer diagnostics and therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1570. [PMID: 31257722 PMCID: PMC6788937 DOI: 10.1002/wnan.1570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Nanotechnology has been a burgeoning research field, which is finding compelling applications in several practical areas of everyday life. It has provided novel, paradigm shifting solutions to medical problems and particularly to cancer. In order to accelerate integration of nanotechnology into cancer research and oncology, the National Cancer Institute (NCI) of the National Institutes of Health (NIH) established the NCI Alliance for Nanotechnology in Cancer program in 2005. This effort brought together scientists representing physical sciences, chemistry, and engineering working at the nanoscale with biologists and clinicians working on cancer to form a uniquely multidisciplinary cancer nanotechnology research community. The last 14 years of the program have produced a remarkable body of scientific discovery and demonstrated its utility to the development of practical cancer interventions. This paper takes stock of how the Alliance program influenced melding of disparate research disciplines into the field of nanomedicine and cancer nanotechnology, has been highly productive in the scientific arena, and produced a mechanism of seamless transfer of novel technologies developed in academia to the clinical and commercial space. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Christopher M. Hartshorn
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Luisa M. Russell
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
8
|
Hisert KB, Liles WC, Manicone AM. A Flow Cytometric Method for Isolating Cystic Fibrosis Airway Macrophages from Expectorated Sputum. Am J Respir Cell Mol Biol 2019; 61:42-50. [PMID: 30742539 PMCID: PMC6604218 DOI: 10.1165/rcmb.2018-0236ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Abstract
Research to understand the contribution of macrophages to nonresolving airway inflammation in cystic fibrosis (CF) and other chronic suppurative airways diseases has been hindered by a lack of methods for isolating and studying these cells. With the development of technologies that can characterize small numbers of cells or individual cells, there is an even greater need for methodologies to isolate rare cells in heterogeneous specimens. Here, we describe a method that overcomes the technical obstacles imposed by sputum debris and apoptotic cells, and allows isolation of pure populations of macrophages from CF sputum. In addition to enhancing our ability to study human CF airway macrophages, this protocol can be adapted to study cells in sputum from other chronic suppurative lung diseases (e.g., chronic obstructive pulmonary disease) and used for isolation of individual cells for single cell analyses.
Collapse
Affiliation(s)
| | - W. Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | | |
Collapse
|
9
|
Miedel MT, Gavlock DC, Jia S, Gough A, Taylor DL, Stern AM. Modeling the Effect of the Metastatic Microenvironment on Phenotypes Conferred by Estrogen Receptor Mutations Using a Human Liver Microphysiological System. Sci Rep 2019; 9:8341. [PMID: 31171849 PMCID: PMC6554298 DOI: 10.1038/s41598-019-44756-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Reciprocal coevolution of tumors and their microenvironments underlies disease progression, yet intrinsic limitations of patient-derived xenografts and simpler cell-based models present challenges towards a deeper understanding of these intercellular communication networks. To help overcome these barriers and complement existing models, we have developed a human microphysiological system (MPS) model of the human liver acinus, a common metastatic site, and have applied this system to estrogen receptor (ER)+ breast cancer. In addition to their hallmark constitutive (but ER-dependent) growth phenotype, different ESR1 missense mutations, prominently observed during estrogen deprivation therapy, confer distinct estrogen-enhanced growth and drug resistant phenotypes not evident under cell autonomous conditions. Under low molecular oxygen within the physiological range (~5–20%) of the normal liver acinus, the estrogen-enhanced growth phenotypes are lost, a dependency not observed in monoculture. In contrast, the constitutive growth phenotypes are invariant within this range of molecular oxygen suggesting that ESR1 mutations confer a growth advantage not only during estrogen deprivation but also at lower oxygen levels. We discuss the prospects and limitations of implementing human MPS, especially in conjunction with in situ single cell hyperplexed computational pathology platforms, to identify biomarkers mechanistically linked to disease progression that inform optimal therapeutic strategies for patients.
Collapse
Affiliation(s)
- Mark T Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dillon C Gavlock
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shanhang Jia
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | - Andrew M Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Proctor A, Wang Q, Lawrence DS, Allbritton NL. Selection and optimization of enzyme reporters for chemical cytometry. Methods Enzymol 2019; 622:221-248. [PMID: 31155054 PMCID: PMC6905852 DOI: 10.1016/bs.mie.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemical cytometry, sensitive analytical measurements of single cells, reveals inherent heterogeneity of cells within a population which is masked or averaged out when using bulk analysis techniques. A particular challenge of chemical cytometry is the development of a suitable reporter or probe for the desired measurement. These reporters must be sufficiently specific for measuring the desired process; possess a lifetime long enough to accomplish the measurement; and have the ability to be loaded into single cells. This chapter details our approach to rationally design and improve peptide substrates as reporters of enzyme activity utilizing chemical cytometry. This method details the iterative approach used to design, characterize, and identify a peptidase-resistant peptide reporter which acts as a kinase substrate within intact cells. Small-scale, rationally designed peptide libraries are generated to rapidly and economically screen candidate reporter peptides for substrate suitability and peptidase resistance. Also detailed are strategies to characterize and validate the designed reporters by determining kinetic parameters, intracellular substrate specificity, resistance to degradation by intracellular peptidases, and behavior within lysates and intact cells.
Collapse
Affiliation(s)
- Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States
| | - Qunzhao Wang
- Department of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - David S Lawrence
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States; Department of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States; Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill; North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
11
|
Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, Stern AM, Bahar I. Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handb Exp Pharmacol 2019; 260:327-367. [PMID: 31201557 PMCID: PMC6911651 DOI: 10.1007/164_2019_239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two technologies that have emerged in the last decade offer a new paradigm for modern pharmacology, as well as drug discovery and development. Quantitative systems pharmacology (QSP) is a complementary approach to traditional, target-centric pharmacology and drug discovery and is based on an iterative application of computational and systems biology methods with multiscale experimental methods, both of which include models of ADME-Tox and disease. QSP has emerged as a new approach due to the low efficiency of success in developing therapeutics based on the existing target-centric paradigm. Likewise, human microphysiology systems (MPS) are experimental models complementary to existing animal models and are based on the use of human primary cells, adult stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues and organ functions/structures involved in disease and ADME-Tox. Human MPS experimental models have been developed to address the relatively low concordance of human disease and ADME-Tox with engineered, experimental animal models of disease. The integration of the QSP paradigm with the use of human MPS has the potential to enhance the process of drug discovery and development.
Collapse
Affiliation(s)
- D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chakra S Chennubhotla
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Fen Pei
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Faeder
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Lezon
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Dotan E. Can computational modeling help in personalizing the care of patients with pancreatic ductal adenocarcinoma? ANNALS OF PANCREATIC CANCER 2018; 1:17. [PMID: 32601615 PMCID: PMC7324040 DOI: 10.21037/apc.2018.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Efrat Dotan
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|