1
|
Boychev N, Yeung V, Yang M, Kanu LN, Ross AE, Kuang L, Chen L, Ciolino JB. Ocular tear fluid biomarkers collected by contact lenses. Biochem Biophys Res Commun 2024; 734:150744. [PMID: 39340927 PMCID: PMC11586051 DOI: 10.1016/j.bbrc.2024.150744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE To collect tear fluid biomarkers from contact lenses (CLs) and determine the impact of CL wear duration. METHODS Rabbits were fitted with commercial etafilcon A CLs, which were collected after 1 min, 4 and 8 h (n = 4/time point). Tear fluid proteins and cytokines were extracted from the CLs and quantified. An exploratory comparison was performed between CLs and Schirmer Strips (SS) for a 1 min duration. RESULTS The concentration of MUC5AC was significantly higher after 4 h of CL wear. The expression of all investigated cytokines (IL-1α, IL-1β, IL-8, IL-17A, IL-21, Leptin, MIP-1β, MMP-9, NCAM-1, and TNF-α) was detectable after 1 min of CL wear, and over time, all showed significant variations throughout the 8-h CL wear period. Notably, IL-1α significantly increased by 8 h of CL wear, while MMP-9 decreased. Albumin and lysozyme did not show significant variations with CL wear. Differences between CLs and SS after 1 min were statistically significant for albumin, Leptin, TNF-α, IL-1α, IL-1β, and IL-8. CONCLUSIONS The duration of CL wear significantly affects the collection of some tear fluid biomarkers. Albumin, MUC5AC, and cytokines may have individual and synergistic diagnostic or prognostic potential. CLs and SS were similar for lysozyme and MUC5AC but differed in the collection of albumin and some cytokines. CLs are a viable tear fluid collection method for biomarker analyses and can be immediately added as a routine clinical test by being FDA-approved medical devices.
Collapse
Affiliation(s)
- Nikolay Boychev
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
| | - Vincent Yeung
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Menglu Yang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Levi N Kanu
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Amy E Ross
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Liangju Kuang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Lin Chen
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Joseph B Ciolino
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Harkness BM, Chen S, Kim K, Reddy AP, McFarland TJ, Hegarty DM, Everist SJ, Saugstad JA, Lapidus J, Galor A, Aicher SA. Tear Proteins Altered in Patients with Persistent Eye Pain after Refractive Surgery: Biomarker Candidate Discovery. J Proteome Res 2024; 23:2629-2640. [PMID: 38885176 DOI: 10.1021/acs.jproteome.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Some patients develop persistent eye pain after refractive surgery, but factors that cause or sustain pain are unknown. We tested whether tear proteins of patients with pain 3 months after surgery differ from those of patients without pain. Patients undergoing refractive surgery (laser in situ keratomileusis or photorefractive keratectomy ) were recruited from 2 clinics, and tears were collected 3 months after surgery. Participants rated their eye pain using a numerical rating scale (NRS, 0-10; no pain-worst pain) at baseline, 1 day, and 3 months after surgery. Using tandem mass tag proteomic analysis, we examined tears from patients with pain [NRS ≥ 3 at 3 months (n = 16)] and patients with no pain [NRS ≤ 1 at 3 months (n = 32)] after surgery. A subset of proteins (83 of 2748 detected, 3.0%) were associated with pain 3 months after surgery. High-dimensional statistical models showed that the magnitude of differential expression was not the only important factor in classifying tear samples from pain patients. Models utilizing 3 or 4 proteins had better classification performance than single proteins and represented differences in both directions (higher or lower in pain). Thus, patterns of protein differences may serve as biomarkers of postsurgical eye pain as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Brooke M Harkness
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Siting Chen
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, Oregon 97239-4197, United States
- Biostatistics & Design Program, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Kilsun Kim
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Trevor J McFarland
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Steven J Everist
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Jodi Lapidus
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, Oregon 97239-4197, United States
- Biostatistics & Design Program, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, Florida 33146, United States
- Miami Veterans Affairs Hospital, Miami, Florida 33125-1624, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| |
Collapse
|
3
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
4
|
Maulvi FA, Desai DT, Kalaiselvan P, Dumpati S, Kuppusamy R, Masoudi S, Shah DO, Willcox MDP. Lipid-based eye drop formulations for the management of evaporative dry eyes. Cont Lens Anterior Eye 2024; 47:102154. [PMID: 38523013 DOI: 10.1016/j.clae.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Dry eye disease is a progressive prevalent ocular surface disorder that arises from various factors and is characterized by insufficient quality and/or quantity of tears. The underlying pathophysiology is intricate and can progress to chronic, difficult-to-treat conditions. Multiple strategies and therapeutic approaches are utilized in its management that target one or more etiopathological components of dry eyes, which may include aqueous tear deficiency or evaporative dry eyes. The primary focus of this paper is on treatment alternatives that utilize lipids for the treatment of evaporative dry eyes. This may arise from either abnormal lipid production or inadequate lipid spreading caused by meibomian gland dysfunction. The hypothesis behind the development of these lipid-containing eye drops is that if they can imitate the lipid layer, they may be able to help in the management of the signs and symptoms of evaporative dry eyes. The lipids used in commercial formulations for dry eyes are mineral oil, castor oil, phospholipids, omega-3 fatty acid, and medium-chain triglycerides. The literature suggests the potential of lipid-containing eye drops to alleviate some of the signs and symptoms and enhance the quality of life for individuals suffering from evaporative dry eyes.
Collapse
Affiliation(s)
- Furqan A Maulvi
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia; Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India.
| | - Ditixa T Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Parthasarathi Kalaiselvan
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Srikanth Dumpati
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rajesh Kuppusamy
- Faculty of Science, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Simin Masoudi
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dinesh O Shah
- Department of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Ilyas M, Stapleton F, Willcox MDP, Henriquez F, Peguda HK, Rayamajhee B, Zahid T, Petsoglou C, Carnt NA. Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis. Pathogens 2024; 13:142. [PMID: 38392880 PMCID: PMC10892102 DOI: 10.3390/pathogens13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Acanthamoeba keratitis (AK) is a severe, rare protozoal infection of the cornea. Acanthamoeba can survive in diverse habitats and at extreme temperatures. AK is mostly seen in contact lens wearers whose lenses have become contaminated or who have a history of water exposure, and in those without contact lens wear who have experienced recent eye trauma involving contaminated soil or water. Infection usually results in severe eye pain, photophobia, inflammation, and corneal epithelial defects. The pathophysiology of this infection is multifactorial, including the production of cytotoxic proteases by Acanthamoeba that degrades the corneal epithelial basement membrane and induces the death of ocular surface cells, resulting in degradation of the collagen-rich corneal stroma. AK can be prevented by avoiding risk factors, which includes avoiding water contact, such as swimming or showering in contact lenses, and wearing protective goggles when working on the land. AK is mostly treated with an antimicrobial therapy of biguanides alone or in combination with diaminidines, although the commercial availability of these medicines is variable. Other than anti-amoeba therapies, targeting host immune pathways in Acanthamoeba disease may lead to the development of vaccines or antibody therapeutics which could transform the management of AK.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Primary & Secondary Healthcare Department, Punjab 54000, Pakistan; (M.I.)
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Fiona Henriquez
- School of Health and Life Sciences, The University of the West of Scotland, Glasgow G72 0LH, UK
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Binod Rayamajhee
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Tasbiha Zahid
- Primary & Secondary Healthcare Department, Punjab 54000, Pakistan; (M.I.)
| | | | - Nicole A. Carnt
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
- Centre for Vision Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| |
Collapse
|
6
|
Kiani P, Soozanipour A, Rezayat A, Taheri-Kafrani A. Lysozyme-immobilized bandage contact lens inhibits the growth and biofilm formation of common eye pathogens in vitro. Exp Eye Res 2023; 234:109601. [PMID: 37488008 DOI: 10.1016/j.exer.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Bandage contact lenses have an increased affinity to accumulate tear film proteins and bacteria during wear. Among the wide variety of tear film proteins, lysozyme has attracted the most attention for several reasons, including the fact that it is found at a high concentration in the tear film, has exceptional antibacterial and antibiofilm properties, and its significant deposits onto contact lenses. This study aims to evaluate the effect of lysozyme on bacterial biofilm formation on bandage contact lenses. For this purpose, several methods, including microtiter plate test and Colony Forming Unit (CFU) assay have been used to determine antibacterial and antibiofilm characteristics of lysozyme against the two most frequent contact lens-induced bacterial ocular infections, Staphylococcus aureus, and Pseudomonas aeruginosa. The results of these assays demonstrate lysozyme potential to inhibit 57.9% and 80.7% of the growth of S. aureus and P. aeruginosa, respectively. In addition, biofilm formations of P. aeruginosa and S. aureus reduced by 38.3% and 62.7%, respectively due to the antibiofilm effect of lysozyme. SEM and AFM imaging were utilized to visualize lysozyme antibacterial activity and topography changes of the contact lens surface, respectively, in the presence/absence of lysozyme. The results indicated that lysozyme can efficiently attack both gram-positive and gram-negative bacteria and consequently lysozyme-functionalized bandage contact lenses can reduce the risk of ocular infection after eye surgery.
Collapse
Affiliation(s)
- Pardis Kiani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
7
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Buch J, Riederer D, Scales C, Xu J. Tear film dynamics of a new soft contact lens. Ophthalmic Physiol Opt 2023; 43:1070-1078. [PMID: 37310193 DOI: 10.1111/opo.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE To present the objective metrics from a study that evaluated the clinical performance of a senofilcon A contact lens, both with and without a new manufacturing technique. METHODS This was a single-site, five-visit, controlled, randomised, subject-masked, 2 × 2 crossover study (May-August 2021) with a 2-week lens dispensing period (bilateral wear) and weekly follow-up visits. Healthy adult (18-39 years), habitual spherical silicone hydrogel contact lens wearers were included. The High-definition (HD) Analyzer™ was used to objectively measure the lens-on-eye optical system resulting from the study lenses at 1-week follow-up. Measurements assessed were vision break-up time (VBUT), modulation transfer function (MTF) cutoff, Strehl ratio (SR), potential visual acuity (PVA) for 100% contrast and objective scatter index (OSI). RESULTS Of the 50 enrolled participants, 47 (94.0%) were randomly assigned to one of the two possible lens wear sequences (test/control or control/test) and dispensed at least one study lens. The estimated odds ratio of VBUT > 10 s was 1.582 (95% confidence interval [CI]: 1.009 to 2.482) in test versus control lens. The least squares mean difference estimates of MTF cutoff, SR and PVA for 100% contrast between test versus control lens were 2.243 (95% CI: 0.012 to 4.475), 0.011 (95% CI: -0.002 to 0.023) and 0.073 (95% CI: -0.001 to 0.147), respectively. The estimated ratio of median OSI between test versus control lens was 0.887 (95% CI: 0.727 to 1.081). The test lens demonstrated superiority over the control lens with respect to VBUT and MTF cutoff. No serious adverse events were reported; eight adverse events (three ocular, five non-ocular) were indicated by six participants during the study. CONCLUSION The test lens demonstrated an increased probability of having a longer VBUT (>10 s). Future studies may be designed to assess the efficacy and long-term use of the test lens in a larger population.
Collapse
Affiliation(s)
- John Buch
- Johnson and Johnson Vision Care, Jacksonville, Florida, USA
| | | | - Charles Scales
- Johnson and Johnson Vision Care, Jacksonville, Florida, USA
| | - Jie Xu
- Johnson and Johnson Vision Care, Jacksonville, Florida, USA
| |
Collapse
|
9
|
Chang WH, Tsai MC, Liu PY, Lu CJ, Howard Hsu YH. Nutrient Supplementation Improves Contact Lens-Induced Corneal Cell Damage Based on a SIRC Cellular Model. Eye Contact Lens 2023; 49:348-356. [PMID: 37378653 DOI: 10.1097/icl.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES The long-term use of contact lenses may damage the structure of the ocular surface and cause metabolic disorders in corneal cells. Vitamins and amino acids help maintain the physiological function of the eye. In the present study, the effects of nutrient (vitamin and amino acid) supplementation on corneal cell repair after contact lens-induced damage was investigated. METHODS High-performance liquid chromatography was used to quantify the nutrient contents of minimum essential medium, and the MTT assay was used to measure the viability of corneal cells. A Statens Seruminstitut rabbit cornea cellular model was established to simulate contact lens-induced keratopathy and investigate the effects of vitamin and amino acid supplementations on corneal cell repair. RESULTS The high water content lens group (78%) has a cell viability as high as 83.3%, whereas the cell viability of the low water content lens group (38%) is only 51.6%. The 32.0% difference between the two groups confirms the correlation between water content of lens and corneal viability. CONCLUSIONS Vitamin B2, vitamin B12, asparagine, and taurine supplementation may help improve contact lens-induced damage.
Collapse
Affiliation(s)
- Wan-Hsin Chang
- R&D Center (W.-H.C., M.-C.T., P.-Y.L., C.-J.L.), Yung Sheng Optical Co, Taichung, Taiwan; and Department of Chemistry (Y.-H.H.H.), Tunghai University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Harkness BM, Hegarty DM, Saugstad JA, Behrens H, Betz J, David LL, Lapidus JA, Chen S, Stutzman R, Chamberlain W, Perez-Blanco M, Galor A, Aicher SA. Experimental design considerations for studies of human tear proteins. Ocul Surf 2023; 28:58-78. [PMID: 36764654 PMCID: PMC10409878 DOI: 10.1016/j.jtos.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE Human tears contain abundant, diverse sets of proteins that may serve as biomarkers of ocular surface health. There is a need for reproducible methods that consider multiple factors influencing the tear proteome, in addition to the variable of interest. Here we examined a workflow for proteomic analysis of tear proteins without the need to pool tear samples from multiple individuals, thus allowing for analyses based on individual factors, and increasing opportunities for protein biomarker discovery. METHODS Tears were collected by Schirmer strip following topical ocular anesthetic application then individually stored at -80 °C prior to processing for proteomics. Tear proteins were extracted from Schirmer strips, digested using suspension trapping spin columns (S-Trap), and labeled with high multiplicity tandem mass tags (TMT). Peptide digests were then extensively fractionated by two-dimensional chromatography and analyzed by mass spectrometry to identify and measure changes in protein abundance in each sample. Analysis of select samples was performed to test protocols and to compare the impact of clinically relevant parameters. To facilitate comparison of separate TMT experiments, common pool samples were included in each TMT instrument run and internal reference scaling (IRS) was performed. RESULTS Differences in subsets of tear proteins were noted for: geographic site of tear collection, contact lens use, and differences in tear fluid volume among individuals. CONCLUSION These findings demonstrate that proteomic analysis of human tear proteins can be performed without the need to pool samples, and that development of analytic workflows must consider factors that may affect outcomes in studies focused on diverse clinical samples.
Collapse
Affiliation(s)
- Brooke M Harkness
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Hannah Behrens
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Jason Betz
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Larry L David
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Jodi A Lapidus
- Biostatistics and Design Program, Oregon Health & Science University, USA; Oregon Health & Science University-Portland State University School of Public Health, USA
| | - Siting Chen
- Biostatistics and Design Program, Oregon Health & Science University, USA
| | - Richard Stutzman
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Maricarmen Perez-Blanco
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Metabolomics in Corneal Diseases: A Narrative Review from Clinical Aspects. Metabolites 2023; 13:metabo13030380. [PMID: 36984820 PMCID: PMC10055016 DOI: 10.3390/metabo13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Corneal pathologies may have subtle manifestations in the initial stages, delaying diagnosis and timely treatment. This can lead to irreversible visual loss. Metabolomics is a rapidly developing field that allows the study of metabolites in a system, providing a complementary tool in the early diagnosis and management of corneal diseases. Early identification of biomarkers is key to prevent disease progression. The advancement of nuclear magnetic resonance and mass spectrometry allows the identification of new biomarkers in the analysis of tear, cornea, and aqueous humor. Novel perspectives on disease mechanisms are identified, which provide vital information for potential targeted therapies in the future. Current treatments are analyzed at a molecular level to offer further information regarding their efficacy. In this article, we provide a comprehensive review of the metabolomic studies undertaken in the cornea and various pathologies such as dry eye disease, Sjogren’s syndrome, keratoconus, post-refractive surgery, contact lens wearers, and diabetic corneas. Lastly, we discuss the exciting future that metabolomics plays in cornea research.
Collapse
|
12
|
Ozdalgic B, Gul M, Uygun ZO, Atçeken N, Tasoglu S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. BIOSENSORS 2022; 12:827. [PMID: 36290964 PMCID: PMC9599721 DOI: 10.3390/bios12100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Human tear film, with a flow rate of 1-3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer's disease, Parkinson's disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor-analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Division of Optometry, School of Med Services & Techniques, Dogus University, Istanbul 34775, Türkiye
| | - Munire Gul
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Zihni Onur Uygun
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Türkiye
| | - Nazente Atçeken
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
13
|
Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. MASS SPECTROMETRY REVIEWS 2022; 41:842-860. [PMID: 33759206 PMCID: PMC9543345 DOI: 10.1002/mas.21691] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The lacrimal film has attracted increasing interest in the last decades as a potential source of biomarkers of physiopathological states, due to its accessibility, moderate complexity, and responsiveness to ocular and systemic diseases. High-performance liquid chromatography-mass spectrometry (LC-MS) has led to effective approaches to tear proteomics, despite the intrinsic limitations in sample amounts. This review focuses on the recent progress in strategy and technology, with an emphasis on the potential for personalized medicine. After an introduction on lacrimal-film composition, examples of applications to biomarker discovery are discussed, comparing approaches based on pooled-sample and single-tear analysis. Then, the most critical steps of the experimental pipeline, that is, tear collection, sample fractionation, and LC-MS implementation, are discussed with reference to proteome-coverage optimization. Advantages and challenges of the alternative procedures are highlighted. Despite the still limited number of studies, tear quantitative proteomics, including single-tear investigation, could offer unique contributions to the identification of low-invasiveness, sustained-accessibility biomarkers, and to the development of personalized approaches to therapy and diagnosis.
Collapse
Affiliation(s)
- Erika Ponzini
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
| | - Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Antonella De Palma
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Pierluigi Mauri
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Silvia Tavazzi
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
- COMiBUniversity of Milano‐BicoccaMilanItaly
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
14
|
Chiang JCB, Krishnan AV, Goldstein D, Markoulli M. The Impact of Post-Tear Collection Storage on Tear Film Substance P Concentration. Curr Eye Res 2022; 47:1116-1120. [PMID: 35485451 DOI: 10.1080/02713683.2022.2067565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Substance P is a sensory neuropeptide increasingly used as a biomarker for ocular and systemic neuropathic conditions. Due to the limited studies on tear storage conditions compared to other bodily fluids including blood and urine, the aim of this study was to investigate whether different storage durations at 4 °C can impact on substance P concentrations prior to storage at -80 °C. This is important to assess potential practical limitations in the handling and storage of tear fluid essential. METHODS Tears were collected and pooled from both eyes of 31 healthy participants using the flush tears method. The samples were centrifuged and aliquoted into three sets of microcentrifuge tubes with each stored at 4 °C for <2 h, 4 h or 6 h (Timepoints 1, 2 or 3). After each respective storage duration, the aliquoted samples were than stored at -80 °C before analysis, within 6 months. Tears were analyzed for the concentration of substance P and the total protein content (TPC). RESULTS Substance P concentrations across the three timepoints were not significantly different (p > 0.05), including Timepoint 1 (Median [interquartile range]: 10.7 ng/ml [1.6-37.9]), Timepoint 2 (10.9 ng/ml [1.6-32.6]) and Timepoint 3 (5.2 ng/ml [1.3-25.2]). There were also no significant differences in TPC concentrations measured at the three timepoints, including Timepoint 1 (3.1 mg/ml [1.7-3.8]), Timepoint 2 (2.9 mg/ml [1.9-4.1]) and Timepoint 3 (2.7 mg/ml [1.6-3.7]). CONCLUSIONS While the levels of substance P were stable while stored at 4 °C prior to proper -80 °C storage and analysis, future research should investigate the impact of other storage conditions such as ambient room temperature to optimize the feasibility of using tears for biomarker purposes in clinical settings.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Recchioni A, Mocciardini E, Ponzini E, Tavazzi S. Viscoelastic properties of the human tear film. Exp Eye Res 2022; 219:109083. [PMID: 35460666 DOI: 10.1016/j.exer.2022.109083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022]
Abstract
When considering eye blinking from a tribological perspective, tear viscosity is expected to play a fundamental role. The application of rheological techniques to describe the tear film dates back to the late 1980s, but there has been a continuous need of reappraisal due to new findings in tear film biochemistry and to the development of new methods of physico-chemical characterization. This review provides an overview on tear rheological behavior by analyzing the peer-reviewed literature on this topic. Specifically, examples of in-vitro and in-vivo viscosity measurements are detailed, highlighting experimental criticalities and the need of a standard convention for rheological techniques to compare data across different studies, of analyses on tears of single individuals even within the limits of the low volume available, and of a further development of in-vivo techniques. Then, the controversial role of specific tear components on viscosity is discussed, together with the alterations associated to dry eye disease and contact lens wear. Finally, an updated focus is reported on the viscosity of artificial tears formulations.
Collapse
Affiliation(s)
- Alberto Recchioni
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, UK; Optometry & Vision Sciences Group, School of Life & Health Sciences, Aston University, Birmingham, UK; Birmingham and Midland Eye Centre, Birmingham, UK
| | - Emanuele Mocciardini
- University of Milano Bicocca, Corso di laurea in Ottica e Optometria, via R. Cozzi 55, I-20125, Milan, Italy
| | - Erika Ponzini
- University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125, Milan, Italy; University of Milano Bicocca, COMiB research center, via R. Cozzi 55, I-20125, Milan, Italy.
| | - Silvia Tavazzi
- University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125, Milan, Italy; University of Milano Bicocca, COMiB research center, via R. Cozzi 55, I-20125, Milan, Italy
| |
Collapse
|
16
|
Xu X, Li G, Zuo YY. Biophysical properties of tear film lipid layer I. Surface tension and surface rheology. Biophys J 2022; 121:439-450. [PMID: 34958775 PMCID: PMC8822608 DOI: 10.1016/j.bpj.2021.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/04/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023] Open
Abstract
Tear film lipid layer (TFLL) is the outmost layer of the tear film. It plays a crucial role in stabilizing the tear film by reducing surface tension and retarding evaporation of the aqueous layer. Dysfunction of the TFLL leads to dysfunctional tear syndrome, with dry eye disease (DED) being the most prevalent eye disease, affecting 10%-30% of the world population. To date, except for treatments alleviating dry eye symptoms, effective therapeutic interventions in treating DED are still lacking. Therefore, there is an urgent need to understand the biophysical properties of the TFLL with the long-term goal to develop translational solutions in effectively managing DED. Here, we studied the composition-function correlations of an artificial TFLL, under physiologically relevant conditions, using a novel experimental methodology called constrained drop surfactometry. This artificial TFLL was composed of 40% behenyl oleate and 40% cholesteryl oleate, representing the most abundant wax ester and cholesteryl ester in the natural TFLL, respectively, and 15% phosphatidylcholine and 5% palmitic-acid-9-hydroxy-stearic-acid (PAHSA), which represent the two predominant polar lipid classes in the natural TFLL. Our study suggests that the major biophysical function of phospholipids in the TFLL is to reduce the surface tension, whereas the primary function of PAHSA is to optimize the rheological properties of the TFLL. These findings have novel implications in better understanding the physiological and biophysical functions of the TFLL and may offer new translational insight to the treatment of DED.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu,Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu,Corresponding author
| |
Collapse
|
17
|
Piper A, Öberg Månsson I, Khaliliazar S, Landin R, Hamedi MM. A disposable, wearable, flexible, stitched textile electrochemical biosensing platform. Biosens Bioelectron 2021; 194:113604. [PMID: 34488171 DOI: 10.1016/j.bios.2021.113604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
Wearable sensors are a fast growing and exciting research area, the success of smart watches are a great example of the utility and demand for wearable sensing systems. The current state of the art routinely uses expensive and bulky equipment designed for long term use. There is a need for cheap and disposable wearable sensors to make single use measurements, primarily in the area of biomarker detection. Herein we report the ability to make cheap (0.22 USD/sensor), disposable, wearable sensors by stitching conductive gold coated threads into fabrics. These threads are easily functionalised with thiolate self-assembled monolayers which can be designed for the detection of a broad range of different biomarkers. This all textile sensing platform is ideally suited to be scaled up and has the added advantage of being stretchable with insignificant effect on the electrochemistry of the devices. As a proof of principle, the devices have been functionalised with a continuous glucose sensing system which was able to detect glucose in human sweat across the clinically relevant range (0.1-0.6 mM). The sensors have a sensitivity of 126 ± 14 nA/mM of glucose and a limit of detection of 301 ± 2 nM. This makes them ideally suited for biomarker detection in point-of-care sensing applications.
Collapse
Affiliation(s)
- Andrew Piper
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden.
| | - Ingrid Öberg Månsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Shirin Khaliliazar
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Roman Landin
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden.
| |
Collapse
|
18
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Glycoprotein 340's scavenger receptor cysteine-rich domain promotes adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to contact lens polymers. Infect Immun 2021; 90:e0033921. [PMID: 34662210 DOI: 10.1128/iai.00339-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contact lenses are biomaterials worn on the eye to correct refractive errors. Bacterial adhesion and colonization of these lenses results in adverse events such as microbial keratitis. The adsorption of tear proteins to contact lens materials enhances bacterial adhesion. Glycoprotein 340 (Gp340), a tear component, is known to promote microbial colonization in the oral cavity, however, it has not been investigated in any contact lens-related adverse event. Therefore, this study examined the adsorption of Gp340 and its recombinantly expressed scavenger receptor cysteine rich (iSRCR1Gp340) domain on two common contact lens materials, etafilcon A and lotrafilcon B, and the concomitant effects on the adherence of clinical isolates of microbial keratitis causative agents, Pseudomonas aeruginosa (PA6206, PA6294), and Staphylococcus aureus (SA38, USA300). Across all strains and materials, iSRCR1Gp340 enhanced adherence of bacteria in a dose-dependent manner. However, iSRCR1Gp340 did not modulate lysozyme's and lactoferrin's effects on bacterial adhesion to the contact lens. The Gp340 binding surface protein SraP significantly enhanced USA300 binding to iSRCR1Gp340-coated lenses. In addition, iSRCR1Gp340-coated surfaces had significantly diminished biofilms with the SraP mutant (ΔSraP), and with the Sortase A mutant (ΔSrtA), there was a further reduction in biofilms, indicating the likely involvement of additional surface proteins. Finally, the binding affinities between iSRCR1Gp340 and SraP were determined using surface plasmon resonance (SPR), where the complete SraP binding region displayed nanomolar affinity, whereas its smaller fragments adhered with micromolar affinities. This study concludes that Gp340 and its SRCR domains play an important role in bacterial adhesion to the contact lens.
Collapse
|
20
|
Fogt JS. Midday Fogging of Scleral Contact Lenses: Current Perspectives. CLINICAL OPTOMETRY 2021; 13:209-219. [PMID: 34321949 PMCID: PMC8311169 DOI: 10.2147/opto.s284634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Midday fogging is a common problem in scleral lens wear, as particles accumulate in the tear reservoir between the posterior surface of the lens and the front of the ocular surface during wear. As particulate waste collects, symptoms of blurred vision and discomfort arise, typically leading patients to remove their lenses for cleaning, refilling with fresh solution, and reinsertion into the eye. The appearance of the particulate can vary, likely due to different causes for midday fogging. Studies which attempted to identify the particulate have given some insight into some of the causes, but larger studies are needed to identify this debris. Research on lens solutions used for filling the lens reservoir and of various aspects of scleral lens fits have also begun to culminate in the concept that midday fogging may ultimately be related to inflammation. Since scleral lens wearers can have varied and multiple sources of inflammation, strategies in minimizing midday fogging can differ between patients.
Collapse
|
21
|
Tear Film Proteome of Healthy Domestic Cats. Vet Med Int 2021; 2021:8708023. [PMID: 34326982 PMCID: PMC8302406 DOI: 10.1155/2021/8708023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to investigate the proteins found in tear film of healthy domestic cats. Schirmer tear test strips were used to collect tear samples of twelve healthy cats, which were mixed, centrifuged, and placed in a single 1.5 mL microtube that was frozen at −20°C, until analysis by two-dimensional polyacrylamide gel and mass spectrometry associated with high-performance liquid chromatography. The resulting spectra were analyzed and compared with the Swiss-Prot search tool. Forty peptides were detected in the analyzed protein fragments of 90 spots, with 16 proteins identified. Of these, the authors confirmed what has been already found in other studies: lactotransferrin, serum albumin, allergenic lipocalins, and neutrophil gelatinase-associated lipocalin. Others were considered novel in tear film samples of all species: cyclin-dependent protein kinase, serine/arginine repetitive matrix protein, apelin receptor, secretory protein related to C1q/TNF, Wee1, α-1,4 glucan phosphorylase, and WD repeat domain 1. The network was divided into 11 clusters, and a biological function was assigned. Most of the proteins have functions in the defense and maintenance of feline ocular surface homeostasis. Serum albumin is a bottleneck protein, with a high betweenness value. This paper is a pioneer in reporting, in-depth, the tear film proteome of domestic cats.
Collapse
|
22
|
Masoudi S, Mitchell TW, Willcox MD. Profiling of non-polar lipids in tears of contact lens wearers during the day. Exp Eye Res 2021; 207:108567. [PMID: 33848523 DOI: 10.1016/j.exer.2021.108567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study explored whether the non-polar lipids in the human tear fluid lipidome show diurnal variation with and without contact lens wear. It also addressed the relationship between changes in ocular comfort during the day with the level of non-polar lipids. METHODS Tear samples were collected in the morning and evening with and without contact lenses using fine glass capillary tubes and were analysed by chip-based nano-electrospray ionization tandem mass spectrometric techniques. Tear levels of cholesteryl esters (CE), wax esters (WE) and triacylglycerides (TAG) were quantified. RESULTS TAG 48:0, 52:0 and WE 26:0/16:0, and 27:0/17:0 increased from morning to evening. TAG 52:2, WE 21:0/16:0, 21:0/18:1 and 28:0/18:1 decreased during the day when no lenses were worn. CE 21:0 was the only non-polar lipid that increased from morning to evening in contact lens wear. WE 21:0/16:0 and 27:0/17:0 were lower in the morning in contact lens wear compared to no lens wear (p ≤ 0.05). The level of non-polar lipids did not correlate with ocular comfort at the end of the day. CONCLUSION Even though the level of some of non-polar lipid species changed from morning to evening the total level of major tear non-polar lipids remained unchanged during the day with and without contact lens wear. The effect of change in the quantity and structure of lipid species on tear stability and ocular comfort warrants more investigation.
Collapse
Affiliation(s)
- Simin Masoudi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia; Illawara Health and Medical Research Institute, Wollongong, New South Wales, Australia.
| | - Mark D Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
| |
Collapse
|
23
|
Ramamoorthy P, Khanal S, J Nichols J. Inflammatory proteins associated with contact lens-related dry eye. Cont Lens Anterior Eye 2021; 45:101442. [PMID: 33824065 DOI: 10.1016/j.clae.2021.101442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the levels and regulation of tear film inflammatory proteins in contact lens-related dry eye (CLDE). METHODS One hundred healthy, daily wear (non-overnight), experienced soft contact lens wearers were classified into normal (n = 50) and CLDE (n = 50) groups based on Contact Lens and Dry Eye Questionnaire scores, tear break-up times, and comfort (a two-hour difference between total and comfortable daily lens wear hours). Tear samples (up to 5 μL) were collected by capillary extraction from the inferior meniscus of each eye, and pooled tear samples (10 per group) were tested using a customized Quantibody array. Mann Whitney tests with the Benjamini-Hochberg procedure with a 5% false discovery rate were used to compare the normal and CLDE groups. RESULTS Relative to the normal group, the CLDE group showed a significantly increased tear concentration of several inflammatory mediators, including interleukin (IL)-7 (p = 0.001), IL-8 (p = 0.001), IL-13 (p = 0.001), IL-15 (p = 0.001), IL-12 p70 (p = 0.002), growth-related oncogene-alpha/ chemokine (CXC motif) ligand 1 (p = 0.003), granulocyte-colony stimulating factor (p = 0.005), IL-11 (p = 0.008), epidermal growth factor receptor (p = 0.01), IL-1 receptor antagonist (RA) (p = 0.013), macrophage colony-stimulating factor (p = 0.013), Eotaxin/CC motif chemokine ligand 11 (CCL11) (p = 0.016), and IL-2 (p = 0.016). The following cytokines were increased three-fold or more in the CLDE group: IL-13 (p = 0.001), Eotaxin/CCL11 (p = 0.016), and IL-1RA (p = 0.013). CONCLUSIONS Several inflammatory markers, including interleukins, were increased in tears of subjects with CLDE. These results support a growing body of evidence that suggests a potential role of inflammation in CLDE.
Collapse
Affiliation(s)
| | - Safal Khanal
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Nichols
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears. Cont Lens Anterior Eye 2021; 44:157-191. [DOI: 10.1016/j.clae.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
|
25
|
Downie LE, Bandlitz S, Bergmanson JPG, Craig JP, Dutta D, Maldonado-Codina C, Ngo W, Siddireddy JS, Wolffsohn JS. CLEAR - Anatomy and physiology of the anterior eye. Cont Lens Anterior Eye 2021; 44:132-156. [PMID: 33775375 DOI: 10.1016/j.clae.2021.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
A key element of contact lens practice involves clinical evaluation of anterior eye health, including the cornea and limbus, conjunctiva and sclera, eyelids and eyelashes, lacrimal system and tear film. This report reviews the fundamental anatomy and physiology of these structures, including the vascular supply, venous drainage, lymphatic drainage, sensory innervation, physiology and function. This is the foundation for considering the potential interactions with, and effects of, contact lens wear on the anterior eye. This information is not consistently published as academic research and this report provides a synthesis from all available sources. With respect to terminology, the report aims to promote the consistent use of nomenclature in the field, and generally adopts anatomical terms recommended by the Federative Committee for Anatomical Terminology. Techniques for the examination of the ocular surface are also discussed.
Collapse
Affiliation(s)
- Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Australia.
| | - Stefan Bandlitz
- Höhere Fachschule für Augenoptik Köln, Cologne School of Optometry, Germany; School of Optometry, Aston University, Birmingham, UK
| | - Jan P G Bergmanson
- Texas Eye Research and Technology Center, University of Houston College of Optometry, United States
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, New Zealand
| | - Debarun Dutta
- School of Optometry, Aston University, Birmingham, UK
| | - Carole Maldonado-Codina
- Eurolens Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - William Ngo
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 14W Hong Kong Science Park, Hong Kong
| | | | - James S Wolffsohn
- School of Optometry, Aston University, Birmingham, UK; Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, New Zealand
| |
Collapse
|
26
|
Anatomical and physiological considerations in scleral lens wear: Eyelids and tear film. Cont Lens Anterior Eye 2021; 44:101407. [PMID: 33468392 DOI: 10.1016/j.clae.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Scleral lenses can affect a range of anterior segment structures including the eyelids and the tears. The eyelids, consisting of the outer skin layer, the middle tarsal plate, and the posterior palpebral conjunctiva, provide physical protection and house the meibomian glands and cilia which have important and unique functions. Tears consist of a mix of aqueous, mucus, and lipidomic components that serve vital functions of lubricity, protection, and nourishment to the ocular surface. Both the eyelids and the tear film interact directly with scleral lenses on the eye and can affect but also be impacted by scleral lens wear. The purpose of this paper is to review the anatomy and physiology of the eyelids and tear film, discuss the effects and impacts of the scleral lenses on these structures, and identify areas that require further research.
Collapse
|
27
|
Fouling in ocular devices: implications for drug delivery, bioactive surface immobilization, and biomaterial design. Drug Deliv Transl Res 2021; 11:1903-1923. [PMID: 33454927 DOI: 10.1007/s13346-020-00879-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The last 30 years has seen a proliferation of research on protein-resistant biomaterials targeted at designing bio-inert surfaces, which are prerequisite for optimal performance of implantable devices that contact biological fluids and tissues. These efforts have only been able to yield minimal results, and hence, the ideal anti-fouling biomaterial has remained elusive. Some studies have yielded biomaterials with a reduced fouling index among which high molecular weight polyethylene glycols have remained dominant. Interestingly, the field of implantable ocular devices has not experienced an outflow of research in this area, possibly due to the assumption that biomaterials tested in other body fluids can be translated for application in the ocular space. Unfortunately, progression in the molecular understanding of many ocular conditions has brought to the fore the need for treatment options that necessitates the use of anti-fouling biomaterials. From the earliest implanted horsehair and silk seton for glaucoma drainage to the recent mini telescopes for sight recovery, this review provides a concise incursion into the gradual evolution of biomaterials for the design of implantable ocular devices as well as approaches used to overcome the challenges with fouling. The implication of fouling for drug delivery, the design of immune-responsive biomaterials, as well as advanced surface immobilization approaches to support the overall performance of implantable ocular devices are also reviewed.
Collapse
|
28
|
Bălașa AF, Chircov C, Grumezescu AM. Body Fluid Biomarkers for Alzheimer's Disease-An Up-To-Date Overview. Biomedicines 2020; 8:E421. [PMID: 33076333 PMCID: PMC7602623 DOI: 10.3390/biomedicines8100421] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is a highly complex process which is associated with a variety of molecular mechanisms related to ageing. Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common, affecting more than 45 million individuals. The underlying mechanisms involve amyloid plaques and neurofibrillary tangles (NFTs) deposition, which will subsequently lead to oxidative stress, chronic neuroinflammation, neuron dysfunction, and neurodegeneration. The current diagnosis methods are still limited in regard to the possibility of the accurate and early detection of the diseases. Therefore, research has shifted towards the identification of novel biomarkers and matrices as biomarker sources, beyond amyloid-β and tau protein levels within the cerebrospinal fluid (CSF), that could improve AD diagnosis. In this context, the aim of this paper is to provide an overview of both conventional and novel biomarkers for AD found within body fluids, including CSF, blood, saliva, urine, tears, and olfactory fluids.
Collapse
Affiliation(s)
- Adrian Florian Bălașa
- Târgu Mures, Emergency Clinical Hospital, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mures, RO-540142 Târgu Mures, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania;
| |
Collapse
|
29
|
Chang YC, Su CY, Chang CH, Fang HW, Wei Y. Correlation between Tribological Properties and the Quantified Structural Changes of Lysozyme on Poly (2-hydroxyethyl methacrylate) Contact Lens. Polymers (Basel) 2020; 12:polym12081639. [PMID: 32717989 PMCID: PMC7464607 DOI: 10.3390/polym12081639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
The ocular discomfort is the leading cause of contact lens wear discontinuation. Although the tear proteins as a lubricant might improve contact lens adaptation, some in vitro studies suggested that the amount of adsorbed proteins could not simply explain the lubricating performance of adsorbed proteins. The purpose of this study was to quantify the structural changes and corresponding ocular lubricating properties of adsorbed protein on a conventional contact lens material, poly (2-hydroxyethyl methacrylate) (pHEMA). The adsorption behaviors of lysozyme on pHEMA were determined by the combined effects of protein–surface and protein–protein interactions. Lysozyme, the most abundant protein in tear, was first adsorbed onto the pHEMA surface under widely varying protein solution concentrations to saturate the surface, with the areal density of the adsorbed protein presenting different protein–protein effects within the layer. These values were correlated with the measured secondary structures, and corresponding friction coefficient of the adsorbed and protein covered lens surface, respectively. The decreased friction coefficient value was an indicator of the lubricated surfaces with improved adaptation. Our results indicate that the protein–protein effects help stabilize the structure of adsorbed lysozyme on pHEMA with the raised friction coefficient measured critical for the innovation of contact lens material designs with improved adaptation.
Collapse
Affiliation(s)
- You-Cheng Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (Y.-C.C.); (C.-Y.S.); (C.-H.C.)
| | - Chen-Ying Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (Y.-C.C.); (C.-Y.S.); (C.-H.C.)
| | - Chia-Hua Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (Y.-C.C.); (C.-Y.S.); (C.-H.C.)
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (Y.-C.C.); (C.-Y.S.); (C.-H.C.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
- Correspondence: (H.-W.F.); (Y.W.)
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan; (Y.-C.C.); (C.-Y.S.); (C.-H.C.)
- Correspondence: (H.-W.F.); (Y.W.)
| |
Collapse
|
30
|
Garza A, Diaz G, Hamdan M, Shetty A, Hong BY, Cervantes J. Homeostasis and Defense at the Surface of the Eye. The Conjunctival Microbiota. Curr Eye Res 2020; 46:1-6. [PMID: 32584612 DOI: 10.1080/02713683.2020.1788100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The literature on ocular microbiome has grown tremendously over the past decade, and our knowledge of the different aspects and roles in homeostasis and protection is continuously growing. The development of 16 S rRNA sequencing has allowed the field to characterize communities of bacteria in health and ocular disease. Efforts should continue to further elucidate the interplay between microbiome and key players, such as age, comorbidities, and contact lens usage in order to have better control of the sight-threatening complications.
Collapse
Affiliation(s)
- Arnulfo Garza
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center , El Paso, TX, USA
| | - Giancarlo Diaz
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center , El Paso, TX, USA
| | - Marah Hamdan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center , El Paso, TX, USA
| | - Akaanksh Shetty
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center , El Paso, TX, USA
| | - Bo-Young Hong
- The Jackson Laboratory for Genomic Medicine , Farmington, CT, USA
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center , El Paso, TX, USA
| |
Collapse
|
31
|
Willcox MDP, Walsh K, Nichols JJ, Morgan PB, Jones LW. The ocular surface, coronaviruses and COVID-19. Clin Exp Optom 2020; 103:418-424. [PMID: 32406140 PMCID: PMC7272971 DOI: 10.1111/cxo.13088] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
The ocular surface has been suggested as a site of infection with Coronavirus-2 (SARS-CoV-2) responsible for the coronavirus disease-19 (COVID-19). This review examines the evidence for this hypothesis, and its implications for clinical practice. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), responsible for the COVID-19 pandemic, is transmitted by person-to-person contact, via airborne droplets, or through contact with contaminated surfaces. SARS-CoV-2 binds to angiotensin converting enzyme-2 (ACE2) to facilitate infection in humans. This review sets out to evaluate evidence for the ocular surface as a route of infection. A literature search in this area was conducted on 15 April 2020 using the Scopus database. In total, 287 results were returned and reviewed. There is preliminary evidence for ACE2 expression on corneal and conjunctival cells, but most of the other receptors to which coronaviruses bind appear to be found under epithelia of the ocular surface. Evidence from animal studies is limited, with a single study suggesting viral particles on the eye can travel to the lung, resulting in very mild infection. Coronavirus infection is rarely associated with conjunctivitis, with occasional cases reported in patients with confirmed COVID-19, along with isolated cases of conjunctivitis as a presenting sign. Coronaviruses have been rarely isolated from tears or conjunctival swabs. The evidence suggests coronaviruses are unlikely to bind to ocular surface cells to initiate infection. Additionally, hypotheses that the virus could travel from the nasopharynx or through the conjunctival capillaries to the ocular surface during infection are probably incorrect. Conjunctivitis and isolation of the virus from the ocular surface occur only rarely, and overwhelmingly in patients with confirmed COVID-19. Necessary precautions to prevent person-to-person transmission should be employed in clinical practice throughout the pandemic, and patients should be reminded to maintain good hygiene practices.
Collapse
Affiliation(s)
- Mark DP Willcox
- School of Optometry and Vision ScienceThe University of New South WalesSydneyNew South WalesAustralia
| | - Karen Walsh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision ScienceUniversity of WaterlooWaterlooOntarioCanada
| | - Jason J Nichols
- School of OptometryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Philip B Morgan
- Eurolens Research, Division of Pharmacy and Optometry, The University of ManchesterManchesterUK
| | - Lyndon W Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision ScienceUniversity of WaterlooWaterlooOntarioCanada
| |
Collapse
|