1
|
d'Orio P, Squarza S, Revay M, Cardinale F, Castana L, Sartori I, Tassi L, Lo Russo G, Cossu M. Neurological morbidity of surgery for suprasylvian operculoinsular epilepsy. Epilepsia 2024; 65:402-413. [PMID: 38041557 DOI: 10.1111/epi.17844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE The objective of this study was to identify risk factors associated with surgery-related neurological morbidity in patients with drug-resistant epilepsy undergoing suprasylvian operculoinsular resections. As secondary outcomes, we also analyzed the risk factors for ischemic lesion (IL) of corona radiata and seizure recurrence. METHODS A retrospective analysis was conducted on a cohort of patients who underwent suprasylvian operculoinsular resections for drug-resistant epilepsy. The association of several presurgical, surgical, and postsurgical factors with both primary (persistent neurological deficits) and secondary (structural abnormalities on postoperative magnetic resonance imaging [MRI] and seizure recurrence) postoperative outcomes was investigated with univariate and multivariate statistical analysis. RESULTS The study included a total of 65 patients; 46.2% of patients exhibited postoperative neurological deficits, but only 12.3% experienced persistent deficits. On postoperative MRI, IL in the corona radiata and corticospinal tract Wallerian degeneration (CSTWd) were seen in 68% and 29% of cases, respectively. Only CSTWd was significantly associated with persistent neurological deficits (relative risk [RR] = 2.6). Combined operculoinsular resection (RR = 3.62) and surgery performed on the left hemisphere (RR = .37) were independently associated with IL in the corona radiata. Variables independently associated with CSTWd were the presence of malacic components in the IL (RR = 1.96), right central operculum resection (RR = 1.79), and increasing age at surgery (RR = 1.03). Sixty-two patients had a postoperative follow-up > 12 months (median = 56, interquartile range = 30.75-73.5), and 62.9% were in Engel class I at last outpatient control. The risk of seizure recurrence was reduced by selective opercular resection (RR = .25) and increased by the histological diagnosis of aspecific gliosis (RR = 1.39). SIGNIFICANCE This study provides insights into the risk factors associated with surgery-related neurological morbidity, as well as further evidence on the postoperative occurrence of subcortical injury and seizure recurrence in epileptic patients undergoing suprasylvian operculoinsular resections. The findings highlighted in this study may be useful to better understand the processes supporting the increased surgical risk in the operculoinsular region.
Collapse
Affiliation(s)
- Piergiorgio d'Orio
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Silvia Squarza
- Neuroradiology Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Martina Revay
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Francesco Cardinale
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Laura Castana
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Ivana Sartori
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Lo Russo
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimo Cossu
- "Claudio Munari" Epilepsy Surgery Center, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
2
|
Ikeda M, Okamoto K, Suzuki K, Takai E, Kasahara H, Furuta N, Furuta M, Tashiro Y, Shimizu C, Takatama S, Naito I, Sato M, Sakai Y, Takahashi M, Amari M, Takatama M, Higuchi T, Tsushima Y, Yokoo H, Kurabayashi M, Ishibashi S, Ishii K, Ikeda Y. Recurrent Lobar Hemorrhages and Multiple Cortical Superficial Siderosis in a Patient of Alzheimer's Disease With Homozygous APOE ε2 Allele Presenting Hypobetalipoproteinemia and Pathological Findings of 18F-THK5351 Positron Emission Tomography: A Case Report. Front Neurol 2021; 12:645625. [PMID: 34305778 PMCID: PMC8294698 DOI: 10.3389/fneur.2021.645625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer's disease, the apolipoprotein E gene (APOE) ε2 allele is a protective genetic factor, whereas the APOE ε4 allele is a genetic risk factor. However, both the APOE ε2 and the APOE ε4 alleles are genetic risk factors for lobar intracerebral hemorrhage. The reasons for the high prevalence of lobar intracerebral hemorrhage and the low prevalence of Alzheimer's disease with the APOE ε2 allele remains unknown. Here, we describe the case of a 79-year-old Japanese female with Alzheimer's disease, homozygous for the APOE ε2 allele. This patient presented with recurrent lobar hemorrhages and multiple cortical superficial siderosis. The findings on the 11C-labeled Pittsburgh Compound B-positron emission tomography (PET) were characteristic of Alzheimer's disease. 18F-THK5351 PET revealed that the accumulation of 18F-THK 5351 in the right pyramidal tract at the pontine level, the cerebral peduncle of the midbrain, and the internal capsule, reflecting the lesions of the previous lobar intracerebral hemorrhage in the right frontal lobe. Moreover, 18F-THK5351 accumulated in the bilateral globus pallidum, amygdala, caudate nuclei, and the substantia nigra of the midbrain, which were probably off-target reaction, by binding to monoamine oxidase B (MAO-B). 18F-THK5351 were also detected in the periphery of prior lobar hemorrhages and a cortical subarachnoid hemorrhage, as well as in some, but not all, areas affected by cortical siderosis. Besides, 18F-THK5351 retentions were observed in the bilateral medial temporal cortices and several cortical areas without cerebral amyloid angiopathy or prior hemorrhages, possibly where tau might accumulate. This is the first report of a patient with Alzheimer's disease, carrying homozygous APOE ε2 allele and presenting with recurrent lobar hemorrhages, multiple cortical superficial siderosis, and immunohistochemically vascular amyloid β. The 18F-THK5351 PET findings suggested MAO-B concentrated regions, astroglial activation, Waller degeneration of the pyramidal tract, neuroinflammation due to CAA related hemorrhages, and possible tau accumulation.
Collapse
Affiliation(s)
- Masaki Ikeda
- Division of General Education (Neurology), Faculty of Health & Medical Care, Saitama Medical University, Saitama, Japan.,Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan.,Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Keiji Suzuki
- Department of Pathology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Eriko Takai
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Natsumi Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minori Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuichi Tashiro
- Department of Neurology, Mito Medical Center, Mito, Japan
| | - Chisato Shimizu
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Shin Takatama
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Isao Naito
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Mie Sato
- Department of Anesthesiology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Yasujiro Sakai
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Manabu Takahashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masakuni Amari
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Masahiko Kurabayashi
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenji Ishii
- Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
3
|
Zheng X, Zhang Y, Man Y, Hu Z, Zhang N, Pan S. Clinical Features, Risk Factors, and Early Prognosis for Wallerian Degeneration in the Descending Pyramidal Tract after Acute Cerebral Infarction. J Stroke Cerebrovasc Dis 2020; 30:105480. [PMID: 33253986 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Wallerian degeneration(WD) occurs in the descending pyramidal tract(DPT) after cerebral infarction commonly, but studies of its degree evaluation, influencing factors and effects on nervous function are still limited. OBJECTIVES The purpose of this study was to describe these findings and estimate their clinical significance. METHODS In total, 133 patients confirmed acute cerebral infarction and restricted diffusion in the DPT of the cerebral peduncle by MRI scans. These cases were retrospectively reviewed. We describe their clinical characteristics and analyze influence factors of WD, including the timespan from symptom onset to MRI and TOAST classification. Their NIHSS scores at admission and first 7 days NIHSS improvement rate after admission were also analyzed. RESULTS These patients were divided into three groups by timespan ≤7 days(n = 45),7-14 days(n = 70) and >14 days(n = 18). The mean WD degree (%)of these three groups was 44.41 ± 22.51,52.35 ± 22.61and 44.31 ± 19.35,respectively(p = 0.122).According to the TOAST classification, the mean WD degree(%) of the cardioembolism group(n = 28, 62.80 ± 25.12) was significantly different from both the large-artery atherosclerosis group(n = 73,45.08 ± 20.03,p = 0.000) and the small-vessel occlusion group(n = 23,39.68 ± 16.95,p = 0.000). The mean NIHSS score upon admission of the WD degree≤50% group(n = 82,8.17 ± 5.87) was different from that of the >50% group(n = 51,11.31 ± 7.00)(p = 0.006). However, the mean 7 days NIHSS improvement rate(%) of the WD degree≤50% group(n = 79,11.83 ± 23.76)and >50% group(n = 50,13.40 ± 27.88) was not significantly different(p = 0.733). CONCLUSIONS Early WD in ischemic stroke patients has a correlation with serious baseline functional defects. Therefore, we should give close attention to imaging change, especially in those with cardioembolism .
Collapse
Affiliation(s)
- Xiaolu Zheng
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Man
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangyong Hu
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sipei Pan
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Song K, Liu X, Zheng Q, Zhang L, Zhang H, Yu H, Zhu Y, Huang LA, Chen Y. Secondary injury to distal regions after intracerebral hemorrhage influence neurological functional outcome. Aging (Albany NY) 2020; 12:4283-4298. [PMID: 32146443 PMCID: PMC7093199 DOI: 10.18632/aging.102880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Although many studies have focused on functional impairment after intracerebral hemorrhage, little is known about the relationship between secondary injuries to distal regions and neurological function. Our study aimed to evaluate the secondary injuries after intracerebral hemorrhage and explore their relationship to neurological functional outcome. Twenty-one patients with hemorrhages in supratentorial, deep locations and 10 healthy subjects were recruited. Longitudinal examinations of diffusion tensor imaging, hydrogen proton magnetic resonance spectroscopy imaging and neuropsychological assessment were performed after weeks 1 and 12 to elucidate the relationship between magnetic resonance imaging parameters and neurologic outcomes. By week 12, motor function had significantly improved, but cognitive function had deteriorated compared to week 1. Fractional anisotropy values for the ipsilateral cerebral peduncle correlated with motor function at week 1. No significant correlation between fractional anisotropy for the ipsilateral cerebral peduncle and the Fugl-Meyer Motor Scale was found at week 12. Fractional anisotropy values for the ipsilateral hippocampus were related to the Montreal Cognitive Assessment and Mini-Mental State Examination at weeks 1 and 12. Deep supratentorial hemorrhage may result in injury to distal regions, which correlate with impaired motor and cognitive function.
Collapse
Affiliation(s)
- Kangping Song
- Department of Neurology, Institute of Clinical Neuroscience, The First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China.,Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Xiaojie Liu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Qiuyue Zheng
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Lingling Zhang
- Department of Neurology, Institute of Clinical Neuroscience, The First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hongying Zhang
- Medical Imaging Center, Clinical Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Hailong Yu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Yan Zhu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Li-An Huang
- Department of Neurology, Institute of Clinical Neuroscience, The First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
5
|
Wallerian Degeneration of the Cerebral Peduncle and Association with Motor Outcome in Childhood Stroke. Pediatr Neurol 2020; 102:67-73. [PMID: 31607421 DOI: 10.1016/j.pediatrneurol.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND To evaluate the presence of Wallerian degeneration and its relationship with sensorimotor deficits following childhood-onset arterial ischemic stroke (AIS). METHODS Children surviving unilateral AIS older than one month of age were assessed for severity of sensorimotor neurological deficit with the Pediatric Stroke Outcome Measure at least one year post stroke (mean follow-up = 2.9 years, S.D. = ±1.6). The area (mm3) of each cerebral peduncle was measured on T2-weighted magnetic resonance images to calculate an Asymmetry Index (AI). The AI between patients with childhood stroke (cases) and controls (children with normal MRI) was compared. In the stroke group, the AI between patients with good and poor motor outcome, and the correlation between the AI and motor outcome was calculated. RESULTS Asymmetry was compared in 52 children with stroke (cases) and 20 controls (normal brain MRIs). The AI was greater in patients with stroke (mean = 6.8%, S.D. = ±5.9) compared with controls (mean = 3.4%, S.D. = ±3.5, P < 0.02). Patients with poor outcome had an AI of 10% or greater compared with patients with good outcome (mean 10.4 versus 4, P < 0.001), and the AI was moderately correlated with motor deficit severity (r = 0.582, P = 0.001). CONCLUSIONS Asymmetry of the cerebral peduncle is a feasible method of assessing Wallerian degeneration in children with unilateral AIS. The degree of asymmetry in the cerebral peduncles was moderately correlated with neurological outcome severity and reflects the degree of motor deficit in children following stroke.
Collapse
|
6
|
Larivière S, Vos de Wael R, Paquola C, Hong SJ, Mišić B, Bernasconi N, Bernasconi A, Bonilha L, Bernhardt BC. Microstructure-Informed Connectomics: Enriching Large-Scale Descriptions of Healthy and Diseased Brains. Brain Connect 2018; 9:113-127. [PMID: 30079754 DOI: 10.1089/brain.2018.0587] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rapid advances in neuroimaging and network science have produced powerful tools and measures to appreciate human brain organization at multiple spatial and temporal scales. It is now possible to obtain increasingly meaningful representations of whole-brain structural and functional brain networks and to formally assess macroscale principles of network topology. In addition to its utility in characterizing healthy brain organization, individual variability, and life span-related changes, there is high promise of network neuroscience for the conceptualization and, ultimately, management of brain disorders. In the current review, we argue for a science of the human brain that, while strongly embracing macroscale connectomics, also recommends awareness of brain properties derived from meso- and microscale resolutions. Such features include MRI markers of tissue microstructure, local functional properties, as well as information from nonimaging domains, including cellular, genetic, or chemical data. Integrating these measures with connectome models promises to better define the individual elements that constitute large-scale networks, and clarify the notion of connection strength among them. By enriching the description of large-scale networks, this approach may improve our understanding of fundamental principles of healthy brain organization. Notably, it may also better define the substrate of prevalent brain disorders, including stroke, autism, as well as drug-resistant epilepsies that are each characterized by intriguing interactions between local anomalies and network-level perturbations.
Collapse
Affiliation(s)
- Sara Larivière
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos de Wael
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Seok-Jun Hong
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,2 NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bratislav Mišić
- 3 Network Neuroscience Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- 2 NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- 2 NeuroImaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Leonardo Bonilha
- 4 Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Boris C Bernhardt
- 1 Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Potential Use of 18F-THK5351 PET to Identify Wallerian Degeneration of the Pyramidal Tract Caused by Cerebral Infarction. Clin Nucl Med 2018; 42:e523-e524. [PMID: 29076904 DOI: 10.1097/rlu.0000000000001868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 41-year-old man underwent F-THK5351 PET 2 years after a right middle cerebral artery infarction. F-THK5351 PET imaging revealed intense radioligand uptake along the ipsilateral pyramidal tract from the corona radiata to the medulla; intense uptake changed from the right side to the left side with descending axial sections at the level of the pyramidal decussation. F-THK5351 reportedly binds to monoamine oxidase B, which is highly expressed in astrocytes, suggesting that F-THK5351 concentrates in the lesion where gliosis occurs. Hence, in this case, F-THK5351 uptake may represent Wallerian degeneration accompanied with gliosis in the ipsilateral pyramidal tract.
Collapse
|
8
|
Mapping Language Networks Using the Structural and Dynamic Brain Connectomes. eNeuro 2017; 4:eN-MNT-0204-17. [PMID: 29109969 PMCID: PMC5672546 DOI: 10.1523/eneuro.0204-17.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022] Open
Abstract
Lesion-symptom mapping is often employed to define brain structures that are crucial for human behavior. Even though poststroke deficits result from gray matter damage as well as secondary white matter loss, the impact of structural disconnection is overlooked by conventional lesion-symptom mapping because it does not measure loss of connectivity beyond the stroke lesion. This study describes how traditional lesion mapping can be combined with structural connectome lesion symptom mapping (CLSM) and connectome dynamics lesion symptom mapping (CDLSM) to relate residual white matter networks to behavior. Using data from a large cohort of stroke survivors with aphasia, we observed improved prediction of aphasia severity when traditional lesion symptom mapping was combined with CLSM and CDLSM. Moreover, only CLSM and CDLSM disclosed the importance of temporal-parietal junction connections in aphasia severity. In summary, connectome measures can uniquely reveal brain networks that are necessary for function, improving the traditional lesion symptom mapping approach.
Collapse
|
9
|
Jimenez-Gomez A, Stowe RC. Teaching Neuro Images: Wallerian degeneration in evolving pediatric stroke. Neurology 2017; 89:e166-e167. [PMID: 28947589 DOI: 10.1212/wnl.0000000000004422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Andres Jimenez-Gomez
- From the Department of Neurology and Developmental Neurosciences, Texas Children's Hospital, Houston.
| | - Robert Clinton Stowe
- From the Department of Neurology and Developmental Neurosciences, Texas Children's Hospital, Houston
| |
Collapse
|
10
|
Dlamini N, Wintermark M, Fullerton H, Strother S, Lee W, Bjornson B, Guilliams KP, Miller S, Kirton A, Filippi CG, Linds A, Askalan R, deVeber G. Harnessing Neuroimaging Capability in Pediatric Stroke: Proceedings of the Stroke Imaging Laboratory for Children Workshop. Pediatr Neurol 2017; 69:3-10. [PMID: 28259513 DOI: 10.1016/j.pediatrneurol.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
On June 5, 2015 the International Pediatric Stroke Study and the Stroke Imaging Laboratory for Children cohosted a unique workshop focused on developing neuroimaging research in pediatric stroke. Pediatric neurologists, neuroradiologists, interventional neuroradiologists, physicists, nurse practitioners, neuropsychologists, and imaging research scientists from around the world attended this one-day meeting. Our objectives were to (1) establish a group of experts to collaborate in advancing pediatric neuroimaging for stroke, (2) develop consensus clinical and research magnetic resonance imaging protocols for pediatric stroke patients, and (3) develop imaging-based research strategies in pediatric ischemic stroke. This article provides a summary of the meeting proceedings focusing on identified challenges and solutions and outcomes from the meeting. Further details on the workshop contents and outcomes are provided in three additional articles in the current issue of Pediatric Neurology.
Collapse
Affiliation(s)
- Nomazulu Dlamini
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Max Wintermark
- Division of Neuroradiology, Department of Radiology, Stanford University, Stanford, California
| | - Heather Fullerton
- Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen Strother
- Department of Medical Biophysics, Rotman Research Institute at Baycrest, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Lee
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Bjornson
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Developmental Neurosciences and Child Health, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Kristin P Guilliams
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri; Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Steven Miller
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Adam Kirton
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Filippi
- Department of Radiology, Northwell Health, Manhasset, New York; Department of Neurology, University of Vermont Medical Center, Burlington, Vermont
| | - Alexandra Linds
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rand Askalan
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gabrielle deVeber
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Kaseka ML, Moharir M, deVeber G, MacGregor D, Askalan R, Dlamini N. Prognostication Value of Descending Corticospinal Tract DWI Signal in Neonatal Cerebral Sinovenous Thrombosis. Pediatr Neurol 2016; 59:90-4. [PMID: 27025187 DOI: 10.1016/j.pediatrneurol.2016.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/04/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Descending corticospinal tract diffusion-weighted magnetic resonance imaging (MRI) signal is predictive of poor motor outcome in neonatal and childhood arterial ischemic stroke. However, descending corticospinal tract diffusion-weighted MRI signal has not been documented in the setting of cerebral sinovenous thrombosis, and its role is not understood. OBJECTIVE We describe a neonate with cerebral sinovenous thrombosis, extensive diffusion restriction, and bilateral descending corticospinal tract diffusion-weighted MRI signal on MRI of the brain. We discuss the underlying mechanisms and implications of these findings in venous ischemia. CONCLUSION The prognostic value of descending corticospinal tract diffusion-weighted MRI signal differs when observed in cerebral sinovenous thrombosis from when observed in arterial ischemic stroke. Consequently, caution should be exercised in using descending corticospinal tract diffusion-weighted MRI signal to predict outcome in children with cerebral sinovenous thrombosis.
Collapse
Affiliation(s)
- Matsanga Leyila Kaseka
- Neurologie pédiatrique, CHU Sainte-Justine, Université de Montréal, Montreal, Ontario, Canada
| | - Mahendranath Moharir
- Stroke Program, Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gabrielle deVeber
- Stroke Program, Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daune MacGregor
- Stroke Program, Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rand Askalan
- Stroke Program, Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nomazulu Dlamini
- Stroke Program, Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Strother MK, Buckingham C, Faraco CC, Arteaga DF, Lu P, Xu Y, Donahue MJ. Crossed cerebellar diaschisis after stroke identified noninvasively with cerebral blood flow-weighted arterial spin labeling MRI. Eur J Radiol 2015; 85:136-142. [PMID: 26724658 DOI: 10.1016/j.ejrad.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Crossed cerebellar diaschisis (CCD) is most commonly investigated using hemodynamic PET and SPECT imaging. However, noninvasive MRI offers advantages of improved spatial resolution, allowing hemodynamic changes to be compared directly with structural findings and without concerns related to ionizing radiation exposure. The aim of this study was to evaluate relationships between CCD identified from cerebral blood flow (CBF)-weighted arterial spin labeling (ASL) MRI with cerebrovascular reactivity (CVR)-weighted blood oxygenation level dependent (BOLD) MRI, Wallerian degeneration, clinical motor impairment, and corticospinal tract involvement. METHODS Subjects (n=74) enrolled in an ongoing observational stroke trial underwent CBF-weighted ASL and hypercapnic CVR-weighted BOLD MRI. Hemispheric asymmetry indices for basal cerebellar CBF, cerebellar CVR, and cerebral peduncular area were compared between subjects with unilateral supratentorial infarcts (n=18) and control subjects without infarcts (n=16). CCD required (1) supratentorial infarct and (2) asymmetric cerebellar CBF (>95% confidence interval relative to controls). RESULTS In CCD subjects (n=9), CVR (p=0.04) and cerebral peduncular area (p<0.01) were significantly asymmetric compared to controls. Compared to infarct subjects not meeting CCD criteria (n=9), CCD subjects had no difference in corticospinal tract location for infarct (p=1.0) or motor impairment (p=0.08). CONCLUSIONS CCD correlated with cerebellar CVR asymmetry and Wallerian degeneration. These findings suggest that noninvasive MRI may be a useful alternative to PET or SPECT to study structural correlates and clinical consequences of CCD following supratentorial stroke.
Collapse
Affiliation(s)
- Megan K Strother
- Department of Radiology and Radiological Sciences, Vanderbilt Medical Center, Nashville, TN, USA
| | - Cari Buckingham
- Department of Radiology and Radiological Sciences, Vanderbilt Medical Center, Nashville, TN, USA
| | - Carlos C Faraco
- Department of Radiology and Radiological Sciences, Vanderbilt Medical Center, Nashville, TN, USA
| | - Daniel F Arteaga
- Department of Radiology and Radiological Sciences, Vanderbilt Medical Center, Nashville, TN, USA
| | - Pengcheng Lu
- Center for Quantitative Sciences, Vanderbilt Medical Center, Nashville, TN, USA
| | - Yaomin Xu
- Center for Quantitative Sciences, Vanderbilt Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J. Success of Anomia Treatment in Aphasia Is Associated With Preserved Architecture of Global and Left Temporal Lobe Structural Networks. Neurorehabil Neural Repair 2015; 30:266-79. [PMID: 26150147 DOI: 10.1177/1545968315593808] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Targeted speech therapy can lead to substantial naming improvement in some subjects with anomia following dominant-hemisphere stroke. We investigated whether treatment-induced improvement in naming is associated with poststroke preservation of structural neural network architecture. METHODS Twenty-four patients with poststroke chronic aphasia underwent 30 hours of speech therapy over a 2-week period and were assessed at baseline and after therapy. Whole brain maps of neural architecture were constructed from pretreatment diffusion tensor magnetic resonance imaging to derive measures of global brain network architecture (network small-worldness) and regional network influence (nodal betweenness centrality). Their relationship with naming recovery was evaluated with multiple linear regressions. RESULTS Treatment-induced improvement in correct naming was associated with poststroke preservation of global network small worldness and of betweenness centrality in temporal lobe cortical regions. Together with baseline aphasia severity, these measures explained 78% of the variability in treatment response. CONCLUSIONS Preservation of global and left temporal structural connectivity broadly explains the variability in treatment-related naming improvement in aphasia. These findings corroborate and expand on previous classical lesion-symptom mapping studies by elucidating some of the mechanisms by which brain damage may relate to treated aphasia recovery. Favorable naming outcomes may result from the intact connections between spared cortical areas that are functionally responsive to treatment.
Collapse
Affiliation(s)
| | | | - Travis Nesland
- Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
14
|
Taraschenko OD, Nichter C, Pugh JA. Early Wallerian degeneration in a neonate with middle carotid artery stroke. Pediatr Neurol 2015; 52:252-3. [PMID: 25443582 DOI: 10.1016/j.pediatrneurol.2014.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/22/2014] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Charles Nichter
- Department of Neurology, Albany Medical Center, Albany, New York
| | - John A Pugh
- Department of Neurology, Albany Medical Center, Albany, New York
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This article aims to provide a broad overview of pediatric arterial ischemic stroke, from recognition and diagnosis to the short-term and long-term management based on current available literature. RECENT FINDINGS Arterial ischemic stroke in children represents a significant disorder with a concerning high rate of adverse outcomes, including potentially preventable recurrent stroke. Although awareness of pediatric stroke is increasing, diagnosis is still commonly delayed or missed altogether, particularly in younger children. Current vascular imaging techniques have limitations in accurate diagnosis of arteriopathies that are now recognized as an important cause of childhood stroke. Significant variability exists in treatment of pediatric stroke. Management is based on published consensus guidelines; however, individual children require an individualized approach. SUMMARY As pediatric stroke specialists become increasingly available, the collaboration of such experts on individual management is crucial. Definitive evidence-based treatment for pediatric stroke awaits the development of randomized controlled trials.
Collapse
|