1
|
Much C, Lasda EL, Pereira IT, Vallery TK, Ramirez D, Lewandowski JP, Dowell RD, Smallegan MJ, Rinn JL. The temporal dynamics of lncRNA Firre-mediated epigenetic and transcriptional regulation. Nat Commun 2024; 15:6821. [PMID: 39122712 PMCID: PMC11316132 DOI: 10.1038/s41467-024-50402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/10/2024] [Indexed: 08/12/2024] Open
Abstract
Numerous studies have now demonstrated that lncRNAs can influence gene expression programs leading to cell and organismal phenotypes. Typically, lncRNA perturbations and concomitant changes in gene expression are measured on the timescale of many hours to days. Thus, we currently lack a temporally grounded understanding of the primary, secondary, and tertiary relationships of lncRNA-mediated transcriptional and epigenetic regulation-a prerequisite to elucidating lncRNA mechanisms. To begin to address when and where a lncRNA regulates gene expression, we genetically engineer cell lines to temporally induce the lncRNA Firre. Using this approach, we are able to monitor lncRNA transcriptional regulatory events from 15 min to four days. We observe that upon induction, Firre RNA regulates epigenetic and transcriptional states in trans within 30 min. These early regulatory events result in much larger transcriptional changes after 12 h, well before current studies monitor lncRNA regulation. Moreover, Firre-mediated gene expression changes are epigenetically remembered for days. Overall, this study suggests that lncRNAs can rapidly regulate gene expression by establishing persistent epigenetic and transcriptional states.
Collapse
Affiliation(s)
- Christian Much
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Erika L Lasda
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Isabela T Pereira
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Tenaya K Vallery
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA.
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
2
|
Much C, Smallegan MJ, Hwang T, Hanson SD, Dumbović G, Rinn JL. Evolutionary divergence of Firre localization and expression. RNA (NEW YORK, N.Y.) 2022; 28:842-853. [PMID: 35304421 PMCID: PMC9074896 DOI: 10.1261/rna.079070.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/06/2022] [Indexed: 06/03/2023]
Abstract
Long noncoding RNAs (lncRNAs) are rapidly evolving and thus typically poorly conserved in their sequences. How these sequence differences affect the characteristics and potential functions of lncRNAs with shared synteny remains unclear. Here we show that the syntenically conserved lncRNA Firre displays distinct expression and localization patterns in human and mouse. Single molecule RNA FISH reveals that in a range of cell lines, mouse Firre (mFirre) is predominantly nuclear, while human FIRRE (hFIRRE) is distributed between the cytoplasm and nucleus. This localization pattern is maintained in human/mouse hybrid cells expressing both human and mouse Firre, implying that the localization of the lncRNA is species autonomous. We find that the majority of hFIRRE transcripts in the cytoplasm are comprised of isoforms that are enriched in RRD repeats. We furthermore determine that in various tissues, mFirre is more highly expressed than its human counterpart. Our data illustrate that the rapid evolution of syntenic lncRNAs can lead to variations in lncRNA localization and abundance, which in turn may result in disparate lncRNA functions even in closely related species.
Collapse
Affiliation(s)
- Christian Much
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80302, USA
| | - Taeyoung Hwang
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Skylar D Hanson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Gabrijela Dumbović
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, USA
| |
Collapse
|
3
|
Abstract
We have known for decades that long noncoding RNAs (lncRNAs) can play essential functions across most forms of life. The maintenance of chromosome length requires an lncRNA (e.g., hTERC) and two lncRNAs in the ribosome that are required for protein synthesis. Thus, lncRNAs can represent powerful RNA machines. More recently, it has become clear that mammalian genomes encode thousands more lncRNAs. Thus, we raise the question: Which, if any, of these lncRNAs could also represent RNA-based machines? Here we synthesize studies that are beginning to address this question by investigating fundamental properties of lncRNA genes, revealing new insights into the RNA structure-function relationship, determining cis- and trans-acting lncRNAs in vivo, and generating new developments in high-throughput screening used to identify functional lncRNAs. Overall, these findings provide a context toward understanding the molecular grammar underlying lncRNA biology.
Collapse
Affiliation(s)
- John L Rinn
- BioFrontiers Institute, Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA;
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
4
|
Miolo G, Bernardini L, Capalbo A, Favia A, Goldoni M, Pivetta B, Tessitori G, Corona G. Identification of a De Novo Xq26.2 Microduplication Encompassing FIRRE Gene in a Child with Intellectual Disability. Diagnostics (Basel) 2020; 10:diagnostics10121009. [PMID: 33255855 PMCID: PMC7760855 DOI: 10.3390/diagnostics10121009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), defined as transcripts of ≥200 nucleotides not translated into protein, have been involved in a wide range of regulatory functions. Their dysregulations have been associated with diverse pathological conditions such as cancer, schizophrenia, Parkinson’s, Huntington’s, Alzheimer’s diseases and Neurodevelopmental Disorders (NDDs), including autism spectrum disorders (ASDs). We report on the case of a five-year-old child with global developmental delay carrying a de novo microduplication on chromosome Xq26.2 region characterized by a DNA copy-number gain spanning about 147 Kb (chrX:130,813,232-130,960,617; GRCh37/hg19). This small microduplication encompassed the exons 2-12 of the functional intergenic repeating RNA element (FIRRE) gene (chrX:130,836,678-130,964,671; GRCh37/hg19) that encodes for a lncRNA involved in the maintenance of chromatin repression. The association of such a genetic alteration with a severe neurodevelopmental delay without clear dysmorphic features and congenital abnormalities indicative of syndromic condition further suggests that small Xq26.2 chromosomal region microduplications containing the FIRRE gene may be responsible for clinical phenotypes mainly characterized by structural or functioning neurological impairment.
Collapse
Affiliation(s)
- Gianmaria Miolo
- Medical Laboratory Department, Genetics Section, Pordenone Hospital, 33170 Pordenone, Italy; (B.P.); (G.T.)
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Correspondence: ; Tel.: +39-0434659097
| | - Laura Bernardini
- Medical Genetics Unit, Casa Sollievo della Sofferenza IRCCS Foundation, 71013 San Giovanni Rotondo, Italy; (L.B.); (A.C.); (M.G.)
| | - Anna Capalbo
- Medical Genetics Unit, Casa Sollievo della Sofferenza IRCCS Foundation, 71013 San Giovanni Rotondo, Italy; (L.B.); (A.C.); (M.G.)
| | - Anna Favia
- Department of Pediatrics, Pordenone Hospital, 33170 Pordenone, Italy;
| | - Marina Goldoni
- Medical Genetics Unit, Casa Sollievo della Sofferenza IRCCS Foundation, 71013 San Giovanni Rotondo, Italy; (L.B.); (A.C.); (M.G.)
| | - Barbara Pivetta
- Medical Laboratory Department, Genetics Section, Pordenone Hospital, 33170 Pordenone, Italy; (B.P.); (G.T.)
| | - Giovanni Tessitori
- Medical Laboratory Department, Genetics Section, Pordenone Hospital, 33170 Pordenone, Italy; (B.P.); (G.T.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
5
|
Bansal P, Kondaveeti Y, Pinter SF. Forged by DXZ4, FIRRE, and ICCE: How Tandem Repeats Shape the Active and Inactive X Chromosome. Front Cell Dev Biol 2020; 7:328. [PMID: 32076600 PMCID: PMC6985041 DOI: 10.3389/fcell.2019.00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Recent efforts in mapping spatial genome organization have revealed three evocative and conserved structural features of the inactive X in female mammals. First, the chromosomal conformation of the inactive X reveals a loss of topologically associated domains (TADs) present on the active X. Second, the macrosatellite DXZ4 emerges as a singular boundary that suppresses physical interactions between two large TAD-depleted "megadomains." Third, DXZ4 reaches across several megabases to form "superloops" with two other X-linked tandem repeats, FIRRE and ICCE, which also loop to each other. Although all three structural features are conserved across rodents and primates, deletion of mouse and human orthologs of DXZ4 and FIRRE from the inactive X have revealed limited impact on X chromosome inactivation (XCI) and escape in vitro. In contrast, loss of Xist or SMCHD1 have been shown to impair TAD erasure and gene silencing on the inactive X. In this perspective, we summarize these results in the context of new research describing disruption of X-linked tandem repeats in vivo, and discuss their possible molecular roles through the lens of evolutionary conservation and clinical genetics. As a null hypothesis, we consider whether the conservation of some structural features on the inactive X may reflect selection for X-linked tandem repeats on account of necessary cis- and trans-regulatory roles they may play on the active X, rather than the inactive X. Additional hypotheses invoking a role for X-linked tandem repeats on X reactivation, for example in the germline or totipotency, remain to be assessed in multiple developmental models spanning mammalian evolution.
Collapse
Affiliation(s)
- Prakhar Bansal
- Department of Genetics and Genome Sciences, School of Medicine, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, School of Medicine, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Stefan F. Pinter
- Department of Genetics and Genome Sciences, School of Medicine, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
6
|
Lewandowski JP, Lee JC, Hwang T, Sunwoo H, Goldstein JM, Groff AF, Chang NP, Mallard W, Williams A, Henao-Meija J, Flavell RA, Lee JT, Gerhardinger C, Wagers AJ, Rinn JL. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat Commun 2019; 10:5137. [PMID: 31723143 PMCID: PMC6853988 DOI: 10.1038/s41467-019-12970-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
RNA has been classically known to play central roles in biology, including maintaining telomeres, protein synthesis, and in sex chromosome compensation. While thousands of long noncoding RNAs (lncRNAs) have been identified, attributing RNA-based roles to lncRNA loci requires assessing whether phenotype(s) could be due to DNA regulatory elements, transcription, or the lncRNA. Here, we use the conserved X chromosome lncRNA locus Firre, as a model to discriminate between DNA- and RNA-mediated effects in vivo. We demonstrate that (i) Firre mutant mice have cell-specific hematopoietic phenotypes, and (ii) upon exposure to lipopolysaccharide, mice overexpressing Firre exhibit increased levels of pro-inflammatory cytokines and impaired survival. (iii) Deletion of Firre does not result in changes in local gene expression, but rather in changes on autosomes that can be rescued by expression of transgenic Firre RNA. Together, our results provide genetic evidence that the Firre locus produces a trans-acting lncRNA that has physiological roles in hematopoiesis.
Collapse
Affiliation(s)
- Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - James C Lee
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Taeyoung Hwang
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Hongjae Sunwoo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, 77 Louis Pasteur Avenue, Boston, MA, USA
| | - Abigail F Groff
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nydia P Chang
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - William Mallard
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Adam Williams
- The Jackson Laboratory, JAX Genomic Medicine, Farmington, CT, USA
| | - Jorge Henao-Meija
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A Flavell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, CT, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, 77 Louis Pasteur Avenue, Boston, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
Herriges JC, Arch EM, Burgio PA, Baldwin EE, LaGrave D, Lamb AN, Toydemir RM. Delineating the Clinical Spectrum Associated With Xq25q26.2 Duplications: Report of 2 Families and Review of the Literature. J Child Neurol 2019; 34:86-93. [PMID: 30458662 DOI: 10.1177/0883073818811454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To date, 13 patients with interstitial microduplications involving Xq25q26.2 have been reported. Here, we report 6 additional patients from 2 families with duplications involving Xq25q26.2. Family I carries a 5.3-Mb duplication involving 26 genes. This duplication was identified in 3 patients and was associated with microcephaly, growth failure, developmental delay, and dysmorphic features. Family II carries an overlapping 791-kb duplication that involves 3 genes. This duplication was identified in 3 patients and was associated with learning disability and speech delay. The size and gene content of published overlapping Xq25q26.2 duplications vary, making it difficult to define a critical region or establish a genotype-phenotype correlation. However, patients with overlapping duplications have been found to share common clinical features including microcephaly, growth failure, intellectual disability, learning difficulties, and dysmorphic features. The 2 families presented here provide additional insight into the phenotypic spectrum and clinical significance of duplications in this region.
Collapse
Affiliation(s)
- John C Herriges
- 1 Department of Pathology, University of Utah, Salt Lake City, UT, USA.,2 ARUP Laboratories, Salt Lake City, UT, USA
| | - Ellen M Arch
- 3 Genetics and Developmental Medicine, Dixie Regional Medical Center, St George, UT, USA
| | - Pamela A Burgio
- 4 Pediatrics Medical Group, Renown Regional Medical Center, Reno, NV, USA
| | | | | | - Allen N Lamb
- 1 Department of Pathology, University of Utah, Salt Lake City, UT, USA.,2 ARUP Laboratories, Salt Lake City, UT, USA
| | - Reha M Toydemir
- 1 Department of Pathology, University of Utah, Salt Lake City, UT, USA.,2 ARUP Laboratories, Salt Lake City, UT, USA.,5 Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Wang JY, Feng Y, Fu YH, Liu GL. Effect of Sevoflurane Anesthesia on Brain Is Mediated by lncRNA HOTAIR. J Mol Neurosci 2018; 64:346-351. [PMID: 29352445 DOI: 10.1007/s12031-018-1029-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 01/19/2023]
Abstract
Postoperative cognitive dysfunction in elderly patients has been related to neurodegenerative disorders and mortality. Sevoflurane anesthesia has been implicated in both postoperative cognitive dysfunction and neurotoxicity. Given the advantages of using inhaled anesthetics like sevoflurane, it is important to understand how their usage results in neurotoxicity and subsequently devise ways to circumvent or attenuate the anesthetic-mediated induction in neurotoxicity. Long noncoding RNAs (LncRNAs) are a group of > 200 bp long RNAs and show specific spatiotemporal expression profiles. Several recent reports suggest that lncRNAs are involved in responses of the central nervous system (CNS) following acute injuries. However, their role in sevoflurane anesthesia-mediated cognitive dysfunction has not been studied. RNA immunoprecipitation (RIP) combined with qRT-PCR detection of six different lncRNAs showed that the HOTAIR lncRNAs were significantly more bound to both Sin3A and coREST, both corepressors of the RE-1 silencing transcription factor, within rat hippocampus following sevoflurane anesthesia compared with sham. Sevoflurane inhalation resulted in significant inhibition of brain-derived neurotrophic factor (BDNF) and cognitive impairment. Treatment with a combination of siRNAs targeting HOTAIR rescued BDNF expression and improved cognitive responses. Taken together, our results suggest that sevoflurane-mediated brain function impairment is at least in part mediated by the HOTAIR lncRNA.
Collapse
Affiliation(s)
- Jian-Yue Wang
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China.
| | - Yong Feng
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China
| | - Yan-Hong Fu
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China
| | - Guang-Li Liu
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China
| |
Collapse
|
9
|
Maass PG, Barutcu AR, Shechner DM, Weiner CL, Melé M, Rinn JL. Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat Struct Mol Biol 2018; 25:176-184. [PMID: 29343869 PMCID: PMC5805655 DOI: 10.1038/s41594-017-0015-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Imaging and chromatin capture techniques have shed important insights into our understanding of nuclear organization. A limitation of these techniques is the inability to resolve allele-specific spatiotemporal properties of genomic loci in living cells. Here, we describe an allele-specific CRISPR live-cell DNA imaging technique (SNP-CLING) to provide the first comprehensive insights into allelic positioning across space and time in mouse embryonic stem cells and fibroblasts. In 3D-imaging, we studied alleles on different chromosomes in relation to one another and relative to nuclear substructures such as the nucleolus. We find that alleles maintain similar positions relative to each other and the nucleolus, however loci occupy different unique positions. To monitor spatiotemporal dynamics by SNP-CLING, we performed 4D-imaging, determining that alleles are either stably positioned, or fluctuating during cell state transitions, such as apoptosis. SNP-CLING is a universally applicable technique that enables dissecting allele-specific spatiotemporal genome organization in live cells.
Collapse
Affiliation(s)
- Philipp G Maass
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - David M Shechner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Pharmacology, The University of Washington, Seattle, WA, USA
| | - Catherine L Weiner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Marta Melé
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. .,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA. .,Department of Biochemistry, University of Colorado, BioFrontiers, Boulder, CO, USA.
| |
Collapse
|
10
|
Hacisuleyman E, Shukla CJ, Weiner CL, Rinn JL. Function and evolution of local repeats in the Firre locus. Nat Commun 2016; 7:11021. [PMID: 27009974 PMCID: PMC4820808 DOI: 10.1038/ncomms11021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/07/2016] [Indexed: 11/23/2022] Open
Abstract
More than half the human and mouse genomes are comprised of repetitive sequences, such as transposable elements (TEs), which have been implicated in many biological processes. In contrast, much less is known about other repeats, such as local repeats that occur in multiple instances within a given locus in the genome but not elsewhere. Here, we systematically characterize local repeats in the genomic locus of the Firre long noncoding RNA (lncRNA). We find a conserved function for the RRD repeat as a ribonucleic nuclear retention signal that is sufficient to retain an otherwise cytoplasmic mRNA in the nucleus. We also identified a repeat, termed R0, that can function as a DNA enhancer element within the intronic sequences of Firre. Collectively, our data suggest that local repeats can have diverse functionalities and molecular modalities in the Firre locus and perhaps more globally in other lncRNAs. Mammalian genomes contain multiple repetitive sequences such as transposable elements and local repeats. Here, the authors show that the conserved long non-coding RNA Firre contains repeats that act as nuclear retention signals and a DNA enhancer element.
Collapse
Affiliation(s)
- Ezgi Hacisuleyman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Stem Cell and Regenerative Biology, Harvard University7 Divinity Avenue, Room 305, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Chinmay J Shukla
- Department of Stem Cell and Regenerative Biology, Harvard University7 Divinity Avenue, Room 305, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115, USA
| | - Catherine L Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Stem Cell and Regenerative Biology, Harvard University7 Divinity Avenue, Room 305, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University7 Divinity Avenue, Room 305, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| |
Collapse
|
11
|
Shieh C, Moser F, Graham JM, Watiker V, Pierson TM. Mutation in the sixth immunoglobulin domain of L1CAM is associated with migrational brain anomalies. NEUROLOGY-GENETICS 2015; 1:e34. [PMID: 27066571 PMCID: PMC4811382 DOI: 10.1212/nxg.0000000000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022]
Abstract
Objective: To describe the phenotype of a patient with classical features of X-linked L1 syndrome associated with novel brain malformations. Methods: Diagnostic analysis included physical and dysmorphology examinations, MRI of the brain, and exome sequencing of the family trio. Results: We report a 2.5-year-old boy with developmental delay, dysmorphic facies, and adducted thumbs. MRI of the brain showed a truncated corpus callosum and periventricular heterotopias associated with polymicrogyria (PMG). Variant segregation analysis with exome sequencing discovered a novel maternally derived hemizygous variant in exon 14 of the L1CAM gene (c.1759 G>C; p.G587R). Conclusions: This novel L1CAM mutation was located in the protein's sixth immunoglobin domain and involved glycine-587, a key residue in the structure of L1CAM because of its interactions with lysine-606, which indicates that any mutation at this site would likely affect the secondary structure and function of the protein. The replacement of the small nonpolar glycine residue with a large basic arginine would have an even more dramatic result. The presentation of periventricular nodular heterotopias with overlying PMG is very uncommon, and its association with L1CAM may provide insight into other similar cases. Furthermore, this presentation indicates the important role that L1CAM plays in neuronal migration and brain development and extends the phenotype associated with L1CAM-associated disorders.
Collapse
Affiliation(s)
- Christine Shieh
- David Geffen School of Medicine at UCLA (C.S.), Los Angeles, CA; and Division of Clinical Neuroradiology and Interventional Neuroradiology (F.M.), Division of Clinical Genetics and Dysmorphology (J.M.G.), Department of Pediatrics (J.M.G., V.W.), Department of Pediatrics and Neurology (T.M.P.), and Board of Governors Regenerative Medicine Institute (T.M.P.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Franklin Moser
- David Geffen School of Medicine at UCLA (C.S.), Los Angeles, CA; and Division of Clinical Neuroradiology and Interventional Neuroradiology (F.M.), Division of Clinical Genetics and Dysmorphology (J.M.G.), Department of Pediatrics (J.M.G., V.W.), Department of Pediatrics and Neurology (T.M.P.), and Board of Governors Regenerative Medicine Institute (T.M.P.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - John M Graham
- David Geffen School of Medicine at UCLA (C.S.), Los Angeles, CA; and Division of Clinical Neuroradiology and Interventional Neuroradiology (F.M.), Division of Clinical Genetics and Dysmorphology (J.M.G.), Department of Pediatrics (J.M.G., V.W.), Department of Pediatrics and Neurology (T.M.P.), and Board of Governors Regenerative Medicine Institute (T.M.P.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Valerie Watiker
- David Geffen School of Medicine at UCLA (C.S.), Los Angeles, CA; and Division of Clinical Neuroradiology and Interventional Neuroradiology (F.M.), Division of Clinical Genetics and Dysmorphology (J.M.G.), Department of Pediatrics (J.M.G., V.W.), Department of Pediatrics and Neurology (T.M.P.), and Board of Governors Regenerative Medicine Institute (T.M.P.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tyler Mark Pierson
- David Geffen School of Medicine at UCLA (C.S.), Los Angeles, CA; and Division of Clinical Neuroradiology and Interventional Neuroradiology (F.M.), Division of Clinical Genetics and Dysmorphology (J.M.G.), Department of Pediatrics (J.M.G., V.W.), Department of Pediatrics and Neurology (T.M.P.), and Board of Governors Regenerative Medicine Institute (T.M.P.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
12
|
Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2015; 112:6855-62. [PMID: 26034286 DOI: 10.1073/pnas.1411263112] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in numerous cellular processes including brain development. However, the in vivo expression dynamics and molecular pathways regulated by these loci are not well understood. Here, we leveraged a cohort of 13 lncRNAnull mutant mouse models to investigate the spatiotemporal expression of lncRNAs in the developing and adult brain and the transcriptome alterations resulting from the loss of these lncRNA loci. We show that several lncRNAs are differentially expressed both in time and space, with some presenting highly restricted expression in only selected brain regions. We further demonstrate altered regulation of genes for a large variety of cellular pathways and processes upon deletion of the lncRNA loci. Finally, we found that 4 of the 13 lncRNAs significantly affect the expression of several neighboring proteincoding genes in a cis-like manner. By providing insight into the endogenous expression patterns and the transcriptional perturbations caused by deletion of the lncRNA locus in the developing and postnatal mammalian brain, these data provide a resource to facilitate future examination of the specific functional relevance of these genes in neural development, brain function, and disease.
Collapse
|