1
|
Badakhshi Y, Shao W, Liu D, Tian L, Pang J, Gu J, Hu J, Jin T. Estrogen-Wnt signaling cascade regulates expression of hepatic fibroblast growth factor 21. Am J Physiol Endocrinol Metab 2021; 321:E292-E304. [PMID: 34229476 DOI: 10.1152/ajpendo.00638.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have generated the transgenic mouse line LTCFDN in which dominant negative TCF7L2 (TCF7L2DN) is specifically expressed in the liver during adulthood. Male but not female LTCFDN mice showed elevated hepatic and plasma triglyceride (TG) levels, indicating the existence of estrogen-β-cat/TCF signaling cascade that regulates hepatic lipid homeostasis. We show here that hepatic fibroblast growth factor 21 (FGF21) expression was reduced in male but not in female LTCFDN mice. The reduction was not associated with altered hepatic expression of peroxisome proliferator-activated receptor α (PPARα). In mouse primary hepatocytes (MPH), Wnt-3a treatment increased FGF21 expression in the presence of PPARα inhibitor. Results from our luciferase-reporter assay and chromatin immunoprecipitation suggest that evolutionarily conserved TCF binding motifs (TCFBs) on Fgf21 promoter mediate Wnt-3a-induced Fgf21 transactivation. Female mice showed reduced hepatic FGF21 production and circulating FGF21 level following ovariectomy (OVX), associated with reduced hepatic TCF expression and β-catenin S675 phosphorylation. Finally, in MPH, estradiol (E2) treatment enhanced FGF21 expression, as well as binding of TCF7L2 and ribonucleic acid (RNA) polymerase II to the Fgf21 promoter; and the enhancement can be attenuated by the G-protein-coupled estrogen receptor 1 (GPER) antagonist G15. Our observations hence indicate that hepatic FGF21 is among the effectors of the newly recognized E2-β-cat/TCF signaling cascade.NEW & NOTEWORTHY FGF21 is mainly produced in the liver. Therapeutic effect of FGF21 analogues has been demonstrated in clinical trials on reducing hyperlipidemia. We show here that Fgf21 transcription is positively regulated by Wnt pathway effector β-cat/TCF. Importantly, hepatic β-cat/TCF activity can be regulated by the female hormone estradiol, involving GPER. The investigation enriched our understanding on hepatic FGF21 hormone production, and expanded our view on metabolic functions of the Wnt pathway in the liver.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dinghui Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lili Tian
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Juan Pang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianqiu Gu
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Departmemt of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jim Hu
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tianru Jin
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Al-Mrabeh A. β-Cell Dysfunction, Hepatic Lipid Metabolism, and Cardiovascular Health in Type 2 Diabetes: New Directions of Research and Novel Therapeutic Strategies. Biomedicines 2021; 9:226. [PMID: 33672162 PMCID: PMC7927138 DOI: 10.3390/biomedicines9020226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major problem for people with type 2 diabetes mellitus (T2DM), and dyslipidemia is one of the main drivers for both metabolic diseases. In this review, the major pathophysiological and molecular mechanisms of β-cell dysfunction and recovery in T2DM are discussed in the context of abnormal hepatic lipid metabolism and cardiovascular health. (i) In normal health, continuous exposure of the pancreas to nutrient stimulus increases the demand on β-cells. In the long term, this will not only stress β-cells and decrease their insulin secretory capacity, but also will blunt the cellular response to insulin. (ii) At the pre-diabetes stage, β-cells compensate for insulin resistance through hypersecretion of insulin. This increases the metabolic burden on the stressed β-cells and changes hepatic lipoprotein metabolism and adipose tissue function. (iii) If this lipotoxic hyperinsulinemic environment is not removed, β-cells start to lose function, and CVD risk rises due to lower lipoprotein clearance. (iv) Once developed, T2DM can be reversed by weight loss, a process described recently as remission. However, the precise mechanism(s) by which calorie restriction causes normalization of lipoprotein metabolism and restores β-cell function are not fully established. Understanding the pathophysiological and molecular basis of β-cell failure and recovery during remission is critical to reduce β-cell burden and loss of function. The aim of this review is to highlight the link between lipoprotein export and lipid-driven β-cell dysfunction in T2DM and how this is related to cardiovascular health. A second aim is to understand the mechanisms of β-cell recovery after weight loss, and to explore new areas of research for developing more targeted future therapies to prevent T2DM and the associated CVD events.
Collapse
Affiliation(s)
- Ahmad Al-Mrabeh
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Hu M, Cherkaoui I, Misra S, Rutter GA. Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Front Endocrinol (Lausanne) 2020; 11:576632. [PMID: 33162936 PMCID: PMC7580382 DOI: 10.3389/fendo.2020.576632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The inheritance of variants that lead to coding changes in, or the mis-expression of, genes critical to pancreatic beta cell function can lead to alterations in insulin secretion and increase the risk of both type 1 and type 2 diabetes. Recently developed clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene editing tools provide a powerful means of understanding the impact of identified variants on cell function, growth, and survival and might ultimately provide a means, most likely after the transplantation of genetically "corrected" cells, of treating the disease. Here, we review some of the disease-associated genes and variants whose roles have been probed up to now. Next, we survey recent exciting developments in CRISPR/Cas9 technology and their possible exploitation for β cell functional genomics. Finally, we will provide a perspective as to how CRISPR/Cas9 technology may find clinical application in patients with diabetes.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ines Cherkaoui
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shivani Misra
- Metabolic Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Association of Native American ancestry and common variants in ACE, ADIPOR2, MTNR1B, GCK, TCF7L2 and FTO genes with glycemic traits in Colombian population. Gene 2018; 677:198-210. [DOI: 10.1016/j.gene.2018.07.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
|
5
|
Millette K, Georgia S. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development. Curr Diab Rep 2017; 17:116. [PMID: 28980194 DOI: 10.1007/s11892-017-0947-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. RECENT FINDINGS Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.
Collapse
Affiliation(s)
- Katelyn Millette
- Center for Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Senta Georgia
- Center for Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics and Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Abstract
Type 2 diabetes is a complex polygenic disorder that affects about 1 in 12 adults. In this issue of Cell Stem Cell, Zeng et al. (2016) elegantly combine CRISPR-based gene editing in hESCs with directed β cell differentiation to investigate the functions of genes highlighted by genome-wide association studies (GWAS) for this disease.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
7
|
da Silva Xavier G, Mondragon A, Mourougavelou V, Cruciani-Guglielmacci C, Denom J, Herrera PL, Magnan C, Rutter GA. Pancreatic alpha cell-selective deletion of Tcf7l2 impairs glucagon secretion and counter-regulatory responses to hypoglycaemia in mice. Diabetologia 2017; 60:1043-1050. [PMID: 28343277 PMCID: PMC5423960 DOI: 10.1007/s00125-017-4242-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/15/2017] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Transcription factor 7-like 2 (TCF7L2) is a high mobility group (HMG) box-containing transcription factor and downstream effector of the Wnt signalling pathway. SNPs in the TCF7L2 gene have previously been associated with an increased risk of type 2 diabetes in genome-wide association studies. In animal studies, loss of Tcf7l2 function is associated with defective islet beta cell function and survival. Here, we explore the role of TCF7L2 in the control of the counter-regulatory response to hypoglycaemia by generating mice with selective deletion of the Tcf7l2 gene in pancreatic alpha cells. METHODS Alpha cell-selective deletion of Tcf7l2 was achieved by crossing mice with floxed Tcf7l2 alleles to mice bearing a Cre recombinase transgene driven by the preproglucagon promoter (PPGCre), resulting in Tcf7l2AKO mice. Glucose homeostasis and hormone secretion in vivo and in vitro, and islet cell mass were measured using standard techniques. RESULTS While glucose tolerance was unaffected in Tcf7l2AKO mice, glucose infusion rates were increased (AUC for glucose during the first 60 min period of hyperinsulinaemic-hypoglycaemic clamp test was increased by 1.98 ± 0.26-fold [p < 0.05; n = 6] in Tcf7l2AKO mice vs wild-type mice) and glucagon secretion tended to be lower (plasma glucagon: 0.40 ± 0.03-fold vs wild-type littermate controls [p < 0.01; n = 6]). Tcf7l2AKO mice displayed reduced fasted plasma glucose concentration. Glucagon release at low glucose was impaired in islets isolated from Tcf7l2AKO mice (0.37 ± 0.02-fold vs islets from wild-type littermate control mice [p < 0.01; n = 6). Alpha cell mass was also reduced (72.3 ± 20.3% [p < 0.05; n = 7) in Tcf7l2AKO mice compared with wild-type mice. CONCLUSIONS/INTERPRETATION The present findings demonstrate an alpha cell-autonomous role for Tcf7l2 in the control of pancreatic glucagon secretion and the maintenance of alpha cell mass and function.
Collapse
Affiliation(s)
- Gabriela da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Angeles Mondragon
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Vishnou Mourougavelou
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | - Jessica Denom
- Université Paris Diderot Paris 7 - CNRS UMR 8251, Paris, France
| | - Pedro Luis Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
8
|
Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal 2017; 26:501-518. [PMID: 27225690 PMCID: PMC5372767 DOI: 10.1089/ars.2016.6755] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. CRITICAL ISSUES Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. FUTURE DIRECTIONS Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.
Collapse
Affiliation(s)
- Philipp A. Gerber
- Department of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Wong WP, Allen NB, Meyers MS, Link EO, Zhang X, MacRenaris KW, El Muayed M. Exploring the Association Between Demographics, SLC30A8 Genotype, and Human Islet Content of Zinc, Cadmium, Copper, Iron, Manganese and Nickel. Sci Rep 2017; 7:473. [PMID: 28352089 PMCID: PMC5428289 DOI: 10.1038/s41598-017-00394-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/23/2017] [Indexed: 12/30/2022] Open
Abstract
A widely prevalent single nucleotide polymorphism, rs13266634 in the SLC30A8 gene encoding the zinc transporter ZnT8, is associated with an increased risk for T2DM. ZnT8 is mostly expressed in pancreatic insulin-producing islets of Langerhans. The effect of this variant on the divalent metal profile in human islets is unknown. Additionally, essential and non-essential divalent metal content of human islets under normal environmental exposure conditions has not been described. We therefore examined the correlation of zinc and other divalent metals in human islets with rs13266634 genotype and demographic characteristics. We found that the diabetes risk genotype C/C at rs13266634 is associated with higher islet Zn concentration (C/C genotype: 16792 ± 1607, n = 22, C/T genotype: 11221 ± 1245, n = 18 T/T genotype: 11543 ± 6054, n = 3, all values expressed as mean nmol/g protein ± standard error of the mean, p = 0.040 by ANOVA). A positive correlation between islet cadmium content and both age (p = 0.048, R2 = 0.09) and female gender (women: 36.88 ± 4.11 vs men: 21.22 ± 3.65 nmol/g protein, p = 0.007) was observed. Our results suggest that the T2DM risk allele C is associated with higher islet zinc levels and support prior evidence of cadmium's higher bioavailability in women and its long tissue half-life.
Collapse
Affiliation(s)
- Winifred P Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew S Meyers
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emma O Link
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaomin Zhang
- Division of Transplant Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Keith W MacRenaris
- The Chemistry of Life Processes Institute and Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice. Am J Hum Genet 2017; 100:238-256. [PMID: 28132686 PMCID: PMC5294761 DOI: 10.1016/j.ajhg.2017.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in β cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, β-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult β cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in β cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the β cell.
Collapse
|
11
|
Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in metabolism. Acta Physiol (Oxf) 2017; 219:346-361. [PMID: 27009502 PMCID: PMC5297868 DOI: 10.1111/apha.12681] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/06/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β-cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β-cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR-200 and miR-29 families) and insulin exocytosis in the differentiated state is controlled by miR-7, miR-375 and miR-335. MiR-33a and MiR-33b play crucial roles in cholesterol and lipid metabolism, whereas miR-103 and miR-107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR-1, miR-133, miR-206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR-365, miR-133, miR-455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.
Collapse
Affiliation(s)
- S. Vienberg
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - J. Geiger
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - S. Madsen
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - L. T. Dalgaard
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
12
|
Gallardo-Blanco HL, Villarreal-Perez JZ, Cerda-Flores RM, Figueroa A, Sanchez-Dominguez CN, Gutierrez-Valverde JM, Torres-Muñoz IC, Lavalle-Gonzalez FJ, Gallegos-Cabriales EC, Martinez-Garza LE. Genetic variants in KCNJ11, TCF7L2 and HNF4A are associated with type 2 diabetes, BMI and dyslipidemia in families of Northeastern Mexico: A pilot study. Exp Ther Med 2016; 13:523-529. [PMID: 28352326 PMCID: PMC5348709 DOI: 10.3892/etm.2016.3990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate whether genetic markers considered risk factors for metabolic syndromes, including dyslipidemia, obesity and type 2 diabetes mellitus (T2DM), can be applied to a Northeastern Mexican population. A total of 37 families were analyzed for 63 single nucleotide polymorphisms (SNPs), and the age, body mass index (BMI), glucose tolerance values and blood lipid levels, including those of cholesterol, low-density lipoprotein (LDL), very LDL (VLDL), high-density lipoprotein (HDL) and triglycerides were evaluated. Three genetic markers previously associated with metabolic syndromes were identified in the sample population, including KCNJ11, TCF7L2 and HNF4A. The KCNJ11 SNP rs5210 was associated with T2DM, the TCF7L2 SNP rs11196175 was associated with BMI and cholesterol and LDL levels, the TCF7L2 SNP rs12255372 was associated with BMI and HDL, VLDL and triglyceride levels, and the HNF4A SNP rs1885088 was associated with LDL levels (P<0.05).
Collapse
Affiliation(s)
- Hugo Leonid Gallardo-Blanco
- Department of Genetics, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | - Jesus Zacarías Villarreal-Perez
- Department of Endocrinology, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | | | - Andres Figueroa
- Department of Computer Science, University of Texas Rio Grande Valley, TX 78539, USA
| | - Celia Nohemi Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | | | - Iris Carmen Torres-Muñoz
- Department of Genetics, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | - Fernando Javier Lavalle-Gonzalez
- Department of Endocrinology, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | | | - Laura Elia Martinez-Garza
- Department of Genetics, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| |
Collapse
|
13
|
Sorrenson B, Cognard E, Lee KL, Dissanayake WC, Fu Y, Han W, Hughes WE, Shepherd PR. A Critical Role for β-Catenin in Modulating Levels of Insulin Secretion from β-Cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization. J Biol Chem 2016; 291:25888-25900. [PMID: 27777306 DOI: 10.1074/jbc.m116.758516] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
The processes regulating glucose-stimulated insulin secretion (GSIS) and its modulation by incretins in pancreatic β-cells are only partly understood. Here we investigate the involvement of β-catenin in these processes. Reducing β-catenin levels using siRNA knockdown attenuated GSIS in a range of β-cell models and blocked the ability of GLP-1 agonists and the depolarizing agent KCl to potentiate this. This could be mimicked in both β-cell models and isolated islets by short-term exposure to the β-catenin inhibitory drug pyrvinium. In addition, short-term treatment with a drug that increases β-catenin levels results in an increase in insulin secretion. The timing of these effects suggests that β-catenin is required for the processes regulating trafficking and/or release of pre-existing insulin granules rather than for those regulated by gene expression. This was supported by the finding that the overexpression of the transcriptional co-activator of β-catenin, transcription factor 7-like 2 (TCF7L2), attenuated insulin secretion, consistent with the extra TCF7L2 translocating β-catenin from the plasma membrane pool to the nucleus. We show that β-catenin depletion disrupts the intracellular actin cytoskeleton, and by using total internal reflectance fluorescence (TIRF) microscopy, we found that β-catenin is required for the glucose- and incretin-induced depletion of insulin vesicles from near the plasma membrane. In conclusion, we find that β-catenin levels modulate Ca2+-dependent insulin exocytosis under conditions of glucose, GLP-1, or KCl stimulation through a role in modulating insulin secretory vesicle localization and/or fusion via actin remodeling. These findings also provide insights as to how the overexpression of TCF7L2 may attenuate insulin secretion.
Collapse
Affiliation(s)
- Brie Sorrenson
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,the Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Emmanuelle Cognard
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kathryn L Lee
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Waruni C Dissanayake
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yanyun Fu
- the Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| | - Weiping Han
- the Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| | - William E Hughes
- the Department of Medicine, St. Vincent's Hospital, Victoria Street, Sydney, New South Wales 2010, Australia, and.,the Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Peter R Shepherd
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, .,the Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Mehta ZB, Fine N, Pullen TJ, Cane MC, Hu M, Chabosseau P, Meur G, Velayos-Baeza A, Monaco AP, Marselli L, Marchetti P, Rutter GA. Changes in the expression of the type 2 diabetes-associated gene VPS13C in the β-cell are associated with glucose intolerance in humans and mice. Am J Physiol Endocrinol Metab 2016; 311:E488-507. [PMID: 27329800 PMCID: PMC5005967 DOI: 10.1152/ajpendo.00074.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
Abstract
Single nucleotide polymorphisms (SNPs) close to the VPS13C, C2CD4A and C2CD4B genes on chromosome 15q are associated with impaired fasting glucose and increased risk of type 2 diabetes. eQTL analysis revealed an association between possession of risk (C) alleles at a previously implicated causal SNP, rs7163757, and lowered VPS13C and C2CD4A levels in islets from female (n = 40, P < 0.041) but not from male subjects. Explored using promoter-reporter assays in β-cells and other cell lines, the risk variant at rs7163757 lowered enhancer activity. Mice deleted for Vps13c selectively in the β-cell were generated by crossing animals bearing a floxed allele at exon 1 to mice expressing Cre recombinase under Ins1 promoter control (Ins1Cre). Whereas Vps13c(fl/fl):Ins1Cre (βVps13cKO) mice displayed normal weight gain compared with control littermates, deletion of Vps13c had little effect on glucose tolerance. Pancreatic histology revealed no significant change in β-cell mass in KO mice vs. controls, and glucose-stimulated insulin secretion from isolated islets was not altered in vitro between control and βVps13cKO mice. However, a tendency was observed in female null mice for lower insulin levels and β-cell function (HOMA-B) in vivo. Furthermore, glucose-stimulated increases in intracellular free Ca(2+) were significantly increased in islets from female KO mice, suggesting impaired Ca(2+) sensitivity of the secretory machinery. The present data thus provide evidence for a limited role for changes in VPS13C expression in conferring altered disease risk at this locus, particularly in females, and suggest that C2CD4A may also be involved.
Collapse
Affiliation(s)
- Zenobia B Mehta
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Nicholas Fine
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Timothy J Pullen
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Matthew C Cane
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Gargi Meur
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | | | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom; and
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom;
| |
Collapse
|
15
|
Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 2016; 59:1579-93. [PMID: 27155872 PMCID: PMC4930689 DOI: 10.1007/s00125-016-3967-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes, fuelled by the obesity epidemic, is an escalating worldwide cause of personal hardship and public cost. Diabetes incidence increases with age, and many studies link the classic senescence and ageing protein p16(INK4A) to diabetes pathophysiology via pancreatic islet biology. Genome-wide association studies (GWASs) have unequivocally linked the CDKN2A/B locus, which encodes p16 inhibitor of cyclin-dependent kinase (p16(INK4A)) and three other gene products, p14 alternate reading frame (p14(ARF)), p15(INK4B) and antisense non-coding RNA in the INK4 locus (ANRIL), with human diabetes risk. However, the mechanism by which the CDKN2A/B locus influences diabetes risk remains uncertain. Here, we weigh the evidence that CDKN2A/B polymorphisms impact metabolic health via islet biology vs effects in other tissues. Structured in a bedside-to-bench-to-bedside approach, we begin with a summary of the evidence that the CDKN2A/B locus impacts diabetes risk and a brief review of the basic biology of CDKN2A/B gene products. The main emphasis of this work is an in-depth look at the nuanced roles that CDKN2A/B gene products and related proteins play in the regulation of beta cell mass, proliferation and insulin secretory function, as well as roles in other metabolic tissues. We finish with a synthesis of basic biology and clinical observations, incorporating human physiology data. We conclude that it is likely that the CDKN2A/B locus influences diabetes risk through both islet and non-islet mechanisms.
Collapse
Affiliation(s)
- Yahui Kong
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Rohit B Sharma
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Benjamin U Nwosu
- Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- AS7-2047, Division of Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
16
|
Solomou A, Philippe E, Chabosseau P, Migrenne-Li S, Gaitan J, Lang J, Magnan C, Rutter GA. Over-expression of Slc30a8/ZnT8 selectively in the mouse α cell impairs glucagon release and responses to hypoglycemia. Nutr Metab (Lond) 2016; 13:46. [PMID: 27390586 PMCID: PMC4936320 DOI: 10.1186/s12986-016-0104-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/28/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The human SLC30A8 gene encodes the secretory granule-localised zinc transporter ZnT8 whose expression is chiefly restricted to the endocrine pancreas. Single nucleotide polymorphisms (SNPs) in the human SLC30A8 gene have been associated, through genome-wide studies, with altered type 2 diabetes risk. In addition to a role in the control of insulin release, recent studies involving targeted gene ablation from the pancreatic α cell (Solomou et al., J Biol Chem 290(35):21432-42) have also implicated ZnT8 in the control of glucagon release. Up to now, however, the possibility that increased levels of the transporter in these cells may impact glucagon secretion has not been explored. METHODS Here, we use a recently-developed reverse tetracyline transactivator promoter-regulated ZnT8 transgene to drive the over-expression of human ZnT8 selectively in the α cell in adult mice. Glucose homeostasis and glucagon secretion were subsequently assessed both in vivo during hypoglycemic clamps and from isolated islets in vitro. RESULTS Doxyclin-dependent human ZnT8 mRNA expression was apparent in both isolated islets and in fluorescence-activated cell sorting- (FACS) purified α cells. Examined at 12 weeks of age, intraperitoneal glucose (1 g/kg) tolerance was unchanged in transgenic mice versus wild-type littermates (n = 8-10 mice/genotype, p > 0.05) and sensitivity to intraperitoneal insulin (0.75U/kg) was similarly unaltered in transgenic animals. In contrast, under hyperinsulinemic-hypoglycemic clamp, a ~45 % (p < 0.001) reduction in glucose infusion rate was apparent, and glucagon release was significantly (~40 %, p < 0.01) impaired, in transgenic mice. Correspondingly, examined in vitro, glucagon secretion was significantly reduced (~30 %, p < 0.05) from transgenic versus control islets at low, stimulatory glucose concentrations (1 mM, p < 0.05) but not at high glucose (17 mM) glucose (p > 0.05). Over-expression of ZnT8 in glucagonoma-derived αTC1-9 cells increased granule free Zn(2+) concentrations consistent with a role for Zn(2+) in this compartment in the action of ZnT8 on glucagon secretion. CONCLUSIONS Increased ZnT8 expression, and a likely increase in intragranular free Zn(2+) concentration, is deleterious in pancreatic α cells for stimulated glucagon release. These data provide further evidence that type 2 diabetes-associated polymorphisms in the SLC30A8/ZnT8 gene may act in part via alterations in glucagon release and suggest that ZnT8 activation may restrict glucagon release in some settings.
Collapse
Affiliation(s)
- Antonia Solomou
- />Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN UK
| | - Erwann Philippe
- />University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, Paris, France
| | - Pauline Chabosseau
- />Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN UK
| | - Stephanie Migrenne-Li
- />University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, Paris, France
| | - Julien Gaitan
- />CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Université de Bordeaux, F-33615 Pessac, France
| | - Jochen Lang
- />CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Université de Bordeaux, F-33615 Pessac, France
| | - Christophe Magnan
- />University Paris Diderot-Paris 7-Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, Paris, France
| | - Guy A. Rutter
- />Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, du Cane Road, London, W12 0NN UK
| |
Collapse
|
17
|
Batterham RL, Cummings DE. Mechanisms of Diabetes Improvement Following Bariatric/Metabolic Surgery. Diabetes Care 2016; 39:893-901. [PMID: 27222547 PMCID: PMC5864134 DOI: 10.2337/dc16-0145] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 02/03/2023]
Abstract
More than 20 years ago, Pories et al. published a seminal article, "Who Would Have Thought It? An Operation Proves to Be the Most Effective Therapy for Adult-Onset Diabetes Mellitus." This was based on their observation that bariatric surgery rapidly normalized blood glucose levels in obese people with type 2 diabetes mellitus (T2DM), and 10 years later, almost 90% remained diabetes free. Pories et al. suggested that caloric restriction played a key role and that the relative contributions of proximal intestinal nutrient exclusion, rapid distal gut nutrient delivery, and the role of gut hormones required further investigation. These findings of T2DM improvement/remission after bariatric surgery have been widely replicated, together with the observation that bariatric surgery prevents or delays incident T2DM. Over the ensuing two decades, important glucoregulatory roles of the gastrointestinal (GI) tract have been firmly established. However, the physiological and molecular mechanisms underlying the beneficial glycemic effects of bariatric surgery remain incompletely understood. In addition to the mechanisms proposed by Pories et al., changes in bile acid metabolism, GI tract nutrient sensing and glucose utilization, incretins, possible anti-incretin(s), and the intestinal microbiome are implicated. These changes, acting through peripheral and/or central pathways, lead to reduced hepatic glucose production, increased tissue glucose uptake, improved insulin sensitivity, and enhanced β-cell function. A constellation of factors, rather than a single overarching mechanism, likely mediate postoperative glycemic improvement, with the contributing factors varying according to the surgical procedure. Thus, different bariatric/metabolic procedures provide us with experimental tools to probe GI tract physiology. Embracing this approach through the application of detailed phenotyping, genomics, metabolomics, and gut microbiome studies will enhance our understanding of metabolic regulation and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Rachel L Batterham
- Centre for Obesity Research, Department of Medicine, University College London, London, U.K. Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital, London, U.K. National Institute for Health Research, Biomedical Research Centre, University College London Hospital, London, U.K.
| | - David E Cummings
- VA Puget Sound Health Care System and Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Arda HE, Li L, Tsai J, Torre EA, Rosli Y, Peiris H, Spitale RC, Dai C, Gu X, Qu K, Wang P, Wang J, Grompe M, Scharfmann R, Snyder MS, Bottino R, Powers AC, Chang HY, Kim SK. Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. Cell Metab 2016; 23:909-20. [PMID: 27133132 PMCID: PMC4864151 DOI: 10.1016/j.cmet.2016.04.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/03/2015] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Intensive efforts are focused on identifying regulators of human pancreatic islet cell growth and maturation to accelerate development of therapies for diabetes. After birth, islet cell growth and function are dynamically regulated; however, establishing these age-dependent changes in humans has been challenging. Here, we describe a multimodal strategy for isolating pancreatic endocrine and exocrine cells from children and adults to identify age-dependent gene expression and chromatin changes on a genomic scale. These profiles revealed distinct proliferative and functional states of islet α cells or β cells and histone modifications underlying age-dependent gene expression changes. Expression of SIX2 and SIX3, transcription factors without prior known functions in the pancreas and linked to fasting hyperglycemia risk, increased with age specifically in human islet β cells. SIX2 and SIX3 were sufficient to enhance insulin content or secretion in immature β cells. Our work provides a unique resource to study human-specific regulators of islet cell maturation and function.
Collapse
Affiliation(s)
- H Efsun Arda
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingyu Li
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Tsai
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo A Torre
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yenny Rosli
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert C Spitale
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kun Qu
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pei Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Michael S Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Howard Y Chang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Oncology Division), Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Abstract
People with schizophrenia have 2- to 5-fold higher risk of type 2 diabetes than the general population. The traditional risk factors for type 2 diabetes, especially obesity, poor diet, and sedentary lifestyle, are common in people with schizophrenia already early in the course of illness. People with schizophrenia also often have low socioeconomic status and income, which affects their possibilities to make healthy lifestyle choices. Antipsychotic medications increase the risk of type 2 diabetes both directly by affecting insulin sensitivity and indirectly by causing weight gain. Lifestyle modification interventions for prevention of diabetes should be an integral part of treatment of patients with schizophrenia. In the treatment of type 2 diabetes in patients with schizophrenia, communication and collaboration between medical care and psychiatric treatment providers are essential.
Collapse
Affiliation(s)
- Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, P.O.BOX 30, 00271, Helsinki, Finland.
| | - Jaakko Keinänen
- Mental Health Unit, National Institute for Health and Welfare, P.O.BOX 30, 00271, Helsinki, Finland.
| | - Saana Eskelinen
- Mental Health Unit, National Institute for Health and Welfare, P.O.BOX 30, 00271, Helsinki, Finland.
- Kellokoski Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Outi Mantere
- Mental Health Unit, National Institute for Health and Welfare, P.O.BOX 30, 00271, Helsinki, Finland.
- Douglas Mental Health University Institute, Pavillon Newman - 6875, boul. laSalle, Montréal, Québec, Canada, H4H 1R3.
| |
Collapse
|
20
|
Mitchell RK, Hu M, Chabosseau PL, Cane MC, Meur G, Bellomo EA, Carzaniga R, Collinson LM, Li WH, Hodson DJ, Rutter GA. Molecular Genetic Regulation of Slc30a8/ZnT8 Reveals a Positive Association With Glucose Tolerance. Mol Endocrinol 2015; 30:77-91. [PMID: 26584158 PMCID: PMC4995240 DOI: 10.1210/me.2015-1227] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Zinc transporter 8 (ZnT8), encoded by SLC30A8, is chiefly expressed within pancreatic islet cells, where it mediates zinc (Zn2+) uptake into secretory granules. Although a common nonsynonymous polymorphism (R325W), which lowers activity, is associated with increased type 2 diabetes (T2D) risk, rare inactivating mutations in SLC30A8 have been reported to protect against T2D. Here, we generate and characterize new mouse models to explore the impact on glucose homeostasis of graded changes in ZnT8 activity in the β-cell. Firstly, Slc30a8 was deleted highly selectively in these cells using the novel deleter strain, Ins1Cre. The resultant Ins1CreZnT8KO mice displayed significant (P < .05) impairments in glucose tolerance at 10 weeks of age vs littermate controls, and glucose-induced increases in circulating insulin were inhibited in vivo. Although insulin release from Ins1CreZnT8KO islets was normal, Zn2+ release was severely impaired. Conversely, transgenic ZnT8Tg mice, overexpressing the transporter inducibly in the adult β-cell using an insulin promoter-dependent Tet-On system, showed significant (P < .01) improvements in glucose tolerance compared with control animals. Glucose-induced insulin secretion from ZnT8Tg islets was severely impaired, whereas Zn2+ release was significantly enhanced. Our findings demonstrate that glucose homeostasis in the mouse improves as β-cell ZnT8 activity increases, and remarkably, these changes track Zn2+ rather than insulin release in vitro. Activation of ZnT8 in β-cells might therefore provide the basis of a novel approach to treating T2D.
Collapse
Affiliation(s)
- Ryan K Mitchell
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ming Hu
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pauline L Chabosseau
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Matthew C Cane
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Gargi Meur
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elisa A Bellomo
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Raffaella Carzaniga
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lucy M Collinson
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Wen-Hong Li
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David J Hodson
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics (R.K.M., M.H., P.L.C., M.C.C., G.M., E.A.B., D.J.H., G.A.R.), Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, United Kingdom; Electron Microscopy Unit (R.C., L.M.C.), Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, United Kingdom; and Department of Cell Biology and Biochemistry (W.-H.L.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
21
|
Current understanding and dispute on the function of the Wnt signaling pathway effector TCF7L2 in hepatic gluconeogenesis. Genes Dis 2015; 3:48-55. [PMID: 30258876 PMCID: PMC6147171 DOI: 10.1016/j.gendis.2015.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Approximately 10 years ago, the Wnt signaling pathway effector TCF7L2 (=TCF-4) was recognized as a type 2 diabetes (T2D) risk gene through a genome wide association study (GWAS). As the correlation between TCF7L2 polymorphisms and T2D susceptibility has been reproducibly observed by numerous follow-up investigations among different ethnic groups, great efforts have been made to explore the function of TCF7L2 in metabolic organs including the pancreas, liver and adipose tissues. Although these explorations have enriched our general knowledge on the Wnt signaling cascade in metabolic homeostasis, studies conducted to date have also generated controversial suggestions. Here I will provide a brief review on the Wnt signaling pathway as well as the milestone GWAS discovery and the follow-up studies. I will then discuss the two different opinions on the correlation between TCF7L2 variants and T2D risk, a gain-of-function event versus a loss-of-function event. This will be followed by summarizing the relevant investigations on the metabolic function of hepatic TCF7L2 and presenting our view on the discrepancy and perspectives.
Collapse
|
22
|
Solomou A, Meur G, Bellomo E, Hodson DJ, Tomas A, Li SM, Philippe E, Herrera PL, Magnan C, Rutter GA. The Zinc Transporter Slc30a8/ZnT8 Is Required in a Subpopulation of Pancreatic α-Cells for Hypoglycemia-induced Glucagon Secretion. J Biol Chem 2015; 290:21432-42. [PMID: 26178371 PMCID: PMC4571871 DOI: 10.1074/jbc.m115.645291] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 12/02/2022] Open
Abstract
SLC30A8 encodes a zinc transporter ZnT8 largely restricted to pancreatic islet β- and α-cells, and responsible for zinc accumulation into secretory granules. Although common SLC30A8 variants, believed to reduce ZnT8 activity, increase type 2 diabetes risk in humans, rare inactivating mutations are protective. To investigate the role of Slc30a8 in the control of glucagon secretion, Slc30a8 was inactivated selectively in α-cells by crossing mice with alleles floxed at exon 1 to animals expressing Cre recombinase under the pre-proglucagon promoter. Further crossing to Rosa26:tdRFP mice, and sorting of RFP+: glucagon+ cells from KO mice, revealed recombination in ∼30% of α-cells, of which ∼50% were ZnT8-negative (14 ± 1.8% of all α-cells). Although glucose and insulin tolerance were normal, female αZnT8KO mice required lower glucose infusion rates during hypoglycemic clamps and displayed enhanced glucagon release (p < 0.001) versus WT mice. Correspondingly, islets isolated from αZnT8KO mice secreted more glucagon at 1 mm glucose, but not 17 mm glucose, than WT controls (n = 5; p = 0.008). Although the expression of other ZnT family members was unchanged, cytoplasmic (n = 4 mice per genotype; p < 0.0001) and granular (n = 3, p < 0.01) free Zn2+ levels were significantly lower in KO α-cells versus control cells. In response to low glucose, the amplitude and frequency of intracellular Ca2+ increases were unchanged in α-cells of αZnT8KO KO mice. ZnT8 is thus important in a subset of α-cells for normal responses to hypoglycemia and acts via Ca2+-independent mechanisms.
Collapse
Affiliation(s)
- Antonia Solomou
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Gargi Meur
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Elisa Bellomo
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - David J Hodson
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Alejandra Tomas
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom, the Department of Cell Biology, Institute of Ophthalmology, University College London, Greater London EC1V 9EL, United Kingdom
| | - Stéphanie Migrenne Li
- the University Paris Diderot-Paris 7, Unit of Functional and Adaptive Biology (BFA) EAC 7059 CNRS, 75013 Paris, France, and
| | - Erwann Philippe
- the University Paris Diderot-Paris 7, Unit of Functional and Adaptive Biology (BFA) EAC 7059 CNRS, 75013 Paris, France, and
| | - Pedro L Herrera
- the Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| | - Christophe Magnan
- the University Paris Diderot-Paris 7, Unit of Functional and Adaptive Biology (BFA) EAC 7059 CNRS, 75013 Paris, France, and
| | - Guy A Rutter
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom,
| |
Collapse
|
23
|
Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 2015; 466:203-18. [PMID: 25697093 DOI: 10.1042/bj20141384] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insulin release from pancreatic β-cells is required to maintain normal glucose homoeostasis in man and many other animals. Defective insulin secretion underlies all forms of diabetes mellitus, a disease currently reaching epidemic proportions worldwide. Although the destruction of β-cells is responsible for Type 1 diabetes (T1D), both lowered β-cell mass and loss of secretory function are implicated in Type 2 diabetes (T2D). Emerging results suggest that a functional deficiency, involving de-differentiation of the mature β-cell towards a more progenitor-like state, may be an important driver for impaired secretion in T2D. Conversely, at least in rodents, reprogramming of islet non-β to β-cells appears to occur spontaneously in models of T1D, and may occur in man. In the present paper, we summarize the biochemical properties which define the 'identity' of the mature β-cell as a glucose sensor par excellence. In particular, we discuss the importance of suppressing a group of 11 'disallowed' housekeeping genes, including Ldha and the monocarboxylate transporter Mct1 (Slc16a1), for normal nutrient sensing. We then survey the changes in the expression and/or activity of β-cell-enriched transcription factors, including FOXO1, PDX1, NKX6.1, MAFA and RFX6, as well as non-coding RNAs, which may contribute to β-cell de-differentiation and functional impairment in T2D. The relevance of these observations for the development of new approaches to treat T1D and T2D is considered.
Collapse
|
24
|
Shao W, Xiong X, Ip W, Xu F, Song Z, Zeng K, Hernandez M, Liang T, Weng J, Gaisano H, Nostro MC, Jin T. The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis. Mol Metab 2015; 4:344-52. [PMID: 25830097 PMCID: PMC4354927 DOI: 10.1016/j.molmet.2015.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 12/13/2022] Open
Abstract
Objective Disruption of TCF7L2 in mouse pancreatic β-cells has generated different outcomes in several investigations. Here we aim to clarify role of β-cell TCF7L2 and Wnt signaling using a functional-knockdown approach. Methods Adenovirus-mediated dominant negative TCF7L2 (TCF7L2DN) expression was conducted in Ins-1 cells. The fusion gene in which TCF7L2DN expression is driven by PTRE3G was utilized to generate the transgenic mouse line TCF7L2DNTet. The double transgenic line was created by mating TCF7L2DNTet with Ins2-rtTA, designated as βTCFDN. β-cell specific TCF7L2DN expression was induced in βTCFDN by doxycycline feeding. Results TCF7L2DN expression in Ins-1 cells reduced GSIS, cell proliferation and expression of a battery of genes including incretin receptors and β-cell transcription factors. Inducing TCF7L2DN expression in βTCFDN during adulthood or immediately after weaning generated no or very modest metabolic defect, while its expression during embryonic development by doxycycline feeding in pregnant mothers resulted in significant glucose intolerance associated with altered β-cell gene expression and reduced β-cell mass. Conclusions Our observations support a cell autonomous role for TCF7L2 in pancreatic β-cells suggested by most, though not all, investigations. βTCFDN is a novel model for further exploring the role of TCF7L2 in β-cell genesis and metabolic homeostasis.
Collapse
Affiliation(s)
- Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Xiaoquan Xiong
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Wilfred Ip
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2J7, Canada
| | - Fenghao Xu
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Zhuolun Song
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Kejing Zeng
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Marcela Hernandez
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Tao Liang
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 7368, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jianping Weng
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herbert Gaisano
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 7368, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - M. Cristina Nostro
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 7368, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2J7, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada
- Corresponding author. Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
25
|
Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci 2015; 72:453-467. [PMID: 25323131 PMCID: PMC11113448 DOI: 10.1007/s00018-014-1755-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Beta cell connectivity describes the phenomenon whereby the islet context improves insulin secretion by providing a three-dimensional platform for intercellular signaling processes. Thus, the precise flow of information through homotypically interconnected beta cells leads to the large-scale organization of hormone release activities, influencing cell responses to glucose and other secretagogues. Although a phenomenon whose importance has arguably been underappreciated in islet biology until recently, a growing number of studies suggest that such cell-cell communication is a fundamental property of this micro-organ. Hence, connectivity may plausibly be targeted by both environmental and genetic factors in type 2 diabetes mellitus (T2DM) to perturb normal beta cell function and insulin release. Here, we review the mechanisms that contribute to beta cell connectivity, discuss how these may fail during T2DM, and examine approaches to restore insulin secretion by boosting cell communication.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
26
|
Piccand J, Strasser P, Hodson DJ, Meunier A, Ye T, Keime C, Birling MC, Rutter GA, Gradwohl G. Rfx6 maintains the functional identity of adult pancreatic β cells. Cell Rep 2014; 9:2219-32. [PMID: 25497096 PMCID: PMC4542305 DOI: 10.1016/j.celrep.2014.11.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/27/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence suggests that loss of β cell characteristics may cause insulin secretory deficiency in diabetes, but the underlying mechanisms remain unclear. Here, we show that Rfx6, whose mutation leads to neonatal diabetes in humans, is essential to maintain key features of functionally mature β cells in mice. Rfx6 loss in adult β cells leads to glucose intolerance, impaired β cell glucose sensing, and defective insulin secretion. This is associated with reduced expression of core components of the insulin secretion pathway, including glucokinase, the Abcc8/SUR1 subunit of KATP channels and voltage-gated Ca(2+) channels, which are direct targets of Rfx6. Moreover, Rfx6 contributes to the silencing of the vast majority of "disallowed" genes, a group usually specifically repressed in adult β cells, and thus to the maintenance of β cell maturity. These findings raise the possibility that changes in Rfx6 expression or activity may contribute to β cell failure in humans.
Collapse
Affiliation(s)
- Julie Piccand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Perrine Strasser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - David J Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, UK
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | | | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, UK
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France.
| |
Collapse
|
27
|
Mitchell RK, Mondragon A, Chen L, Mcginty JA, French PM, Ferrer J, Thorens B, Hodson DJ, Rutter GA, Da Silva Xavier G. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum Mol Genet 2014; 24:1390-9. [PMID: 25355422 PMCID: PMC4321446 DOI: 10.1093/hmg/ddu553] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2fl/fl::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2fl/fl::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca2+ increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2fl/fl::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.
Collapse
Affiliation(s)
- Ryan K Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Angeles Mondragon
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | | | | | | | - Jorge Ferrer
- Section of Genetics and Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Bernard Thorens
- Center for Integrative Genomics, Physiology Department, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | - David J Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine,
| | - Gabriela Da Silva Xavier
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine,
| |
Collapse
|