1
|
Jung KM, Lin L, Piomelli D. Overactivation of the Endocannabinoid System in Adolescence Disrupts Adult Adipose Organ Function in Mice. Cells 2024; 13:461. [PMID: 38474425 PMCID: PMC10930932 DOI: 10.3390/cells13050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Cannabis use stimulates calorie intake, but epidemiological studies show that people who regularly use it are leaner than those who don't. Two explanations have been proposed for this paradoxical finding. One posits that Δ9-tetrahydrocannabinol (THC) in cannabis desensitizes adipose CB1 cannabinoid receptors, stopping their stimulating effects on lipogenesis and adipogenesis. Another explanation is that THC exposure in adolescence, when habitual cannabis use typically starts, produces lasting changes in the developing adipose organ, which impacts adult systemic energy use. Here, we consider these possibilities in the light of a study which showed that daily THC administration in adolescent mice produces an adult metabolic phenotype characterized by reduced fat mass, partial resistance to obesity and dyslipidemia, and impaired thermogenesis and lipolysis. The phenotype, whose development requires activation of CB1 receptors in differentiated adipocytes, is associated with overexpression of myocyte proteins in the adipose organ with unchanged CB1 expression. We propose that adolescent exposure to THC causes lasting adipocyte dysfunction and the consequent emergence of a metabolic state that only superficially resembles healthy leanness. A corollary of this hypothesis, which should be addressed in future studies, is that CB1 receptors and their endocannabinoid ligands may contribute to the maintenance of adipocyte differentiation during adolescence.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Crater GD, Lalonde K, Ravenelle F, Harvey M, Després JP. Effects of CB1R inverse agonist, INV-202, in patients with features of metabolic syndrome. A randomized, placebo-controlled, double-blind phase 1b study. Diabetes Obes Metab 2024; 26:642-649. [PMID: 37941317 DOI: 10.1111/dom.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
AIMS To evaluate the clinical safety, tolerability, and pharmacokinetic and pharmacodynamic profile of the novel cannabinoid receptor-1 (CB1R) inverse agonist, INV-202, in adults with features of metabolic syndrome. MATERIALS AND METHODS This was a multicentre, randomized, double-blind, placebo-controlled, 28-day repeat-dose (INV-202 [25 mg] or placebo, once-daily oral tablet), parallel-group study in 37 participants aged 18 to 65 years (46% female, mean age 55 years, glycated haemoglobin 5.7% [39 mmol/mol], body mass index [BMI] 38.1 kg/m2 ) with features of metabolic syndrome and glucose intolerance. An oral glucose tolerance test (OGTT) was performed at baseline and at the end of the study. Lipid profiles, weight, waist circumference and biomarkers were assessed weekly. Statistical comparisons were performed post hoc. RESULTS INV-202 was well tolerated with no serious or severe treatment-emergent adverse events; the most common events related to known effects of CB1R blockade in the gastrointestinal tract. INV-202 produced a significant mean weight loss of 3.5 kg (3.3% compared with placebo participants who gained a mean 0.6 kg [0.5%]). INV-202 also exhibited significant reductions in waist circumference and BMI (P ≤ 0.03). There was no significant difference in OGTT 0- to 3-hour area under the curve for INV-202 versus placebo: least squares mean 29.38 versus 30.25 h*mmol/L, with an INV-202: placebo ratio of 97.1% (95% confidence interval 90.2, 105.6; P = 0.43). CONCLUSIONS INV-202 was well tolerated, producing a signal for rapid weight loss with improvements in other metabolic syndrome markers in this population. These findings support further exploration and long-term assessment of cardiometabolic effects.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Pierre Després
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
3
|
Maliszewska K, Miniewska K, Godlewski A, Gosk W, Mojsak M, Kretowski A, Ciborowski M. Changes in plasma endocannabinoids concentrations correlate with 18F-FDG PET/MR uptake in brown adipocytes in humans. Front Mol Biosci 2023; 10:1073683. [PMID: 37564131 PMCID: PMC10411954 DOI: 10.3389/fmolb.2023.1073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: Recent data suggest a possible role of endocannabinoids in the regulation of brown adipose tissue (BAT) activity. Those findings indicate potential treatment options for obesity. The aim of this study was to evaluate the relationship between plasma endocannabinoids concentrations and the presence of BAT in humans. Methods: The study group consisted of 25 subjects divided into two groups: BAT positive BAT(+), (n = 17, median age = 25 years) and BAT negative BAT(-), (n = 8, median age = 28 years). BAT was estimated using 18F-FDG PET/MR after 2 h of cold exposure. The level of plasma endocannabinoids was assessed at baseline, 60 min and 120 min of cold exposure. Results: In both groups, BAT(+) and BAT(-), during the cooling, we observed a decrease of the same endocannabinoids: arachidonoylethanolamide (AEA), eicosapentaenoyl ethanolamide (EPEA) and oleoyl ethanolamide (OEA) with a much more profound decline in BAT(+) subjects. Statistically significant fall of PEA (palmitoylethanolamide) and SEA (stearoylethanolamide) concentrations after 60 min (FC = 0.7, p = 0.007 and FC = 0.8, p = 0.03, respectively) and 120 min (FC = 0.81, p = 0.004, and FC = 0.9, p = 0.01, respectively) of cooling was observed only in individuals with BAT. Conclusion: We noticed the profound decline of endocannabinoids concentrations in subjects with increased 18F-FDG PET/MR uptake in BAT. Identification of a new molecules related to BAT activity may create a new target for obesity treatment.
Collapse
Affiliation(s)
- Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Miniewska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Wioleta Gosk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
5
|
Raj RR, Lofquist S, Lee MJ. Remodeling of Adipose Tissues by Fatty Acids: Mechanistic Update on Browning and Thermogenesis by n-3 Polyunsaturated Fatty Acids. Pharm Res 2023; 40:467-480. [PMID: 36050546 DOI: 10.1007/s11095-022-03377-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Enhancing thermogenesis by increasing the amount and activity of brown and brite adipocytes is a potential therapeutic target for obesity and its associated diseases. Diet plays important roles in energy metabolism and a myriad of dietary components including lipids are known to regulate thermogenesis through recruitment and activation of brown and brite adipocytes. Depending on types of fatty acids (FAs), the major constituent in lipids, their health benefits differ. Long-chain polyunsaturated FAs (PUFAs), especially n-3 PUFAs remodel adipose tissues in a healthier manner with reduced inflammation and enhanced thermogenesis, while saturated FAs exhibit contrasting effects. Lipid mediators derived from FAs act as autocrine/paracrine as well as endocrine factors to regulate thermogenesis. We discuss lipid mediators that may contribute to the differential effects of FAs on adipose tissue remodeling and hence, cardiometabolic diseases. We also discuss current understanding of molecular and cellular mechanisms through which n-3 PUFAs enhance thermogenesis. Elucidating molecular details of beneficial effects of n-3 PUFAs on thermogenesis is expected to provide information that can be used for development of novel therapeutics for obesity and its associated diseases.
Collapse
Affiliation(s)
- Radha Raman Raj
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Sydney Lofquist
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA.
| |
Collapse
|
6
|
Hsiao WC, Hsin KY, Wu ZW, Song JS, Yeh YN, Chen YF, Tsai CH, Chen PH, Shia KS, Chang CP, Hung MS. Modulating the affinity and signaling bias of cannabinoid receptor 1 antagonists. Bioorg Chem 2022; 130:106236. [DOI: 10.1016/j.bioorg.2022.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
7
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Kaur S, Sharma N, Roy A. Role of cannabinoids in various diseases: A review. Curr Pharm Biotechnol 2021; 23:1346-1358. [PMID: 34951355 DOI: 10.2174/1389201023666211223164656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant, Cannabis sativa is heavily explored and researched with many industrial and pharmaceutical applications. The medicinal and therapeutic role of cannabis Sativa has been summarized in the paper, citing its mechanism of action and influence on the human body. Diseases like metabolic disorders, infectious diseases, and psychological disorders pose negative and long-term drastic effects on the body like neurodegeneration and other chronic system failures. Several existing literature has proved its effectiveness against such diseases. OBJECTIVES This review aims to provide an overview of the role of cannabinoids in various diseases like metabolic disorders, infectious diseases, and psychological disorders. METHOD Various e-resources like Pubmed, Science Direct, and Google Scholar were thoroughly searched and read to form a well-informed and information-heavy manuscript. Here we tried to summaries the therapeutic aspect of Cannabis sativa and its bioactive compound cannabinoids in various diseases. RESULT This review highlights the various constituents which are present in Cannabis sativa, the Endocannabinoid system, and the role of cannabinoids in various diseases Conclusion: Recent research on Cannabis has suggested its role in neurodegenerative diseases, inflammation, sleep disorders, pediatric diseases, and their analgesic nature. Therefore, the authors majorly focus on the therapeutic aspect of Cannabis sativa in various diseases. The focus is also on the endocannabinoid system (ECS) and its role in fighting or preventing bacterial, parasitic, fungal, and viral infections.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Delhi Technological University. India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
9
|
de Ceglia M, Decara J, Gaetani S, Rodríguez de Fonseca F. Obesity as a Condition Determined by Food Addiction: Should Brain Endocannabinoid System Alterations Be the Cause and Its Modulation the Solution? Pharmaceuticals (Basel) 2021; 14:ph14101002. [PMID: 34681224 PMCID: PMC8538206 DOI: 10.3390/ph14101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is a complex disorder, and the number of people affected is growing every day. In recent years, research has confirmed the hypothesis that food addiction is a determining factor in obesity. Food addiction is a behavioral disorder characterized by disruptions in the reward system in response to hedonic eating. The endocannabinoid system (ECS) plays an important role in the central and peripheral control of food intake and reward-related behaviors. Moreover, both obesity and food addiction have been linked to impairments in the ECS function in various brain regions integrating peripheral metabolic signals and modulating appetite. For these reasons, targeting the ECS could be a valid pharmacological therapy for these pathologies. However, targeting the cannabinoid receptors with inverse agonists failed when used in clinical contexts as a consequence of the induction of affective disorders. In this context, new classes of drugs acting either on CB1 and/or CB2 receptors or on synthetic and degradation enzymes of endogenous cannabinoids are being studied. However, further investigation is necessary to find safe and effective treatments that can exert anti-obesity effects, normalizing reward-related behaviors without causing important adverse mood effects.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| |
Collapse
|
10
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
11
|
Rohbeck E, Eckel J, Romacho T. Cannabinoid Receptors in Metabolic Regulation and Diabetes. Physiology (Bethesda) 2021; 36:102-113. [PMID: 33595385 DOI: 10.1152/physiol.00029.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for developing effective drugs to combat the obesity and Type 2 diabetes mellitus epidemics. The endocannabinoid system plays a major role in energy homeostasis. It comprises the cannabinoid receptors 1 and 2 (CB1 and CB2), endogenous ligands called endocannabinoids and their metabolizing enzymes. Because the CB1 receptor is overactivated in metabolic alterations, pharmacological blockade of the CB1 receptor arose as a promising candidate to treat obesity. However, because of the wide distribution of CB1 receptors in the central nervous system, their negative central effects halted further therapeutic use. Although the CB2 receptor is mostly peripherally expressed, its role in metabolic homeostasis remains unclear. This review discusses the potential of CB1 and CB2 receptors at the peripheral level to be therapeutic targets in metabolic diseases. We focus on the impact of pharmacological intervention and/or silencing on peripheral cannabinoid receptors in organs/tissues relevant for energy homeostasis. Moreover, we provide a perspective on novel therapeutic strategies modulating these receptors. Targeting CB1 with peripherally restricted antagonists, neutral antagonists, inverse agonists, or monoclonal antibodies could represent successful strategies. CB2 agonism has shown promising results at preclinical level. Beyond classic antagonism and agonism targeting orthosteric sites, the recently described crystal structures of CB1 and CB2 open new possibilities for therapeutic interventions with negative and positive allosteric modulators. The challenge of simultaneously targeting CB1 and CB2 might be possible by developing dual-steric ligands. The future will tell whether these promising strategies result in a renaissance of the cannabinoid receptors as therapeutic targets in metabolic diseases.
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juergen Eckel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Buch C, Muller T, Leemput J, Passilly-Degrace P, Ortega-Deballon P, Pais de Barros JP, Vergès B, Jourdan T, Demizieux L, Degrace P. Endocannabinoids Produced by White Adipose Tissue Modulate Lipolysis in Lean but Not in Obese Rodent and Human. Front Endocrinol (Lausanne) 2021; 12:716431. [PMID: 34434170 PMCID: PMC8382141 DOI: 10.3389/fendo.2021.716431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (WAT) possesses the endocannabinoid system (ECS) machinery and produces the two major endocannabinoids (ECs), arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). Accumulating evidence indicates that WAT cannabinoid 1 receptors (CB1R) are involved in the regulation of fat storage, tissue remodeling and secretory functions but their role in controlling lipid mobilization is unclear. In the present study, we used different strategies to acutely increase ECS activity in WAT and tested the consequences on glycerol production as a marker of lipolysis. Treating lean mice or rat WAT explants with JLZ195, which inhibits ECs degrading enzymes, induced an increase in 2-AG tissue contents that was associated with a CB1R-dependent decrease in lipolysis. Direct treatment of rat WAT explants with AEA also inhibited glycerol production while mechanistic studies revealed it could result from the stimulation of Akt-signaling pathway. Interestingly, AEA treatment decreased lipolysis both in visceral and subcutaneous WAT collected on lean subjects suggesting that ECS also reduces fat store mobilization in Human. In obese mice, WAT content and secretion rate of ECs were higher than in control while glycerol production was reduced suggesting that over-produced ECs may inhibit lipolysis activating local CB1R. Strikingly, our data also reveal that acute CB1R blockade with Rimonabant did not modify lipolysis in vitro in obese mice and human explants nor in vivo in obese mice. Taken together, these data provide physiological evidence that activation of ECS in WAT, by limiting fat mobilization, may participate in the progressive tissue remodeling that could finally lead to organ dysfunction. The present findings also indicate that acute CB1R blockade is inefficient in regulating lipolysis in obese WAT and raise the possibility of an alteration of CB1R signaling in conditions of obesity.
Collapse
Affiliation(s)
- Chloé Buch
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Tania Muller
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julia Leemput
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patricia Passilly-Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pablo Ortega-Deballon
- Department of Digestive, Thoracic and Surgical Oncology, University Hospital, Dijon, France
| | | | - Bruno Vergès
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
- Department of Endocrinology-Diabetology, University Hospital, Dijon, France
| | - Tony Jourdan
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
- *Correspondence: Pascal Degrace,
| |
Collapse
|
13
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
14
|
Quarta C, Cota D. Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice. Int J Obes (Lond) 2020; 44:2179-2193. [PMID: 32317751 DOI: 10.1038/s41366-020-0577-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Pharmacological blockers of the cannabinoid receptor type-1 (CB1) have been considered for a long time as the holy grail of obesity pharmacotherapy. These agents were hastily released in the clinical setting, due to their clear-cut therapeutic efficacy. However, the first generation of these drugs, which were able to target both the brain and peripheral tissues, had serious neuropsychiatric effects, leading authorities to ban their clinical use. New peripherally restricted CB1 blockers, characterized by low brain penetrance, have been developed over the past 10 years. In preclinical studies, these molecules seem to overcome the neuropsychiatric negative effects previously observed with brain-penetrant CB1 inhibitors, while retaining or even outperforming their efficacy. The mechanisms of action of these peripherally restricted compounds are only beginning to emerge, and a balanced discussion of the risk/benefits ratio associated to their possible clinical use is urgently needed, in order to avoid repeating past mistakes. Here, we will critically discuss the advantages and the possible hidden threats associated with the use of peripheral CB1 blockers for the pharmacotherapy of obesity and its associated metabolic complications. We will address whether this novel pharmacological approach might 'compete' with current pharmacotherapies for obesity and diabetes, while also conceptualizing future CB1-based pharmacological trends that may significantly lower the risk/benefits ratio associated with the use of these drugs.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
15
|
The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther 2020; 208:107477. [DOI: 10.1016/j.pharmthera.2020.107477] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
|
16
|
Vázquez-Bourgon J, Ortiz-García de la Foz V, Suarez-Pereira I, Iruzubieta P, Arias-Loste MT, Setién-Suero E, Ayesa-Arriola R, Gómez-Revuelta M, Crespo J, Crespo Facorro B. Cannabis consumption and non-alcoholic fatty liver disease. A three years longitudinal study in first episode non-affective psychosis patients. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109677. [PMID: 31228640 DOI: 10.1016/j.pnpbp.2019.109677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Increased incidence of obesity and excess weight lead to an increased incidence of non-alcoholic fatty liver disease (NAFLD). Recent evidence indicates a protective effect of cannabis consumption on weight gain and related metabolic alterations in psychosis patients. Overall, patients are at greater risk of presenting fatty diseases, such as NAFLD, partly due to lipid and glycemic metabolic disturbances. However, there are no previous studies on the likely effect of cannabis on liver steatosis. We aimed to explore if cannabis consumption had an effect on hepatic steatosis, in a sample of first-episode (FEP) non-affective psychosis. MATERIAL AND METHODS A total of 390 patients were evaluated at baseline and after 3 years of initiating the antipsychotic treatment. Anthropometric measurements and liver, lipid, and glycemic parameters were obtained at both time points. All but 6.7% of patients were drug-naïve at entry, and they self-reported their cannabis use at both time points. Liver steatosis and fibrosis were evaluated through validated clinical scores (Fatty Liver Index [FLI], Fibrosis-4 [FIB-4], and NAFLD). RESULTS At 3-year follow-up, cannabis users presented significantly lower FLI scores than non-users (F = 13.874; p < .001). Moreover, cannabis users less frequently met the criteria for liver steatosis than non-users (X2 = 7.97, p = .019). Longitudinally, patients maintaining cannabis consumption after 3 years presented the smallest increment in FLI over time, which was significantly smaller than the increment in FLI presented by discontinuers (p = .022) and never-users (p = .016). No differences were seen in fibrosis scores associated with cannabis. CONCLUSIONS Cannabis consumption may produce a protective effect against liver steatosis in psychosis, probably through the modulation of antipsychotic-induced weight gain.
Collapse
Affiliation(s)
- Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain.
| | - Víctor Ortiz-García de la Foz
- Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain.
| | - Irene Suarez-Pereira
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Edificio "Andrés Segovia", Cádiz, Spain.
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Unit, University Hospital de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain.
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Unit, University Hospital de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain.
| | - Esther Setién-Suero
- Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain.
| | - Marcos Gómez-Revuelta
- Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Javier Crespo
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; Gastroenterology and Hepatology Unit, University Hospital de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain.
| | - Benedicto Crespo Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
17
|
Kale VP, Gibbs S, Taylor JA, Zmarowski A, Novak J, Patton K, Sparrow B, Gorospe J, Anand S, Cinar R, Kunos G, Chorvat RJ, Terse PS. Preclinical toxicity evaluation of JD5037, a peripherally restricted CB 1 receptor inverse agonist, in rats and dogs for treatment of nonalcoholic steatohepatitis. Regul Toxicol Pharmacol 2019; 109:104483. [PMID: 31580887 PMCID: PMC7017916 DOI: 10.1016/j.yrtph.2019.104483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
Abstract
JD5037 is a novel peripherally restricted CB1 receptor (CB1R) inverse agonist being developed for the treatment of visceral obesity and its metabolic complications, including nonalcoholic fatty liver disease and dyslipidemia. JD5037 was administered by oral gavage at 10, 40, and 150 mg/kg/day dose levels for up to 34 days to Sprague Dawley rats, and at 5, 20, and 75 mg/kg/day dose levels for 28 consecutive days to Beagle dogs. In rats, higher incidences of stereotypic behaviors were observed in 10 mg/kg females and 40 mg/kg males, and slower responses for reflex and sensory tests were observed only in males at 10 and 40 mg/kg during neurobehavioral testing. Sporadic minimal incidences of decreased activity (males) and seizures (both sexes) were observed in rats during daily clinical observations, without any clear dose-relationship. Male dogs at 75 mg/kg during treatment period, but not recovery period, had an increased incidence of gut associated lymphoid tissue hyperplasia and inflammation in the intestine. In both species, highest dose resulted in lower AUCs indicative of non-linear kinetics. Free access to food increased the plasma AUC∞ by ~4.5-fold at 20 mg/kg in dogs, suggesting presence of food may help in systemic absorption of JD5037 in dogs. Based on the study results, 150 mg/kg/day in rats, and 20 and 75 mg/kg/day doses in male and female dogs, respectively, were determined to be the no-observed-adverse-effect-levels (NOAELs).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Resat Cinar
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - George Kunos
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | - Pramod S Terse
- National Center for Advancing Translational Sciences, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Cannabis: From a Plant That Modulates Feeding Behaviors toward Developing Selective Inhibitors of the Peripheral Endocannabinoid System for the Treatment of Obesity and Metabolic Syndrome. Toxins (Basel) 2019; 11:toxins11050275. [PMID: 31096702 PMCID: PMC6563239 DOI: 10.3390/toxins11050275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss the role of the endocannabinoid (eCB) system in regulating energy and metabolic homeostasis. Endocannabinoids, via activating the cannabinoid type-1 receptor (CB1R), are commonly known as mediators of the thrifty phenotype hypothesis due to their activity in the central nervous system, which in turn regulates food intake and underlies the development of metabolic syndrome. Indeed, these findings led to the clinical testing of globally acting CB1R blockers for obesity and various metabolic complications. However, their therapeutic potential was halted due to centrally mediated adverse effects. Recent observations that highlighted the key role of the peripheral eCB system in metabolic regulation led to the preclinical development of various novel compounds that block CB1R only in peripheral organs with very limited brain penetration and without causing behavioral side effects. These unique molecules, which effectively ameliorate obesity, type II diabetes, fatty liver, insulin resistance, and chronic kidney disease in several animal models, are likely to be further developed in the clinic and may revive the therapeutic potential of blocking CB1R once again.
Collapse
|
19
|
Vázquez-Bourgon J, Setién-Suero E, Pilar-Cuéllar F, Romero-Jiménez R, Ortiz-García de la Foz V, Castro E, Crespo-Facorro B. Effect of cannabis on weight and metabolism in first-episode non-affective psychosis: Results from a three-year longitudinal study. J Psychopharmacol 2019; 33:284-294. [PMID: 30702972 DOI: 10.1177/0269881118822173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabis smoking is highly prevalent among patients with psychotic disorders. Its use has been found to be related to clinical characteristics and the prognosis of the disorder. Recent evidence indicates a protective effect of cannabis on weight gain and related metabolic alterations. However, there are no previous studies on the long-term longitudinal effects of cannabis on first-episode drug-naïve patients, which would thereby avoid the confounding effects of chronicity and previous treatment exposure. We aimed to explore the effect of cannabis smoking on weight and lipid/glycaemic metabolic measures in a sample of first-episode non-affective psychosis patients. METHOD Anthropometric measurements and glycaemic and lipid parameters were obtained at baseline and three years after initiation of treatment. Patients self-reported their cannabis use at both time points. To explore the longitudinal effect of cannabis, patients were divided into three groups: continuers, discontinuers and non-users. RESULTS Cannabis users at baseline presented a lower weight ( F=14.85, p<0.001), body mass index ( F=13.14, p<0.001), total cholesterol ( F=4.85, p=0.028) and low-density lipoprotein-cholesterol ( F=6.26, p=0.013) compared to non-users. These differences were also observed after three years: weight ( F=8.07, p=0.005), body mass index ( F=4.66, p=0.032) and low-density lipoprotein-cholesterol ( F=3.91, p=0.049). Moreover, those patients discontinuing cannabis use presented a higher increase in weight ( F=2.98, p=0.052), body mass index ( F=2.73, p=0.067) and triglyceride-high-density lipoprotein ratio ( F=2.72, p=0.067) than the 'non-users' and 'continuers'. CONCLUSIONS The study suggests that cannabis use may produce a protective effect against weight gain and related metabolic alterations in psychosis. However, these results need to be replicated in a larger sample size.
Collapse
Affiliation(s)
- Javier Vázquez-Bourgon
- 1 Department of Psychiatry, University Hospital Marqués de Valdecilla-Instituto Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain.,3 Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Esther Setién-Suero
- 1 Department of Psychiatry, University Hospital Marqués de Valdecilla-Instituto Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain.,3 Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- 2 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,4 Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain.,5 Instituto de Biomedicina y Biotecnología de Cantabria, University of Cantabria-Consejo Superior de Investigaciones Científicas (CSIC)-Sociedad para el Desarrollo de Cantabria (SODERCAN), Santander, Spain
| | - Rodrigo Romero-Jiménez
- 1 Department of Psychiatry, University Hospital Marqués de Valdecilla-Instituto Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Víctor Ortiz-García de la Foz
- 1 Department of Psychiatry, University Hospital Marqués de Valdecilla-Instituto Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain.,2 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Elena Castro
- 2 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.,4 Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain.,5 Instituto de Biomedicina y Biotecnología de Cantabria, University of Cantabria-Consejo Superior de Investigaciones Científicas (CSIC)-Sociedad para el Desarrollo de Cantabria (SODERCAN), Santander, Spain
| | - Benedicto Crespo-Facorro
- 1 Department of Psychiatry, University Hospital Marqués de Valdecilla-Instituto Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain.,3 Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| |
Collapse
|
20
|
Liu J, Lin L. Small molecules for fat combustion: targeting thermosensory and satiety signals in the central nervous system. Drug Discov Today 2018; 24:300-306. [PMID: 30248402 DOI: 10.1016/j.drudis.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
Brown adipose tissue (BAT) dissipates fatty acids as heat to maintain body temperature in cold environments. The existence of BAT and beige cells in human adults supplies a promising weight-reduction therapy. The central thermogenic regulation descends through an excitatory neural pathway from the hypothalamus, medullar and spine towards BAT. This sympathoexcitatory thermogenic circuit is controlled by GABAergic (γ-aminobutyric acid) signaling from the thermoregulatory center in the preoptic area and the satiety center in the ventromedial nucleus of the hypothalamus. This review summarizes recent research progresses in thermogenic regulators targeting thermosensory and satiety signals in the central nervous system, and speculates on their potential as antiobesity agents.
Collapse
Affiliation(s)
- Jingxin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| |
Collapse
|
21
|
Rossi F, Punzo F, Umano GR, Argenziano M, Miraglia Del Giudice E. Role of Cannabinoids in Obesity. Int J Mol Sci 2018; 19:E2690. [PMID: 30201891 PMCID: PMC6163475 DOI: 10.3390/ijms19092690] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Obesity is an increasing health problem worldwide. Its related comorbidities imply a high cost for the National Health System and diminish a patient's life quality. Adipose tissue is composed of three types of cells. White adipocytes are involved in fat storage and secretion of hormones. Brown adipocytes are involved in thermogenesis and caloric expenditure. Beige adipocytes are transitional adipocytes that in response to various stimuli can turn from white to brown and could be protective against the obesity, enhancing energy expenditure. The conversion of white in beige adipose tissue is a potential new therapeutic target for obesity. Cannabinoid receptors (CB) regulate thermogenesis, food intake and inflammation. CB1 ablation or inhibition helps reducing body weight and food intake. Stimulation of CB2 limits inflammation and promotes anti-obesity effects by reducing food intake and weight gain. Its genetic ablation results in adiposity development. CB receptors are also responsible for transforming white adipose tissue towards beige or brown adipocytes, therefore their modulation can be considered potential anti-obesity target. CB1 principal localization in central nervous system represents an important limit. Stimulation of CB2, principally localized on peripheral cells instead, should facilitate the anti-obesity effects without exerting remarkable psychotropic activity.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Francesca Punzo
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Giuseppina Rosaria Umano
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Maura Argenziano
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| |
Collapse
|
22
|
Lahesmaa M, Eriksson O, Gnad T, Oikonen V, Bucci M, Hirvonen J, Koskensalo K, Teuho J, Niemi T, Taittonen M, Lahdenpohja S, U Din M, Haaparanta-Solin M, Pfeifer A, Virtanen KA, Nuutila P. Cannabinoid Type 1 Receptors Are Upregulated During Acute Activation of Brown Adipose Tissue. Diabetes 2018; 67:1226-1236. [PMID: 29650773 DOI: 10.2337/db17-1366] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/02/2018] [Indexed: 11/13/2022]
Abstract
Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans. Obesity is associated with upregulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and to decrease cardiometabolic risk factors. These effects may be mediated partly via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents. To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography radioligand [18F]FMPEP-d2 and measured BAT activation in parallel with the glucose analog [18F]fluorodeoxyglucose. Activation by cold exposure markedly increased CB1R density and glucose uptake in the BAT of lean men. Similarly, β3-receptor agonism increased CB1R density in the BAT of rats. In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes. Our results highlight that CB1Rs are significant for human BAT activity, and the CB1Rs provide a novel therapeutic target for BAT activation in humans.
Collapse
Affiliation(s)
- Minna Lahesmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Olof Eriksson
- Turku PET Centre, Åbo Akademi, Turku, Finland
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Marco Bucci
- Turku PET Centre, University of Turku, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Kalle Koskensalo
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Markku Taittonen
- Department of Anesthesiology, Turku University Hospital, Turku, Finland
| | | | - Mueez U Din
- Turku PET Centre, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
van Eenige R, van der Stelt M, Rensen PCN, Kooijman S. Regulation of Adipose Tissue Metabolism by the Endocannabinoid System. Trends Endocrinol Metab 2018; 29:326-337. [PMID: 29588112 DOI: 10.1016/j.tem.2018.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
White adipose tissue (WAT) stores excess energy as triglycerides, and brown adipose tissue (BAT) is specialized in dissipating energy as heat. The endocannabinoid system (ECS) is involved in a broad range of physiological processes and is increasingly recognized as a key player in adipose tissue metabolism. High ECS tonus in the fed state is associated with a disadvantageous metabolic phenotype, and this has led to a search for pharmacological strategies to inhibit the ECS. In this review we present recent developments that cast light on the regulation of adipose tissue metabolism by the ECS, and we discuss novel treatment options including the modulation of endocannabinoid synthesis and breakdown enzymes.
Collapse
Affiliation(s)
- Robin van Eenige
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Mastinu A, Premoli M, Ferrari-Toninelli G, Tambaro S, Maccarinelli G, Memo M, Bonini SA. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig 2018; 36:/j/hmbci.ahead-of-print/hmbci-2018-0013/hmbci-2018-0013.xml. [PMID: 29601300 DOI: 10.1515/hmbci-2018-0013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 12/26/2022]
Abstract
The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena. In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving. Moreover, cannabinoid agonists are able to reduce inflammatory response. In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made. Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.
Collapse
Affiliation(s)
- Andrea Mastinu
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy.,Istituto Clinico Città di Brescia, Brescia, Italy
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Sloop KW, Emmerson PJ, Statnick MA, Willard FS. The current state of GPCR-based drug discovery to treat metabolic disease. Br J Pharmacol 2018; 175:4060-4071. [PMID: 29394497 DOI: 10.1111/bph.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Paul J Emmerson
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Michael A Statnick
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Francis S Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
26
|
Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today 2018; 23:592-604. [PMID: 29331500 DOI: 10.1016/j.drudis.2018.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.
Collapse
|
27
|
Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring. Br J Nutr 2017; 118:788-803. [PMID: 29110748 DOI: 10.1017/s0007114517002884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.
Collapse
|
28
|
Lazzari P, Serra V, Marcello S, Pira M, Mastinu A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur Neuropsychopharmacol 2017; 27:667-678. [PMID: 28377074 DOI: 10.1016/j.euroneuro.2017.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Weight gain is an important side effect of most atypical antipsychotic drugs such as olanzapine. Moreover, although many animal models with metabolic side effects have been well defined, the interaction with other pathways has to be considered. The endocannabinoid system and the CB1 receptor (CB1R) are among the most promising central and peripheral targets involved in weight and energy balance. In this study we developed a rat model based 15-days treatment with olanzapine that shows weight gain and an alteration of the blood parameters involved in the regulation of energy balance and glucose metabolism. Consequently, we analysed whether, and by which mechanism, a co-treatment with the novel CB1R neutral antagonist NESS06SM, could attenuate the adverse metabolic effects of olanzapine compared to the reference CB1R inverse agonist rimonabant. Our results showed alterations of the cannabinoid markers in the nucleus accumbens and of orexigenic/anorexigenic markers in the hypothalamus of female rats treated with olanzapine. These molecular modifications could explain the excessive food intake and the resulting weight gain. Moreover, we confirmed that a co-treatment with CB1R antagonist/inverse agonist compounds decreased food intake and weight increment and restored all blood parameters, without altering the positive effects of olanzapine on behaviour. Furthermore, rimonabant and NESS06SM restored the metabolic enzymes in the liver and fat tissue altered by olanzapine. Therefore, CB1 receptor antagonist/inverse agonist compounds could be good candidate agents for the treatment of weight gain induced by olanzapine.
Collapse
Affiliation(s)
- P Lazzari
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - V Serra
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - S Marcello
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - M Pira
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy.
| |
Collapse
|
29
|
Abstract
Cannabis sativa has long been used for medicinal purposes. To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids. Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain. More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection. The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear. In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects. This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.
Collapse
Affiliation(s)
- Yan Lu
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Hope D Anderson
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.,c Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
30
|
Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes Metab 2016; 18:558-70. [PMID: 26936802 DOI: 10.1111/dom.12657] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 02/27/2016] [Indexed: 12/19/2022]
Abstract
Pharmacotherapy directed toward reducing body weight may provide benefits for both curbing obesity and lowering the risk of obesity-associated comorbidities; however, many weight loss medications have been withdrawn from the market because of serious adverse effects. Examples include pulmonary hypertension (aminorex), cardiovascular toxicity, e.g. flenfluramine-induced valvopathy, stroke [phenylpropanolamine (PPA)], excess non-fatal cardiovascular events (sibutramine), and neuro-psychiatric issues (rimonabant; approved in Europe, but not in the USA). This negative experience has helped mould the current drug development and approval process for new anti-obesity drugs. Differences between the US Food and Drug Administration (FDA) and the European Medicines Agency, however, in perceptions of risk-benefit considerations for individual drugs have resulted in discrepancies in approval and/or withdrawal of weight-reducing medications. Thus, two drugs recently approved by the FDA, i.e. lorcaserin and phentermine + topiramate extended release, are not available in Europe. In contrast, naltrexone sustained release (SR)/bupropion SR received FDA approval, and liraglutide 3.0 mg was recently approved in both the USA and Europe. Regulatory strategies adopted by the FDA to manage the potential for uncommon but potentially serious post-marketing toxicity include: (i) risk evaluation and mitigation strategy programmes; (ii) stipulating post-marketing safety trials; (iii) considering responder rates and limiting cumulative exposure by discontinuation if weight loss is not attained within a reasonable timeframe; and (iv) requiring large cardiovascular outcome trials before or after approval. We chronicle the adverse effects of anti-obesity pharmacotherapy and consider how the history of high-profile toxicity issues has shaped the current regulatory landscape for new and future weight-reducing drugs.
Collapse
Affiliation(s)
- A J Krentz
- Profil Institute for Clinical Research, Chula Vista, CA, USA
| | - K Fujioka
- Center for Weight Management, Department of Diabetes and Endocrinology, Scripps Clinic Del Mar, San Diego, CA, USA
| | - M Hompesch
- Profil Institute for Clinical Research, Chula Vista, CA, USA
| |
Collapse
|