1
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
2
|
Dalle S. Targeting Protein Kinases to Protect Beta-Cell Function and Survival in Diabetes. Int J Mol Sci 2024; 25:6425. [PMID: 38928130 PMCID: PMC11203834 DOI: 10.3390/ijms25126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of diabetes is increasing worldwide. Massive death of pancreatic beta-cells causes type 1 diabetes. Progressive loss of beta-cell function and mass characterizes type 2 diabetes. To date, none of the available antidiabetic drugs promotes the maintenance of a functional mass of endogenous beta-cells, revealing an unmet medical need. Dysfunction and apoptotic death of beta-cells occur, in particular, through the activation of intracellular protein kinases. In recent years, protein kinases have become highly studied targets of the pharmaceutical industry for drug development. A number of drugs that inhibit protein kinases have been approved for the treatment of cancers. The question of whether safe drugs that inhibit protein kinase activity can be developed and used to protect the function and survival of beta-cells in diabetes is still unresolved. This review presents arguments suggesting that several protein kinases in beta-cells may represent targets of interest for the development of drugs to treat diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| |
Collapse
|
3
|
Syed F, Ballew O, Lee CC, Rana J, Krishnan P, Castela A, Weaver SA, Chalasani NS, Thomaidou SF, Demine S, Chang G, Coomans de Brachène A, Alvelos MI, Marselli L, Orr K, Felton JL, Liu J, Marchetti P, Zaldumbide A, Scheuner D, Eizirik DL, Evans-Molina C. Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585925. [PMID: 38766166 PMCID: PMC11100605 DOI: 10.1101/2024.03.20.585925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human β cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for β cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.
Collapse
Affiliation(s)
- Farooq Syed
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olivia Ballew
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Preethi Krishnan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Staci A. Weaver
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Sofia F. Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Kara Orr
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jamie L. Felton
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | | | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
4
|
Coomans de Brachène A, Alvelos MI, Szymczak F, Zimath PL, Castela A, Marmontel de Souza B, Roca Rivada A, Marín-Cañas S, Yi X, Op de Beeck A, Morgan NG, Sonntag S, Jawurek S, Title AC, Yesildag B, Pattou F, Kerr-Conte J, Montanya E, Nacher M, Marselli L, Marchetti P, Richardson SJ, Eizirik DL. Interferons are key cytokines acting on pancreatic islets in type 1 diabetes. Diabetologia 2024; 67:908-927. [PMID: 38409439 DOI: 10.1007/s00125-024-06106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
AIMS/HYPOTHESIS The proinflammatory cytokines IFN-α, IFN-γ, IL-1β and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1β and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.
Collapse
Affiliation(s)
| | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Priscila L Zimath
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Arturo Roca Rivada
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sebastian Sonntag
- InSphero AG, Schlieren, Switzerland
- University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | | | | | | | - François Pattou
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Julie Kerr-Conte
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Eduard Montanya
- Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and University of Barcelona, Barcelona, Spain
| | - Montserrat Nacher
- Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and University of Barcelona, Barcelona, Spain
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
5
|
Dos Santos RS, Guzman-Llorens D, Perez-Serna AA, Nadal A, Marroqui L. Deucravacitinib, a tyrosine kinase 2 pseudokinase inhibitor, protects human EndoC-βH1 β-cells against proinflammatory insults. Front Immunol 2023; 14:1263926. [PMID: 37854597 PMCID: PMC10579912 DOI: 10.3389/fimmu.2023.1263926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Type 1 diabetes is characterized by pancreatic islet inflammation and autoimmune-driven pancreatic β-cell destruction. Interferon-α (IFNα) is a key player in early human type 1 diabetes pathogenesis. IFNα activates the tyrosine kinase 2 (TYK2)-signal transducer and activator of transcription (STAT) pathway, leading to inflammation, HLA class I overexpression, endoplasmic reticulum (ER) stress, and β-cell apoptosis (in synergy with IL-1β). As TYK2 inhibition has raised as a potential therapeutic target for the prevention or treatment of type 1 diabetes, we investigated whether the selective TYK2 inhibitor deucravacitinib could protect β-cells from the effects of IFNα and other proinflammatory cytokines (i.e., IFNγ and IL-1β). Methods All experiments were performed in the human EndoC-βH1 β-cell line. HLA class I expression, inflammation, and ER stress were evaluated by real-time PCR, immunoblotting, and/or immunofluorescence. Apoptosis was assessed by the DNA-binding dyes Hoechst 33342 and propidium iodide or caspase 3/7 activity. The promoter activity was assessed by luciferase assay. Results Deucravacitinib prevented IFNα effects, such as STAT1 and STAT2 activation and MHC class I hyperexpression, in a dose-dependent manner without affecting β-cell survival and function. A comparison between deucravacitinib and two Janus kinase inhibitors, ruxolitinib and baricitinib, showed that deucravacitinib blocked IFNα- but not IFNγ-induced signaling pathway. Deucravacitinib protected β-cells from the effects of two different combinations of cytokines: IFNα + IL-1β and IFNγ + IL-1β. Moreover, this TYK2 inhibitor could partially reduce apoptosis and inflammation in cells pre-treated with IFNα + IL-1β or IFNγ + IL-1β. Discussion Our findings suggest that, by protecting β-cells against the deleterious effects of proinflammatory cytokines without affecting β-cell function and survival, deucravacitinib could be repurposed for the prevention or treatment of early type 1 diabetes.
Collapse
Affiliation(s)
- Reinaldo S. Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Guzman-Llorens
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Atenea A. Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Cantley J, Eizirik DL, Latres E, Dayan CM. Islet cells in human type 1 diabetes: from recent advances to novel therapies - a symposium-based roadmap for future research. J Endocrinol 2023; 259:e230082. [PMID: 37493471 PMCID: PMC10502961 DOI: 10.1530/joe-23-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
There is a growing understanding that the early phases of type 1 diabetes (T1D) are characterised by a deleterious dialogue between the pancreatic beta cells and the immune system. This, combined with the urgent need to better translate this growing knowledge into novel therapies, provided the background for the JDRF-DiabetesUK-INNODIA-nPOD symposium entitled 'Islet cells in human T1D: from recent advances to novel therapies', which took place in Stockholm, Sweden, in September 2022. We provide in this article an overview of the main themes addressed in the symposium, pointing to both promising conclusions and key unmet needs that remain to be addressed in order to achieve better approaches to prevent or reverse T1D.
Collapse
Affiliation(s)
- J Cantley
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
| | - D L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
| | - E Latres
- JDRF International, New York, NY, USA
| | - C M Dayan
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| | - the JDRF-DiabetesUK-INNODIA-nPOD Stockholm Symposium 2022
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
- JDRF International, New York, NY, USA
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
7
|
Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol (Lausanne) 2023; 14:1076343. [PMID: 37008937 PMCID: PMC10050720 DOI: 10.3389/fendo.2023.1076343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
More than 500 million adults suffer from diabetes worldwide, and this number is constantly increasing. Diabetes causes 5 million deaths per year and huge healthcare costs per year. β-cell death is the major cause of type 1 diabetes. β-cell secretory dysfunction plays a key role in the development of type 2 diabetes. A loss of β-cell mass due to apoptotic death has also been proposed as critical for the pathogenesis of type 2 diabetes. Death of β-cells is caused by multiple factors including pro-inflammatory cytokines, chronic hyperglycemia (glucotoxicity), certain fatty acids at high concentrations (lipotoxicity), reactive oxygen species, endoplasmic reticulum stress, and islet amyloid deposits. Unfortunately, none of the currently available antidiabetic drugs favor the maintenance of endogenous β-cell functional mass, indicating an unmet medical need. Here, we comprehensively review over the last ten years the investigation and identification of molecules of pharmacological interest for protecting β-cells against dysfunction and apoptotic death which could pave the way for the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, France
| | - Eric Renard
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
- Laboratoire de Thérapie Cellulaire du Diabète, Centre Hospitalier Universitaire, Montpellier, France
- Département d’Endocrinologie, Diabètologie, Centre Hospitalier Universitaire, Montpellier, France
| |
Collapse
|
8
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
9
|
The type 1 diabetes gene TYK2 regulates β-cell development and its responses to interferon-α. Nat Commun 2022; 13:6363. [PMID: 36289205 PMCID: PMC9606380 DOI: 10.1038/s41467-022-34069-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic β-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in β-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in β-cell development and support TYK2 inhibition in adult β-cells as a potent therapeutic target to halt T1D progression.
Collapse
|
10
|
Szymczak F, Alvelos MI, Marín-Cañas S, Castela Â, Demine S, Colli ML, Op de Beeck A, Thomaidou S, Marselli L, Zaldumbide A, Marchetti P, Eizirik DL. Transcription and splicing regulation by NLRC5 shape the interferon response in human pancreatic β cells. SCIENCE ADVANCES 2022; 8:eabn5732. [PMID: 36103539 PMCID: PMC9473574 DOI: 10.1126/sciadv.abn5732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
IFNα is a key regulator of the dialogue between pancreatic β cells and the immune system in early type 1 diabetes (T1D). IFNα up-regulates HLA class I expression in human β cells, fostering autoantigen presentation to the immune system. We observed by bulk and single-cell RNA sequencing that exposure of human induced pluripotent-derived islet-like cells to IFNα induces expression of HLA class I and of other genes involved in antigen presentation, including the transcriptional activator NLRC5. We next evaluated the global role of NLRC5 in human insulin-producing EndoC-βH1 and human islet cells by RNA sequencing and targeted gene/protein determination. NLRC5 regulates expression of HLA class I, antigen presentation-related genes, and chemokines. NLRC5 also mediates the effects of IFNα on alternative splicing, a generator of β cell neoantigens, suggesting that it is a central player of the effects of IFNα on β cells that contribute to trigger and amplify autoimmunity in T1D.
Collapse
Affiliation(s)
- Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Stéphane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Basile G, Qadir MMF, Mauvais-Jarvis F, Vetere A, Shoba V, Modell AE, Pastori RL, Russ HA, Wagner BK, Dominguez-Bendala J. Emerging diabetes therapies: Bringing back the β-cells. Mol Metab 2022; 60:101477. [PMID: 35331962 PMCID: PMC8987999 DOI: 10.1016/j.molmet.2022.101477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.
Collapse
Affiliation(s)
- G Basile
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - M M F Qadir
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - F Mauvais-Jarvis
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - A Vetere
- Broad Institute, Cambridge, MA, USA
| | - V Shoba
- Broad Institute, Cambridge, MA, USA
| | | | - R L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H A Russ
- Barbara Davis Center for Diabetes, Colorado University Anschutz Medical Campus, Aurora, CO, USA.
| | | | - J Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
12
|
Wagner BK. Small-molecule discovery in the pancreatic beta cell. Curr Opin Chem Biol 2022; 68:102150. [PMID: 35487100 DOI: 10.1016/j.cbpa.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
The pancreatic beta cell is the only cell type in the body responsible for insulin secretion, and thus plays a unique role in the control of glucose homeostasis. The loss of beta-cell mass and function plays an important role in both type 1 and type 2 diabetes. Thus, using chemical biology to identify small molecules targeting the beta cell could be an important component to developing future therapeutics for diabetes. This strategy provides an attractive path toward increasing beta-cell numbers in vivo. A regenerative strategy involves enhancing proliferation, differentiation, or neogenesis. On the other hand, protecting beta cells from cell death, or improving maturity and function, could preserve beta-cell mass. Here, we discuss the current state of chemical matter available to study beta-cell regeneration, and how they were discovered.
Collapse
Affiliation(s)
- Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Márquez A, Martín J. Genetic overlap between type 1 diabetes and other autoimmune diseases. Semin Immunopathol 2021; 44:81-97. [PMID: 34595540 DOI: 10.1007/s00281-021-00885-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a chronic disease caused by the destruction of pancreatic β cells, which is driven by autoreactive T lymphocytes. It has been described that a high proportion of T1D patients develop other autoimmune diseases (AIDs), such as autoimmune thyroid disease, celiac disease, or vitiligo, which suggests the existence of common etiological factors among these disorders. In this regard, genetic studies have identified a high number of loci consistently associated with T1D that also represent established genetic risk factors for other AIDs. In addition, studies focused on identifying the shared genetic component in autoimmunity have described several common susceptibility loci with a potential role in T1D. Elucidation of this genetic overlap has been useful in identifying key molecular pathways with a pathogenic role in multiple disorders. In this review, we summarize recent advances in understanding the shared genetic component between T1D and other AIDs and discuss how the identification of common pathogenic mechanisms can help in the development of new therapeutic approaches as well as in improving the use of existing drugs.
Collapse
Affiliation(s)
- Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra. Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain.,Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra. Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain.
| |
Collapse
|
14
|
Eizirik DL, Szymczak F, Alvelos MI, Martin F. From Pancreatic β-Cell Gene Networks to Novel Therapies for Type 1 Diabetes. Diabetes 2021; 70:1915-1925. [PMID: 34417266 PMCID: PMC8576417 DOI: 10.2337/dbi20-0046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Completion of the Human Genome Project enabled a novel systems- and network-level understanding of biology, but this remains to be applied for understanding the pathogenesis of type 1 diabetes (T1D). We propose that defining the key gene regulatory networks that drive β-cell dysfunction and death in T1D might enable the design of therapies that target the core disease mechanism, namely, the progressive loss of pancreatic β-cells. Indeed, many successful drugs do not directly target individual disease genes but, rather, modulate the consequences of defective steps, targeting proteins located one or two steps downstream. If we transpose this to the T1D situation, it makes sense to target the pathways that modulate the β-cell responses to the immune assault-in relation to signals that may stimulate the immune response (e.g., HLA class I and chemokine overexpression and/or neoantigen expression) or inhibit the invading immune cells (e.g., PDL1 and HLA-E expression)-instead of targeting only the immune system, as it is usually proposed. Here we discuss the importance of a focus on β-cells in T1D, lessons learned from other autoimmune diseases, the "alternative splicing connection," data mining, and drug repurposing to protect β-cells in T1D and then some of the initial candidates under testing for β-cell protection.
Collapse
Affiliation(s)
- Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
15
|
Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science 2021; 373:510-516. [PMID: 34326232 DOI: 10.1126/science.abh1654] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which T cells attack and destroy the insulin-producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by compromising immune homeostasis. Although the discovery and use of insulin have transformed T1D treatment, insulin therapy does not change the underlying disease or fully prevent complications. Over the past two decades, research has identified multiple immune cell types and soluble factors that destroy insulin-producing β cells. These insights into disease pathogenesis have enabled the development of therapies to prevent and modify T1D. In this review, we highlight the key events that initiate and sustain pancreatic islet inflammation in T1D, the current state of the immunological therapies, and their advantages for the treatment of T1D.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Kevan C Herold
- Department of Immunobiology and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Hromadová D, Elewaut D, Inman RD, Strobl B, Gracey E. From Science to Success? Targeting Tyrosine Kinase 2 in Spondyloarthritis and Related Chronic Inflammatory Diseases. Front Genet 2021; 12:685280. [PMID: 34290741 PMCID: PMC8287328 DOI: 10.3389/fgene.2021.685280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Spondyloarthritis (SpA) is a family of inflammatory arthritic diseases, which includes the prototypes of psoriatic arthritis and ankylosing spondylitis. SpA is commonly associated with systemic inflammatory diseases, such as psoriasis and inflammatory bowel disease. Immunological studies, murine models and the genetics of SpA all indicate a pathogenic role for the IL-23/IL-17 axis. Therapeutics targeting the IL-23/IL-17 pathway are successful at providing symptomatic relief, but may not provide complete protection against progression of arthritis. Thus there is still tremendous interest in the discovery of novel therapeutic targets for SpA. Tyrosine kinase 2 (TYK2) is a member of the Janus kinases, which mediate intracellular signaling of cytokines via signal transducer and activator of transcription (STAT) activation. TYK2 plays a crucial role in mediating IL-23 receptor signaling and STAT3 activation. A plethora of natural mutations in and around TYK2 have provided a wealth of data to associate this kinase with autoimmune/autoinflammatory diseases in humans. Induced and natural mutations in murine Tyk2 largely support human data; however, key inter-species differences exist, which means extrapolation of data from murine models to humans needs to be done with caution. Despite these reservations, novel selective TYK2 inhibitors are now proving successful in advanced clinical trials of inflammatory diseases. In this review, we will discuss TYK2 from basic biology to therapeutic targeting, with an emphasis on studies in SpA. Seminal studies uncovering the basic science of TYK2 have provided sound foundations for targeting it in SpA and related inflammatory diseases. TYK2 inhibitors may well be the next blockbuster therapeutic for SpA.
Collapse
Affiliation(s)
- Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Robert D. Inman
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
17
|
Alvelos MI, Szymczak F, Castela Â, Marín-Cañas S, de Souza BM, Gkantounas I, Colli M, Fantuzzi F, Cosentino C, Igoillo-Esteve M, Marselli L, Marchetti P, Cnop M, Eizirik DL. A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis. Islets 2021; 13:51-65. [PMID: 34241569 PMCID: PMC8280887 DOI: 10.1080/19382014.2021.1948282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Exposure of human pancreatic beta cells to pro-inflammatory cytokines or metabolic stressors is used to model events related to type 1 and type 2 diabetes, respectively. Quantitative real-time PCR is commonly used to quantify changes in gene expression. The selection of the most adequate reference gene(s) for gene expression normalization is an important pre-requisite to obtain accurate and reliable results. There are no universally applicable reference genes, and the human beta cell expression of commonly used reference genes can be altered by different stressors. Here we aimed to identify the most stably expressed genes in human beta cells to normalize quantitative real-time PCR gene expression.We used comprehensive RNA-sequencing data from the human pancreatic beta cell line EndoC-βH1, human islets exposed to cytokines or the free fatty acid palmitate in order to identify the most stably expressed genes. Genes were filtered based on their level of significance (adjusted P-value >0.05), fold-change (|fold-change| <1.5) and a coefficient of variation <10%. Candidate reference genes were validated by quantitative real-time PCR in independent samples.We identified a total of 264 genes stably expressed in EndoC-βH1 cells and human islets following cytokines - or palmitate-induced stress, displaying a low coefficient of variation. Validation by quantitative real-time PCR of the top five genes ARF1, CWC15, RAB7A, SIAH1 and VAPA corroborated their expression stability under most of the tested conditions. Further validation in independent samples indicated that the geometric mean of ACTB and VAPA expression can be used as a reliable normalizing factor in human beta cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- CONTACT Maria Inês Alvelos ULB Center for Diabetic Research, Medical Faculty, Université Libre De Bruxelles (ULB), Route De Lennik, 808 – CP618, B-1070 – Brussels – Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Bianca Marmontel de Souza
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Ioannis Gkantounas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Maikel Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Cristina Cosentino
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Welbio, Medical Faculty, Université Libre De Bruxelles, Brussels (ULB)Belgium
- Diabetes Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
18
|
Pellenz FM, Dieter C, Lemos NE, Bauer AC, Souza BMD, Crispim D. Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis. Genet Mol Biol 2021; 44:e20200425. [PMID: 33949620 PMCID: PMC8097517 DOI: 10.1590/1678-4685-gmb-2020-0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Autoimmune diseases are characterized by the loss of self-tolerance, leading to
immune-mediated tissue destruction and chronic inflammation. Tyrosine kinase 2
(TYK2) protein plays a key role in immunity and apoptosis pathways. Studies have
reported associations between single nucleotide polymorphisms (SNPs) in the
TYK2 gene and autoimmune diseases; however, results are
still inconclusive. Thus, we conducted a systematic review followed by
meta-analysis. A literature search was performed to find studies that
investigated associations between TYK2 SNPs and autoimmune
diseases (multiple sclerosis, systemic lupus erythematosus, Crohn’s disease,
ulcerative colitis, psoriasis, rheumatoid arthritis, type 1 diabetes, and
inflammatory bowel disease). Pooled odds ratios (OR) with 95 % CI were
calculated using random (REM) or fixed (FEM) effects models in the Stata 11.0
Software. Thirty-four articles were eligible for inclusion in the meta-analyses,
comprising 9 different SNPs: rs280496, rs280500, rs280523, rs280519, rs2304256,
rs12720270, rs12720356, rs34536443, and rs35018800. Meta-analysis results showed
the minor alleles of rs2304256, rs12720270, rs12720356, rs34536443, and
rs35018800 SNPs were associated with protection against autoimmune diseases.
Moreover, the A allele of the rs280519 SNP was associated with risk for systemic
lupus erythematosus. Our meta-analyses demonstrated that the rs2304256,
rs12720270, rs12720356, rs34536443, rs35018800, and rs280519 SNPs in the
TYK2 gene are associated with different autoimmune
diseases.
Collapse
Affiliation(s)
- Felipe Mateus Pellenz
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Serviço de Nefrologia, Porto Alegre, RS, Brazil
| | - Bianca Marmontel de Souza
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Shapiro MR, Thirawatananond P, Peters L, Sharp RC, Ogundare S, Posgai AL, Perry DJ, Brusko TM. De-coding genetic risk variants in type 1 diabetes. Immunol Cell Biol 2021; 99:496-508. [PMID: 33483996 PMCID: PMC8119379 DOI: 10.1111/imcb.12438] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to β-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Leeana Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Similoluwa Ogundare
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
20
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
21
|
Szymczak F, Colli ML, Mamula MJ, Evans-Molina C, Eizirik DL. Gene expression signatures of target tissues in type 1 diabetes, lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. SCIENCE ADVANCES 2021; 7:7/2/eabd7600. [PMID: 33523973 PMCID: PMC7787485 DOI: 10.1126/sciadv.abd7600] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 05/05/2023]
Abstract
Autoimmune diseases are typically studied with a focus on the immune system, and less attention is paid to responses of target tissues exposed to the immune assault. We presently evaluated, based on available RNA sequencing data, whether inflammation induces similar molecular signatures at the target tissues in type 1 diabetes, systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. We identified confluent signatures, many related to interferon signaling, indicating pathways that may be targeted for therapy, and observed a high (>80%) expression of candidate genes for the different diseases at the target tissue level. These observations suggest that future research on autoimmune diseases should focus on both the immune system and the target tissues, and on their dialog. Discovering similar disease-specific signatures may allow the identification of key pathways that could be targeted for therapy, including the repurposing of drugs already in clinical use for other diseases.
Collapse
Affiliation(s)
- F Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - M L Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - M J Mamula
- Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - C Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA
| |
Collapse
|
22
|
Affiliation(s)
- Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
- Indiana Biosciences Research Institute, Indianapolis, IN, USA.
| | - Maikel L Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
23
|
Akhbari P, Richardson SJ, Morgan NG. Type 1 Diabetes: Interferons and the Aftermath of Pancreatic Beta-Cell Enteroviral Infection. Microorganisms 2020; 8:microorganisms8091419. [PMID: 32942706 PMCID: PMC7565444 DOI: 10.3390/microorganisms8091419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) have long been implicated in the pathogenesis of type 1 diabetes (T1D), and accumulating evidence has associated virus-induced autoimmunity with the loss of pancreatic beta cells in T1D. Inflammatory cytokines including interferons (IFN) form a primary line of defence against viral infections, and their chronic elevation is a hallmark feature of many autoimmune diseases. IFNs play a key role in activating and regulating innate and adaptive immune responses, and to do so they modulate the expression of networks of genes and transcription factors known generically as IFN stimulated genes (ISGs). ISGs in turn modulate critical cellular processes ranging from cellular metabolism and growth regulation to endoplasmic reticulum (ER) stress and apoptosis. More recent studies have revealed that IFNs also modulate gene expression at an epigenetic as well as post-transcriptional and post-translational levels. As such, IFNs form a key link connecting the various genetic, environmental and immunological factors involved in the initiation and progression of T1D. Therefore, gaining an improved understanding of the mechanisms by which IFNs modulate beta cell function and survival is crucial in explaining the pathogenesis of virally-induced T1D. This should provide the means to prevent, decelerate or even reverse beta cell impairment.
Collapse
|