1
|
Ford BE, Chachra SS, Alshawi A, Oakley F, Fairclough RJ, Smith DM, Tiniakos D, Agius L. Compromised chronic efficacy of a glucokinase activator AZD1656 in mouse models for common human GCKR variants. Biochem Pharmacol 2024; 229:116499. [PMID: 39173844 DOI: 10.1016/j.bcp.2024.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Glucokinase activators (GKAs) have been developed as blood glucose lowering drugs for type 2 diabetes. Despite good short-term efficacy, several GKAs showed a decline in efficacy chronically during clinical trials. The underlying mechanisms remain incompletely understood. We tested the hypothesis that deficiency in the liver glucokinase regulatory protein (GKRP) as occurs with common human GCKR variants affects chronic GKA efficacy. We used a Gckr-P446L mouse model for the GCKR exonic rs1260326 (P446L) variant and the Gckr-del/wt mouse to model transcriptional deficiency to test for chronic efficacy of the GKA, AZD1656 in GKRP-deficient states. In the Gckr-P446L mouse, the blood glucose lowering efficacy of AZD1656 (3 mg/kg body wt) after 2 weeks was independent of genotype. However after 19 weeks, efficacy was maintained in wild-type but declined in the LL genotype, in conjunction with raised hepatic glucokinase activity and without raised liver lipids. Sustained blood glucose lowering efficacy in wild-type mice was associated with qualitatively similar but more modest changes in the liver transcriptome compared with the P446L genotype, consistent with GKA therapy representing a more modest glucokinase excess than the P446L genotype. Chronic treatment with AZD1656 in the Gckr-del/wt mouse was associated with raised liver triglyceride and hepatocyte microvesicular steatosis. The results show that in mouse models of liver GKRP deficiency in conjunction with functional liver glucokinase excess as occurs in association with common human GCKR variants, GKRP-deficiency predisposes to declining efficacy of the GKA in lowering blood glucose and to GKA induced elevation in liver lipids.
Collapse
Affiliation(s)
- Brian E Ford
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Shruti S Chachra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ahmed Alshawi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Medical Laboratory Technique Department, Kufa Institute, Al-Furat Al-Awsat Technical University, Kufa, Iraq
| | - Fiona Oakley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rebecca J Fairclough
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David M Smith
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Dept of Pathology, Aretaieion Hospital Medical School, National and Kapodistrian University of Athens, Greece
| | - Loranne Agius
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
2
|
Wang Y, Su X, Zhang W, Zhou Y, Zhou X, Yang W, Li H, Ma J. Effects of a Novel Glucokinase Activator, Dorzagliatin, on Glycemic Control and Glucose Fluctuation in Drug-Naïve Patients with Type 2 Diabetes Mellitus. Int J Endocrinol 2023; 2023:4996057. [PMID: 38179187 PMCID: PMC10764651 DOI: 10.1155/2023/4996057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Aim The prevalence rate of type 2 diabetes mellitus (T2DM) has been increasing and a large proportion of patients still do not achieve adequate or sustainable glycemic control on the basis of previous hypoglycemic treatment. In this present study, we explored whether dorzagliatin, a novel glucokinase activator (GKA), could improve glycemic control and lessen glucose fluctuation in drug-naïve patients with T2DM. Methods A self-comparative observational study of 25 drug-naïve patients with T2DM (aged 18-75 years and HbA1c of 7.5%-11.0%) treated with dorzagliatin 75 mg twice daily for 52 weeks. Before and after dorzagliatin intervention, the serum levels of hemoglobin A1c (HbA1c), insulin, and C-peptide were measured repeatedly during fasting and after a mixed meal. The continuous glucose monitoring (CGM) device was also used to obtain 24-hour glucose profiles and assess the changes in glycemic variability parameters. Results After 52 weeks of treatment with dorzagliatin, a numerally greater reduction in HbA1c of 1.03% from the baseline was observed in patients with T2DM, accompanied by significant improvement in insulin resistance and insulin secretion. Moreover, the standard deviation of blood glucose (SDBG) and the mean amplitude of glycemic excursion (MAGE) derived from CGM data were significantly decreased after dorzagliatin therapy. The 24-h glucose variation profile showed that study patients had obviously lower mean glucose levels during the postprandial period from the baseline to week 52, an effect also demonstrated by the significant decrease in the incremental area under glucose concentration versus time curve for 2 h (iAUC0-2 h) after meals. Conclusions This study suggests that dorzagliatin therapy could effectively improve glycemic control and glucose fluctuation in drug-naïve patients with T2DM.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Wenli Zhang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Xiao Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Wei Yang
- Department of Pharmacy, Lai'an County People's Hospital, Chuzhou, Anhui 239200, China
| | - Huiqin Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
3
|
Xie Z, Xie T, Liu J, Zhang Q, Xiao X. Glucokinase Inactivation Ameliorates Lipid Accumulation and Exerts Favorable Effects on Lipid Metabolism in Hepatocytes. Int J Mol Sci 2023; 24:ijms24054315. [PMID: 36901746 PMCID: PMC10002408 DOI: 10.3390/ijms24054315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Glucokinase-maturity onset diabetes of the young (GCK-MODY) is a kind of rare diabetes with low incidence of vascular complications caused by GCK gene inactivation. This study aimed to investigate the effects of GCK inactivation on hepatic lipid metabolism and inflammation, providing evidence for the cardioprotective mechanism in GCK-MODY. We enrolled GCK-MODY, type 1 and 2 diabetes patients to analyze their lipid profiles, and found that GCK-MODY individuals exhibited cardioprotective lipid profile with lower triacylglycerol and elevated HDL-c. To further explore the effects of GCK inactivation on hepatic lipid metabolism, GCK knockdown HepG2 and AML-12 cell models were established, and in vitro studies showed that GCK knockdown alleviated lipid accumulation and decreased the expression of inflammation-related genes under fatty acid treatment. Lipidomic analysis indicated that the partial inhibition of GCK altered the levels of several lipid species with decreased saturated fatty acids and glycerolipids including triacylglycerol and diacylglycerol, and increased phosphatidylcholine in HepG2 cells. The hepatic lipid metabolism altered by GCK inactivation was regulated by the enzymes involved in de novo lipogenesis, lipolysis, fatty acid β-oxidation and the Kennedy pathway. Finally, we concluded that partial inactivation of GCK exhibited beneficial effects in hepatic lipid metabolism and inflammation, which potentially underlies the protective lipid profile and low cardiovascular risks in GCK-MODY patients.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Xie
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jieying Liu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Correspondence: or ; Tel./Fax: +86-10-6915-5073
| |
Collapse
|
4
|
Ashcroft FM, Lloyd M, Haythorne EA. Glucokinase activity in diabetes: too much of a good thing? Trends Endocrinol Metab 2023; 34:119-130. [PMID: 36586779 DOI: 10.1016/j.tem.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is a global health problem characterised by chronic hyperglycaemia due to inadequate insulin secretion. Because glucose must be metabolised to stimulate insulin release it was initially argued that drugs that stimulate glucokinase (the first enzyme in glucose metabolism) would enhance insulin secretion in diabetes. However, in the long term, glucokinase activators have been largely disappointing. Recent studies show it is hyperactivation of glucose metabolism, not glucose itself, that underlies the progressive decline in beta-cell function in diabetes. This perspective discusses if glucokinase activators exacerbate this decline (by promoting glucose metabolism) and, counterintuitively, if glucokinase inhibitors might be a better therapeutic strategy for preserving beta-cell function in T2D.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK.
| | - Matthew Lloyd
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
5
|
Nakamura A. Glucokinase as a therapeutic target based on findings from the analysis of mouse models. Endocr J 2022; 69:479-485. [PMID: 35418527 DOI: 10.1507/endocrj.ej21-0742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
I investigated mouse models to elucidate the pathophysiology and to establish a new treatment strategy for type 2 diabetes, with a particular focus on glucokinase. The decrease in pancreatic beta-cell function and mass are important factors in the pathophysiology of type 2 diabetes. My group have shown that glucokinase plays an important role in high-fat diet-induced and high-starch diet-induced beta-cell expansion. The findings indicated that the mechanism of short-term high-fat diet-induced beta-cell proliferation involved a glucokinase-independent pathway, suggesting that there are different pathways and mechanisms in the proliferation of pancreatic beta-cells during short-term versus long-term high-fat diets. Because enhancement of glucose signals via glucokinase is important for beta-cell proliferation, it was thought that beta-cell mass would be increased and insulin secretion would be maintained by glucokinase activators. However, sub-chronic administration of a glucokinase activator in db/db mice produced an unsustained hypoglycemic effect and promoted hepatic fat accumulation without changes in beta-cell function and mass. In contrast, my group have shown that inactivating glucokinase in beta-cells prevented beta-cell failure and led to an improvement in glucose tolerance in db/db mice. Regulation of glucokinase activity has an influence on the pathophysiology of type 2 diabetes and can be one of the therapeutic targets.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Nakamura A. Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Pancreatic β-Cell Mass and Function. Int J Mol Sci 2022; 23:ijms23095104. [PMID: 35563495 PMCID: PMC9105075 DOI: 10.3390/ijms23095104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023] Open
Abstract
Sodium-glucose co-transporter-2 inhibitors (SGLT2is) not only have antihyperglycemic effects and are associated with a low risk of hypoglycemia but also have protective effects in organs, including the heart and kidneys. The pathophysiology of diabetes involves chronic hyperglycemia, which causes excessive demands on pancreatic β-cells, ultimately leading to decreases in β-cell mass and function. Because SGLT2is ameliorate hyperglycemia without acting directly on β-cells, they are thought to prevent β-cell failure by reducing glucose overload in this cell type. Several studies have shown that treatment with an SGLT2i increases β-cell proliferation and/or reduces β-cell apoptosis, resulting in the preservation of β-cell mass in animal models of diabetes. In addition, many clinical trials have shown that that SGLT2is improve β-cell function in individuals with type 2 diabetes. In this review, the preclinical and clinical data regarding the effects of SGLT2is on pancreatic β-cell mass and function are summarized and the protective effect of SGLT2is in β-cells is discussed.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|