1
|
Ige S, Alaoui K, Al-Dibouni A, Dallas ML, Cagampang FR, Sellayah D, Chantler PD, Boateng SY. Leptin-dependent differential remodeling of visceral and pericardial adipose tissue following chronic exercise and psychosocial stress. FASEB J 2024; 38:e23325. [PMID: 38117486 DOI: 10.1096/fj.202300269rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Obesity is driven by an imbalance between caloric intake and energy expenditure, causing excessive storage of triglycerides in adipose tissue at different sites around the body. Increased visceral adipose tissue (VAT) is associated with diabetes, while pericardial adipose tissue (PAT) is associated with cardiac pathology. Adipose tissue can expand either through cellular hypertrophy or hyperplasia, with the former correlating with decreased metabolic health in obesity. The aim of this study was to determine how VAT and PAT remodel in response to obesity, stress, and exercise. Here we have used the male obese Zucker rats, which carries two recessive fa alleles that result in the development of hyperphagia with reduced energy expenditure, resulting in morbid obesity and leptin resistance. At 9 weeks of age, a group of lean (Fa/Fa or Fa/fa) Zucker rats (LZR) and obese (fa/fa) Zucker rats (OZR) were treated with unpredictable chronic mild stress or exercise for 8 weeks. To determine the phenotype for PAT and VAT, tissue cellularity and gene expression were analyzed. Finally, leptin signaling was investigated further using cultured 3T3-derived adipocytes. Tissue cellularity was determined following hematoxylin and eosin (H&E) staining, while qPCR was used to examine gene expression. PAT adipocytes were significantly smaller than those from VAT and had a more beige-like appearance in both LZR and OZR. In the OZR group, VAT adipocyte cell size increased significantly compared with LZR, while PAT showed no difference. Exercise and stress resulted in a significant reduction in VAT cellularity in OZR, while PAT showed no change. This suggests that PAT cellularity does not remodel significantly compared with VAT. These data indicate that the extracellular matrix of PAT is able to remodel more readily than in VAT. In the LZR group, exercise increased insulin receptor substrate 1 (IRS1) in PAT but was decreased in the OZR group. In VAT, exercise decreased IRS1 in LZR, while increasing it in OZR. This suggests that in obesity, VAT is more responsive to exercise and subsequently becomes less insulin resistant compared with PAT. Stress increased PPAR-γ expression in the VAT but decreased it in the PAT in the OZR group. This suggests that in obesity, stress increases adipogenesis more significantly in the VAT compared with PAT. To understand the role of leptin signaling in adipose tissue remodeling mechanistically, JAK2 autophosphorylation was inhibited using 5 μM 1,2,3,4,5,6-hexabromocyclohexane (Hex) in cultured 3T3-derived adipocytes. Palmitate treatment was used to induce cellular hypertrophy. Hex blocked adipocyte hypertrophy in response to palmitate treatment but not the increase in lipid droplet size. These data suggest that leptin signaling is necessary for adipocyte cell remodeling, and its absence induces whitening. Taken together, our data suggest that leptin signaling is necessary for adipocyte remodeling in response to obesity, exercise, and psychosocial stress.
Collapse
Affiliation(s)
- Susan Ige
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Kaouthar Alaoui
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Alaa Al-Dibouni
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Mark L Dallas
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Felino R Cagampang
- Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Dyan Sellayah
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Paul D Chantler
- School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
2
|
Richardson LA, Basu A, Chien LC, Alman AC, Snell-Bergeon JK. Longitudinal Associations of Healthy Dietary Pattern Scores with Coronary Artery Calcification and Pericardial Adiposity in United States Adults with and without Type 1 Diabetes. J Nutr 2023; 153:2085-2093. [PMID: 37187353 PMCID: PMC10375506 DOI: 10.1016/j.tjnut.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Pericardial adipose tissue volume (PAT) and coronary artery calcification (CAC) are prognostic indicators for future cardiovascular events; however, no studies have assessed the long-term associations of adherence to dietary patterns (DPs) with PAT and CAC in adults with and without type 1 diabetes (T1D). OBJECTIVES We investigated the longitudinal associations of the Mediterranean Diet (MedDiet) and Dietary Approaches to Stop Hypertension (DASH) diet with PAT and CAC progression in adults with and without T1D. METHODS The Coronary Artery Calcification in Type 1 Diabetes (CACTI) study is a population-based, prospective study of 652 T1D and 764 nondiabetic mellitus (nonDM) (19-56 y) participants that began in 2000-2002 with follow-up visits in 2003-2004 and 2006-2007. At each visit, food frequency questionnaires were collected and used to develop adherence scores for the MedDiet and DASH diets. PAT and CAC were measured at each visit using electron beam computed tomography. CAC progression was defined as a ≥2.5 mm square root-transformed volume. Mixed effect models were used to conduct statistical analyses. RESULTS Combined models found a significant-0.09 cm3 (95% CI: -0.14, -0.03; P = 0.0027) inverse association in PAT for every 1-point increase in the MedDiet score and a significant-0.26 cm3 (95% CI: -0.38, -0.14; P < 0.0001) inverse association in PAT for every 1-point increase in the DASH score. In combined models, the DPs were not significantly associated with lower odds of CAC progression; however, both DPs had significant interactions by diabetes status for CAC. Only the DASH diet was associated with lower odds of CAC progression in the nonDM group (OR: 0.96; 95% CI: 0.93, 0.99; P = 0.0224). CONCLUSIONS These data suggest that the DPs are associated with lower PAT, which may reduce future cardiovascular events. The DASH diet may be beneficial for lower odds of CAC progression in those without T1D.
Collapse
Affiliation(s)
- Leigh Ann Richardson
- Department of Epidemiology and Biostatistics, University of Nevada at Las Vegas, Las Vegas, NV, United States
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV, United States.
| | - Lung-Chang Chien
- Department of Epidemiology and Biostatistics, University of Nevada at Las Vegas, Las Vegas, NV, United States
| | - Amy C Alman
- College of Public Health, University of South Florida, Tampa, FL, United States
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| |
Collapse
|
3
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
5
|
Sheng S, Xu J, Liang Q, Hong L, Zhang L. Astragaloside IV Inhibits Bleomycin-Induced Ferroptosis in Human Umbilical Vein Endothelial Cells by Mediating LPC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6241242. [PMID: 34760046 PMCID: PMC8575634 DOI: 10.1155/2021/6241242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Ferroptosis, as an iron-dependent programmed cell death pathway, can induce a variety of cardiovascular diseases. Astragaloside IV (AS-IV), which is purified from Astragalus membranaceus, can protect endothelial function and promote vascular regeneration. However, the role played by AS-IV in ferroptosis remains unknown. In this study, the lipid metabolomics in HUVECs treated with/without bleomycin and/or AS-IV were explored using LC/MS. The most differential metabolite between groups was further identified via GO and pathway enrichment analyses. The effects of lysophosphatidylcholine (LPC), AS-IV, and FIN56 on cell viability were explored using the CCK-8 assay, their effects on cell senescence were examined by β-galactosidase staining, and their effects on ferroptosis were detected by a flow cytometric analysis of lipid ROS levels, transmission electron microscopy, and an assay for cellular iron levels. The related mechanisms were investigated by real-time PCR and Western blot assays. Our results showed that LPC, as the most differential metabolite, inhibited cell viability but promoted cell apoptosis and senescence as its concentration increased. Also, the decreased cell activity, increased iron ion and lipid ROS levels, and the enhanced cell senescence induced by LPC treatment were all significantly reversed by AS-IV but further enhanced by FIN56 treatment. The changes in mitochondrial morphology caused by the LPC treatment were significantly alleviated by the AS-IV treatment, while treatment with FIN56 reversed those phenomena. Moreover, AS-IV partially upregulated the levels of SLC7A11 and GPX4 expression which were reduced by LPC. However, those changes were prevented by FIN56 treatment. In conclusion, our data suggested that AS-IV could serve as a novel drug for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shuai Sheng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Hong
- Department of Cardiology, Long Gang Central Hospital of Shenzhen, Shenzhen, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Wang P, Luo C, Zhu D, Song Y, Cao L, Luan H, Gao L, Zheng S, Li H, Tian G. Pericardial Adipose Tissue-Derived Leptin Promotes Myocardial Apoptosis in High-Fat Diet-Induced Obese Rats Through Janus Kinase 2/Reactive Oxygen Species/Na+/K+-ATPase Signaling Pathway. J Am Heart Assoc 2021; 10:e021369. [PMID: 34482701 PMCID: PMC8649551 DOI: 10.1161/jaha.121.021369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Pathophysiologic mechanisms underlying cardiac structural and functional changes in obesity are complex and linked to adipocytokines released from pericardial adipose tissue (PAT) and cardiomyocyte apoptosis. Although leptin is involved in various pathological conditions, its role in paracrine action of pericardial adipose tissue on myocardial apoptosis remains unknown. This study was designed to investigate the role of PAT‐derived leptin on myocardial apoptosis in high‐fat diet–induced obese rats. Methods and Results Hearts were isolated from lean or high‐fat diet–induced obese Wistar rats for myocardial remodeling studies. Obese rats had abnormal myocardial structure, diastolic dysfunction, greatly elevated cardiac apoptosis, enhanced cardiac fibrosis, and increased oxidative stress level. ELISA detected significantly higher than circulating leptin level in PAT of obese, but not lean, rats. Western blot and immunohistochemical analyses demonstrated increased leptin receptor density in obese hearts. H9c2 cardiomyoblasts, after being exposed to PAT‐conditioned medium of obese rats, exhibited pronounced reactive oxygen species–mediated apoptosis, which was partially reversed by leptin antagonist. Moreover, leptin derived from PAT of obese rats inhibited Na+/K+‐ATPase activity of H9c2 cells through stimulating reactive oxygen species, thereby activating calcium‐dependent apoptosis. Pretreatment with specific inhibitors revealed that Janus kinase 2/signal transducer and activator of transcription 3 and phosphoinositide 3‐kinase/protein kinase B signaling pathways were involved in leptin‐induced myocardial apoptosis. Conclusions PAT‐derived leptin induces myocardial apoptosis in high‐fat diet–induced obese rats via activating Janus kinase 2/signal transducer and activator of transcription 3/reactive oxygen species signaling pathway and inhibiting its downstream Na+/K+‐ATPase activity.
Collapse
Affiliation(s)
- Ping Wang
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Chaodi Luo
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Danjun Zhu
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Yan Song
- Department of Ultrasound First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Lifei Cao
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Hui Luan
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Lan Gao
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Shuping Zheng
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Hao Li
- Intensive Care Unit First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| | - Gang Tian
- Department of Cardiology First Affiliated Hospital of Xi'an Jiaotong University Shaanxi China
| |
Collapse
|
7
|
Jiang Z, Feng T, Lu Z, Wei Y, Meng J, Lin CP, Zhou B, Liu C, Zhang H. PDGFRb + mesenchymal cells, but not NG2 + mural cells, contribute to cardiac fat. Cell Rep 2021; 34:108697. [PMID: 33535029 DOI: 10.1016/j.celrep.2021.108697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding cellular origins of cardiac adipocytes (CAs) can offer important implications for the treatment of fat-associated cardiovascular diseases. Here, we perform lineage tracing studies by using various genetic models and find that cardiac mesenchymal cells (MCs) contribute to CAs in postnatal development and adult homeostasis. Although PDGFRa+ and PDGFRb+ MCs both give rise to intramyocardial adipocytes, PDGFRb+ MCs are demonstrated to be the major source of intramyocardial adipocytes. Moreover, we find that PDGFRb+ cells are heterogenous, as PDGFRb is expressed not only in pericytes and smooth muscle cells (SMCs) but also in some subendocardial, pericapillary, or adventitial PDGFRa+ fibroblasts. Dual-recombinase-mediated intersectional genetic lineage tracing reveals that PDGFRa+PDGFRb+ double-positive periendothelial fibroblasts contribute to intramyocardial adipocytes. In contrast, SMCs and NG2+ pericytes do not contribute to CAs. These in vivo findings demonstrate that PDGFRb+ MCs, but not NG2+ coronary vascular mural cells, are the major source of intramyocardial adipocytes.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengkai Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanxin Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Lin Y, Ding S, Chen Y, Xiang M, Xie Y. Cardiac Adipose Tissue Contributes to Cardiac Repair: a Review. Stem Cell Rev Rep 2021; 17:1137-1153. [PMID: 33389679 DOI: 10.1007/s12015-020-10097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Cardiac adipose tissue is a metabolically active adipose tissue in close proximity to heart. Recent studies emphasized the benefits of cardiac adipose tissue in heart remodeling, such as reducing infarction size, enhancing neovascularization and regulating immune response, through a series of cellular mechanisms. In the present manuscript, we provide a comprehensive review regarding the role of cardiac adipose tissue in cardiac repair. We focus on different cardiac adipose tissues according to their distinguished anatomical structures. This review summarizes the latest evidence on the relationship between cardiac adipose tissue and cardiac repair. Cardiac adipose tissues (CAT) were systematically reviewed in the current manuscript which focused on the components of CAT, debates about cardiac adipose stem cells and their effect on heart.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Siyin Ding
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuwen Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Meixiang Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Yao Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
9
|
Liberale L, Montecucco F. Adipocytokines and cardiovascular diseases: Putative role of Neuregulin 4. Eur J Clin Invest 2020; 50:e13306. [PMID: 32511758 DOI: 10.1111/eci.13306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/30/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
10
|
Si Y, Cui Z, Liu J, Ding Z, Han C, Wang R, Liu T, Sun L. Pericardial adipose tissue is an independent risk factor of coronary artery disease and is associated with risk factors of coronary artery disease. J Int Med Res 2020; 48:300060520926737. [PMID: 32493096 PMCID: PMC7273777 DOI: 10.1177/0300060520926737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective Pericardial adipose tissue volume (PATV) is related to the mechanism of coronary artery disease (CAD), but its association with CAD risk factors is not clear. This study aimed to investigate the relationships between PATV and its associated factors. Methods A total of 682 inpatients were consecutively enrolled in this study. Patients were divided into the high PATV group (PATV ≥174.5 cm3; n = 506) and low PATV group (PATV < 174.5 cm3; n = 176). Multiple linear regression analysis was conducted to evaluate the related factors of PATV. Multivariable logistic regression was used to analyze the risk factors of CAD. Results Left ventricular fat volume, right ventricular fat volume, body mass index, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were significant and independent risk factors of enlargement of PATV. Increased PATV was identified as an independent risk factor of CAD, and increased pulse pressure was also independently and positively correlated with CAD. Conclusions PATV is significantly correlated with the classic risk factors of CAD. Pulse pressure is also correlated with PATV. PATV is an independent risk factor of CAD, and pericardial adipose tissue may alternatively be used in non-invasive diagnostic examination of CAD.
Collapse
Affiliation(s)
- Yueqiao Si
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Zhixin Cui
- Department of Radiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Jingyi Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Zhenjiang Ding
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Chao Han
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Ruijuan Wang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Tong Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| |
Collapse
|
11
|
Rychter AM, Ratajczak AE, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Non-Systematic Review of Diet and Nutritional Risk Factors of Cardiovascular Disease in Obesity. Nutrients 2020; 12:E814. [PMID: 32204478 PMCID: PMC7146494 DOI: 10.3390/nu12030814] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Although cardiovascular disease and its risk factors have been widely studied and new methods of diagnosis and treatment have been developed and implemented, the morbidity and mortality levels are still rising-cardiovascular disease is responsible for more than four million deaths each year in Europe alone. Even though nutrition is classified as one of the main and changeable risk factors, the quality of the diet in the majority of people does not follow the recommendations essential for prevention of obesity and cardiovascular disease. It demonstrates the need for better nutritional education in cardiovascular disease prevention and treatment, and the need to emphasize dietary components most relevant in cardiovascular disease. In our non-systematic review, we summarize the most recent knowledge about nutritional risk and prevention in cardiovascular disease and obesity.
Collapse
Affiliation(s)
- Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, University of Medical Sciences Poznan, 49 Przybyszewskiego Street, 60-355 Poznan, Poland; (A.E.R.); (A.Z.); (A.D.)
| | | | | | | | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, University of Medical Sciences Poznan, 49 Przybyszewskiego Street, 60-355 Poznan, Poland; (A.E.R.); (A.Z.); (A.D.)
| |
Collapse
|
12
|
Chen CY, Li SJ, Wang CY, Mersmann HJ, Ding ST. The impact of DRP1 on myocardial fibrosis in the obese minipig. Eur J Clin Invest 2020; 50:e13204. [PMID: 31990365 DOI: 10.1111/eci.13204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The heart is a highly oxidative tissue, thus mitochondria play a major role in maintaining optimal cardiac function. Our previous study established a dietary-induced obese minipig with cardiac fibrosis. The aim of this study was to elucidate the role of mitochondrial dynamics in cardiac fibrosis of obese minipigs. DESIGN Four-month-old Lee-Sung minipigs were randomly divided into two groups: a control group (C) and an obese group (O) by feeding a control diet or a high-fat diet (HFD) for 6 months. Exposure of H9c2 cardiomyoblasts to palmitate was used to explore the effects of high-fat on induction of myocardial injury in vitro. RESULTS The O pigs displayed greater heart weight and cardiac collagen accumulation. Obese pigs exhibited a lower antioxidant capacity, ATP concentration, and higher oxidative stress in the left ventricle (LV). The HFD caused downregulation in protein expression of PGC-1α and OPA1, and upregulation of DRP1, FIS1, and PINK1 in the LV of O compared to C pigs. Furthermore, palmitate induced apoptosis and decreased ATP content in H9c2 cells. Palmitate elevated the protein expression of DRP1 and PINK1 in these cells. Inhibition of DRP1 protein expression by siDRP1 in H9c2 cells resulted in enhanced ATP and decreased palmitate-induced apoptosis. CONCLUSIONS These results suggest that mitochondrial dynamics were linked to the progression of obesity-related cardiac injury. Inhibition of DRP1 after palmitate exposure in H9c2 cells resulted in improved ATP level and decreased apoptosis in vitro suggesting that mitochondrial fission serves a key role in progression of obesity-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yu Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Montecucco F, Regieli J, Nathoe H. Guidelines to manage a Scientific Journal: The new EJCI editorial board. Eur J Clin Invest 2020; 50:e13193. [PMID: 31799726 DOI: 10.1111/eci.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, Genoa, Italy
| | - Jakub Regieli
- Hartdokters Centre for Primary Cardiovascular Prevention and Care, Amsterdam, The Netherlands.,The Netherlands and Alert Foundation, Leiden, The Netherlands
| | - Hendrik Nathoe
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Christensen RH, von Scholten BJ, Lehrskov LL, Rossing P, Jørgensen PG. Epicardial adipose tissue: an emerging biomarker of cardiovascular complications in type 2 diabetes? Ther Adv Endocrinol Metab 2020; 11:2042018820928824. [PMID: 32518616 PMCID: PMC7252363 DOI: 10.1177/2042018820928824] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease and heart failure, which highlights the need for improved understanding of factors contributing to the pathophysiology of these complications as they are the leading cause of mortality in T2D. Patients with T2D have high levels of epicardial adipose tissue (EAT). EAT is known to secrete inflammatory factors, lipid metabolites, and has been proposed to apply mechanical stress on the cardiac muscle that may accelerate atherosclerosis, cardiac remodeling, and heart failure. High levels of EAT in patients with T2D have been associated with atherosclerosis, diastolic dysfunction, and incident cardiovascular events, and this fat depot has been suggested as an important link coupling diabetes, obesity, and cardiovascular disease. Despite this, the predictive potential of EAT in general, and in patients with diabetes, is yet to be established, and, up until now, the clinical relevance of EAT is therefore limited. Should this link be established, importantly, studies show that this fat depot can be modified both by pharmacological and lifestyle interventions. In this review, we first introduce the role of adipose tissue in T2D and present mechanisms involved in the pathophysiology of EAT and pericardial adipose tissue (PAT) in general, and in patients with T2D. Next, we summarize the evidence that these fat depots are elevated in patients with T2D, and discuss whether they might drive the high cardiometabolic risk in patients with T2D. Finally, we discuss the clinical potential of cardiac adipose tissues, address means to target this depot, and briefly touch upon underlying mechanisms and future research questions.
Collapse
Affiliation(s)
| | | | - Louise Lang Lehrskov
- Center for Inflammation and Metabolism/Center for Physical Activity Research, Rigshospitalet, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
15
|
Involvement of pericardial adipose tissue in cardiac fibrosis of dietary-induced obese minipigs— Role of mitochondrial function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:957-965. [DOI: 10.1016/j.bbalip.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/02/2019] [Accepted: 03/09/2019] [Indexed: 11/20/2022]
|
16
|
Liberale L, Carbone F, Montecucco F. Pericardial adipose tissue and cardiovascular diseases: New insights from basic research. Eur J Clin Invest 2019; 49:e13052. [PMID: 30451278 DOI: 10.1111/eci.13052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|