1
|
Song J, Carmona-Torres E, Kambari Y, Chavez S, Ueno F, Koizum T, Amaev A, Abdolizadeh A, De Luca V, Blumberger DM, Remington G, Pollock B, Graff-Guerrero A, Gerretsen P. Impaired insight in schizophrenia is associated with higher frontoparietal cerebral blood flow: an arterial spin labeling study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:2. [PMID: 39794339 PMCID: PMC11723987 DOI: 10.1038/s41537-024-00536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/13/2024] [Indexed: 01/13/2025]
Abstract
Impaired insight into illness occurs in up to 98% of patients with schizophrenia, depending on the stage of illness, and leads to negative clinical outcomes. Previous neuroimaging studies suggest that impaired insight in patients with schizophrenia may be related to structural and functional anomalies in frontoparietal brain regions. To date, limited studies have investigated the association between regional cerebral blood flow (CBF) and impaired insight in schizophrenia. Therefore, we sought to investigate the relationship between regional CBF, as measured by arterial spin labeling (ASL), and impaired insight in participants with schizophrenia. A total of 32 participants were included in the analysis. Impaired insight in patients with schizophrenia was measured using the VAGUS, Self-report (VAGUS-SR). Resting-state regional CBF was measured using pseudo-continuous ASL (pCASL) and extracted using SPM12 and REX toolbox. Whole brain analysis found that impaired insight was associated with higher regional CBF in the right angular gyrus, left supramarginal gyrus, and right superior frontal region when controlling for age, gender, smoking status, and illness severity. The results indicate that impaired insight in schizophrenia is related to regional CBF in frontoparietal areas. These neuroimaging findings can serve as therapeutic targets for intervention, such as with non-invasive brain stimulation.
Collapse
Affiliation(s)
- Jianmeng Song
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Edgardo Carmona-Torres
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yasaman Kambari
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sofia Chavez
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fumihiko Ueno
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Teruki Koizum
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ali Abdolizadeh
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Bruce Pollock
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ren H, Li Z, Li J, Zhou J, He Y, Li C, Wang Q, Chen X, Tang J. Correlation Between Cortical Thickness Abnormalities of the Olfactory Sulcus and Olfactory Identification Disorder and Persistent Auditory Verbal Hallucinations in Chinese Patients With Chronic Schizophrenia. Schizophr Bull 2024; 50:1232-1242. [PMID: 38577952 PMCID: PMC11349016 DOI: 10.1093/schbul/sbae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND HYPOTHESIS Persistent auditory verbal hallucinations (pAVHs) and olfactory identification impairment are common in schizophrenia (SCZ), but the neuroimaging mechanisms underlying both pAVHs and olfactory identification impairment are unclear. This study aimed to investigate whether pAVHs and olfactory identification impairment in SCZ patients are associated with changes in cortical thickness. STUDY DESIGN In this study, cortical thickness was investigated in 78 SCZ patients with pAVHs (pAVH group), 58 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) using 3T magnetic resonance imaging. The severity of pAVHs was assessed by the Auditory Hallucination Rating Scale. Olfactory identification deficits were assessed using the Odor Stick Identification Test for Japanese (OSIT-J). In addition, the relationship between the severity of pAVHs and olfactory identification disorder and cortical thickness abnormalities was determined. STUDY RESULTS Significant reductions in cortical thickness were observed in the right medial orbital sulcus (olfactory sulcus) and right orbital sulcus (H-shaped sulcus) in the pAVH group compared to both the non-AVH and HC groups (P < .003, Bonferroni correction). Furthermore, the severity of pAVHs was found to be negatively correlated with the reduction in cortical thickness in the olfactory sulcus and H-shaped sulcus. Additionally, a decrease in cortical thickness in the olfactory sulcus showed a positive correlation with the OSIT-J scores (P < .05, false discovery rate correction). CONCLUSIONS Cortical thickness abnormalities in the olfactory sulcus may be a common neuroimaging mechanism for pAVHs and olfactory identification deficits in SCZ patients.
Collapse
Affiliation(s)
- Honghong Ren
- Department of Clinical Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Clinical Psychology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Qianjin Wang
- Department of Clinical Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Clinical Psychology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Hunan Provincial Brain Hospital (The second people's Hospital of Hunan Province), Changsha, China
- Zigong Mental Health Center, Zigong, China
| |
Collapse
|
3
|
Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL. Identification of male schizophrenia patients using brain morphology based on machine learning algorithms. World J Psychiatry 2024; 14:804-811. [PMID: 38984327 PMCID: PMC11230103 DOI: 10.5498/wjp.v14.i6.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disease, and its prevalence is higher. However, diagnosis of early-stage schizophrenia is still considered a challenging task. AIM To employ brain morphological features and machine learning method to differentiate male individuals with schizophrenia from healthy controls. METHODS The least absolute shrinkage and selection operator and t tests were applied to select important features from structural magnetic resonance images as input features for classification. Four commonly used machine learning algorithms, the general linear model, random forest (RF), k-nearest neighbors, and support vector machine algorithms, were used to develop the classification models. The performance of the classification models was evaluated according to the area under the receiver operating characteristic curve (AUC). RESULTS A total of 8 important features with significant differences between groups were considered as input features for the establishment of classification models based on the four machine learning algorithms. Compared to other machine learning algorithms, RF yielded better performance in the discrimination of male schizophrenic individuals from healthy controls, with an AUC of 0.886. CONCLUSION Our research suggests that brain morphological features can be used to improve the early diagnosis of schizophrenia in male patients.
Collapse
Affiliation(s)
- Tao Yu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Wen-Zhi Pei
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chun-Yuan Xu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chen-Chen Deng
- Department of Gynaecology, Anhui Maternal and Child Health Hospital, Hefei 230032, Anhui Province, China
| | - Xu-Lai Zhang
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| |
Collapse
|
4
|
Luo L, Li Q, Wang Y, He N, Wang Y, You W, Zhang Q, Long F, Chen L, Zhao Y, Yao L, Sweeney JA, Gong Q, Li F. Shared and Disorder-Specific Alterations of Brain Temporal Dynamics in Obsessive-Compulsive Disorder and Schizophrenia. Schizophr Bull 2023; 49:1387-1398. [PMID: 37030006 PMCID: PMC10483459 DOI: 10.1093/schbul/sbad042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) and schizophrenia have distinct but also overlapping symptoms. Few studies have examined the shared and disorder-specific disturbances in dynamic brain function in the 2 disorders. STUDY DESIGN Resting-state functional magnetic resonance imaging data of 31 patients with OCD and 49 patients with schizophrenia, all untreated, and 45 healthy controls (HCs) were analyzed using spatial group independent component (IC) analysis. Time-varying degree centrality patterns across the whole brain were clustered into 3 reoccurring states, and state transition metrics were obtained. We further explored regional temporal variability of degree centrality for each IC across all time windows. STUDY RESULTS Patients with OCD and patients with schizophrenia both showed decreased occurrence of a state having the highest centrality in the sensorimotor and auditory networks. Additionally, patients with OCD and patients with schizophrenia both exhibited reduced dynamics of degree centrality in the superior frontal gyrus than controls, while dynamic degree centrality of the cerebellum was lower in patients with schizophrenia than with OCD and HCs. Altered dynamics of degree centrality nominally correlated with symptom severity in both patient groups. CONCLUSIONS Our study provides evidence of transdiagnostic and clinically relevant functional brain abnormalities across OCD and schizophrenia in neocortex, as well as functional dynamic alterations in the cerebellum specific to schizophrenia. These findings add to the recognition of overlap in neocortical alterations in the 2 disorders, and indicate that cerebellar alterations in schizophrenia may be specifically important in schizophrenia pathophysiology via impact on cerebellar thalamocortical circuitry.
Collapse
Affiliation(s)
- Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Radiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qian Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fenghua Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
5
|
Liu J, Zhang Y, Qiu J, Wei D. Linking negative affect, personality and social conditions to structural brain development during the transition from late adolescent to young adulthood. J Affect Disord 2023; 325:14-21. [PMID: 36623558 DOI: 10.1016/j.jad.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND The transition from late adolescence to early adulthood is a period that experiences a surge of life changes and brain reorganization caused by internal and external factors, including negative affect, personality, and social conditions. METHODS Non-imaging phenotype and structural brain variables were available on 497 healthy participants (279 females and 218 males) between 17 and 22 years old. We used sparse canonical correlation analysis (sCCA) on the high-dimensional and longitudinal data to extract modes with maximum covariation between structural brain changes and negative affect, personality, and social conditions. RESULTS Separate sCCAs for cortical volume, cortical thickness, cortical surface area and subcortical volume confirmed that each imaging phenotype was correlated with non-imaging features (sCCA |r| range: 0.21-0.38, all pFDR < 0.01). Bilateral superior frontal, left caudal anterior cingulate and bilateral caudate had the highest canonical cross-loadings (|ρ| = 0.15-0.32). In longitudinal data analysis, scan-interval, negative affect, and enthusiasm had the highest association with structural brain changes (|ρ| = 0.07-0.38); at baseline, intellect and politeness were associated with individual variability in the structural brain (|ρ| = 0.10-0.25). LIMITATIONS The present study used non-imaging variables only at baseline, making it impossible to explore the relationship between changing behavior and structural brain development. CONCLUSIONS Individual structural brain changes are associated with multiple factors. In addition to time-dependent variables, we find that negative affect, enthusiasm and social support play a numerically weak but significant role in structural brain development during the transition from late adolescence to young adulthood.
Collapse
Affiliation(s)
- Jiahui Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, China.
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China.
| |
Collapse
|
6
|
Snelleksz M, Rossell SL, Gibbons A, Nithianantharajah J, Dean B. Evidence that the frontal pole has a significant role in the pathophysiology of schizophrenia. Psychiatry Res 2022; 317:114850. [PMID: 36174274 DOI: 10.1016/j.psychres.2022.114850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023]
Abstract
Different regions of the cortex have been implicated in the pathophysiology of schizophrenia. Recently published data suggested there are many more changes in gene expression in the frontal pole (Brodmann's Area (BA) 10) compared to the dorsolateral prefrontal cortex (BA 9) and the anterior cingulate cortex (BA 33) from patients with schizophrenia. These data argued that the frontal pole is significantly affected by the pathophysiology of schizophrenia. The frontal pole is a region necessary for higher cognitive functions and is highly interconnected with many other brain regions. In this review we summarise the growing body of evidence to support the hypothesis that a dysfunctional frontal pole, due at least in part to its widespread effects on brain function, is making an important contribution to the pathophysiology of schizophrenia. We detail the many structural, cellular and molecular abnormalities in the frontal pole from people with schizophrenia and present findings that argue the symptoms of schizophrenia are closely linked to dysfunction in this critical brain region.
Collapse
Affiliation(s)
- Megan Snelleksz
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Andrew Gibbons
- The Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Jess Nithianantharajah
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Chung JH, Eun Y, Ock SM, Kim BK, Kim TH, Kim D, Park SJ, Im MK, Kim SH. Regional Brain Volume Changes in Catholic Nuns: A Cross-Sectional Study Using Deep Learning-Based Brain MRI Segmentation. Psychiatry Investig 2022; 19:754-762. [PMID: 36202111 PMCID: PMC9536884 DOI: 10.30773/pi.2022.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Religious behaviors are considered as complex brain-based phenomena that may be associated with structural brain change. To identify the pattern of regional brain volume change in nuns, we investigated structural alterations in the brains of nuns using a fast processing automated segmentation method based on deep learning algorithms. METHODS We retrospectively reviewed the medical records of the catholic sisters between the ages of 31 and 80 who are members of the charity of St. Vincent de Paul of Korea. A total of 193 asymptomatic subjects (86 nuns and 107 control subjects) received comprehensive health screening and underwent brain MRI scans. We compared cortical and sub-cortical volume between groups across multiple locations using our in-house U-Net++ deep learning-based automatic segmentation tool. RESULTS Compared to the control group, the nun group displayed increased gray matter volume in the right lingual cortex, left isthmus-cingulate, posterior-cingulate, rostral-middle-frontal, superior-frontal, supramarginal, temporal-pole cortices, and bilateral pars-triangularis cortices after correction for multiple comparisons. On the other hand, the nun group showed reduced gray matter volume in the temporal and parietal regions relative to healthy controls. CONCLUSION Our study suggests that spiritual practice may affect brain structure, especially in several frontal regions involved in a higher level of insight function.
Collapse
Affiliation(s)
- Ju-Hye Chung
- Department of Family Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youngmi Eun
- Department of Family Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Myeong Ock
- Department of Family Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo-Kyung Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Hong Kim
- Department of Palliative Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Se Jin Park
- Department of Family Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Kyun Im
- Department of Fundamental Theology, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se-Hong Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Szeszko PR, Gohel S, Vaccaro DH, Chu KW, Tang CY, Goldstein KE, New AS, Siever LJ, McClure M, Perez-Rodriguez MM, Haznedar MM, Byne W, Hazlett EA. Frontotemporal thalamic connectivity in schizophrenia and schizotypal personality disorder. Psychiatry Res Neuroimaging 2022; 322:111463. [PMID: 35240516 PMCID: PMC9018622 DOI: 10.1016/j.pscychresns.2022.111463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Schizotypal personality disorder (SPD) resembles schizophrenia, but with attenuated brain abnormalities and the absence of psychosis. The thalamus is integral for processing and transmitting information across cortical regions and widely implicated in the neurobiology of schizophrenia. Comparing thalamic connectivity in SPD and schizophrenia could reveal an intermediate schizophrenia-spectrum phenotype to elucidate neurobiological risk and protective factors in psychosis. We used rsfMRI to investigate functional connectivity between the mediodorsal nucleus (MDN) and pulvinar, and their connectivity with frontal and temporal cortical regions, respectively in 43 healthy controls (HCs), and individuals in the schizophrenia-spectrum including 45 psychotropic drug-free individuals with SPD, and 20 individuals with schizophrenia-related disorders [(schizophrenia (n = 10), schizoaffective disorder (n = 8), schizophreniform disorder (n = 1) and psychosis NOS (n = 1)]. Individuals with SPD had greater functional connectivity between the MDN and pulvinar compared to individuals with schizophrenia. Thalamo-frontal (i.e., between the MDN and rostral middle frontal cortex) connectivity was comparable in SPD and HCs; in SPD greater connectivity was associated with less symptom severity. Individuals with schizophrenia had less thalamo-frontal connectivity and thalamo-temporal (i.e., pulvinar to the transverse temporal cortex) connectivity compared with HCs. Thalamo-frontal functional connectivity may be comparable in SPD and HCs, but abnormal in schizophrenia, and that this may be protective against psychosis in SPD.
Collapse
Affiliation(s)
- Philip R Szeszko
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Suril Gohel
- Department of Health Informatics, Rutgers University, Newark, NJ, USA
| | - Daniel H Vaccaro
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Y Tang
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kim E Goldstein
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Antonia S New
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larry J Siever
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret McClure
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychology, Fairfield University, Fairfield, CT, USA
| | | | - M Mehmet Haznedar
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Byne
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Erin A Hazlett
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Ferracuti S, Del Casale A, Romano A, Gualtieri I, Lucignani M, Napolitano A, Modesti MN, Buscajoni A, Zoppi T, Kotzalidis GD, Manelfi L, de Pisa E, Girardi P, Mandarelli G, Parmigiani G, Rossi-Espagnet MC, Pompili M, Bozzao A. Correlations between cortical gyrification and schizophrenia symptoms with and without comorbid hostility symptoms. Front Psychiatry 2022; 13:1092784. [PMID: 36684000 PMCID: PMC9846757 DOI: 10.3389/fpsyt.2022.1092784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Interest in identifying the clinical implications of the neuropathophysiological background of schizophrenia is rising, including changes in cortical gyrification that may be due to neurodevelopmental abnormalities. Inpatients with schizophrenia can show abnormal gyrification of cortical regions correlated with the symptom severity. METHODS Our study included 36 patients that suffered an acute episode of schizophrenia and have undergone structural magnetic resonance imaging (MRI) to calculate the local gyrification index (LGI). RESULTS In the whole sample, the severity of symptoms significantly correlated with higher LGI in different cortical areas, including bilateral frontal, cingulate, parietal, temporal cortices, and right occipital cortex. Among these areas, patients with low hostility symptoms (LHS) compared to patients with high hostility symptoms (HHS) showed significantly lower LGI related to the severity of symptoms in bilateral frontal and temporal lobes. DISCUSSION The severity of psychopathology correlated with higher LGI in large portions of the cerebral cortex, possibly expressing abnormal neural development in schizophrenia. These findings could pave the way for further studies and future tailored diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University, Rome, Italy.,Unit of Risk Management, Sant'Andrea University Hospital, Rome, Italy
| | - Antonio Del Casale
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Andrea Romano
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy.,Unit of Neuroradiology, Sant'Andrea University Hospital, Rome, Italy
| | - Ida Gualtieri
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | | | - Martina Nicole Modesti
- Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Andrea Buscajoni
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Teodolinda Zoppi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Georgios D Kotzalidis
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Lorenza Manelfi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Eleonora de Pisa
- Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Paolo Girardi
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy
| | - Gabriele Mandarelli
- Department of Interdisciplinary Medicine, Section of Criminology and Forensic Psychiatry, University of Bari, Bari, Italy
| | - Giovanna Parmigiani
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy.,Department of Interdisciplinary Medicine, Section of Criminology and Forensic Psychiatry, University of Bari, Bari, Italy
| | - Maurizio Pompili
- Unit of Psychiatry, Sant'Andrea University Hospital, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy.,Unit of Neuroradiology, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
10
|
Karpenko O. Compliance and insight as factors of recovery in patients with schizophrenia spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:41-48. [DOI: 10.17116/jnevro202212201241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Increased Homotopic Connectivity in the Prefrontal Cortex Modulated by Olanzapine Predicts Therapeutic Efficacy in Patients with Schizophrenia. Neural Plast 2021; 2021:9954547. [PMID: 34512748 PMCID: PMC8429031 DOI: 10.1155/2021/9954547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies have revealed the abnormalities in homotopic connectivity in schizophrenia. However, the relationship of these deficits to antipsychotic treatment in schizophrenia remains unclear. This study explored the effects of antipsychotic therapy on brain homotopic connectivity and whether the homotopic connectivity of these regions might predict individual treatment response in schizophrenic patients. Methods A total of 21 schizophrenic patients and 20 healthy controls were scanned by the resting-state functional magnetic resonance imaging. The patients received olanzapine treatment and were scanned at two time points. Voxel-mirrored homotopic connectivity (VMHC) and pattern classification techniques were applied to analyze the imaging data. Results Schizophrenic patients presented significantly decreased VMHC in the temporal and inferior frontal gyri, medial prefrontal cortex (MPFC), and motor and low-level sensory processing regions (including the fusiform gyrus and cerebellum lobule VI) relative to healthy controls. The VMHC in the superior/middle MPFC was significantly increased in the patients after eight weeks of treatment. Support vector regression (SVR) analyses revealed that VMHC in the superior/middle MPFC at baseline can predict the symptomatic improvement of the positive and negative syndrome scale after eight weeks of treatment. Conclusions This study demonstrated that olanzapine treatment may normalize decreased homotopic connectivity in the superior/middle MPFC in schizophrenic patients. The VMHC in the superior/middle MPFC may predict individual response for antipsychotic therapy. The findings of this study conduce to the comprehension of the therapy effects of antipsychotic medications on homotopic connectivity in schizophrenia.
Collapse
|
12
|
Snelleksz M, Dean B. Lower levels of tubulin alpha 1b in the frontal pole in schizophrenia supports a role for changed cytoskeletal dynamics in the aetiology of the disorder. Psychiatry Res 2021; 303:114096. [PMID: 34274903 DOI: 10.1016/j.psychres.2021.114096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/26/2022]
Abstract
Our transcriptomic study suggested there were markedly lower levels of tubulin alpha 1b (TUBA1B) expression in BA 10, but not BA 9, from patients with schizophrenia. We now use Western blotting to compare levels of TUBA1B protein in BA 9 and 10 from patients with schizophrenia and BA 10 from patients with mood disorders to controls as well as in the frontal cortex from rats after treatment with haloperidol, chlorpromazine or vehicle for 28 days. Levels of TUBA1B were significantly lower (- 18.6%) in BA 10, but not BA 9, from patients with schizophrenia. Levels of TUBA1B did not differ significantly from controls in BA 10 from patients with mood disorders or in the cortex of rats after antipsychotic drug treatments. Levels of TUBA1B were significantly lower (- 30%) in BA 10 from patients with schizophrenia who were not being treated with antipsychotic drugs close to death compared to those who were treated close to death. These data suggest that lower levels of TUBA1B, a cytoskeletal protein, in BA 10 from patients with schizophrenia are not a simple drug effect and therefore add to the hypothesis that a breakdown in cytoskeletal homoeostasis may be contributing to the genesis of the symptoms of the disorder.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
13
|
Sun J, Cao R, Zhou M, Hussain W, Wang B, Xue J, Xiang J. A hybrid deep neural network for classification of schizophrenia using EEG Data. Sci Rep 2021; 11:4706. [PMID: 33633134 PMCID: PMC7907145 DOI: 10.1038/s41598-021-83350-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Schizophrenia is a serious mental illness that causes great harm to patients, so timely and accurate detection is essential. This study aimed to identify a better feature to represent electroencephalography (EEG) signals and improve the classification accuracy of patients with schizophrenia and healthy controls by using EEG signals. Our research method involves two steps. First, the EEG time series is preprocessed, and the extracted time-domain and frequency-domain features are transformed into a sequence of red-green-blue (RGB) images that carry spatial information. Second, we construct hybrid deep neural networks (DNNs) that combine convolution neural networks and long short-term memory to address RGB images to classify schizophrenic patients and healthy controls. The results show that the fuzzy entropy (FuzzyEn) feature is more significant than the fast Fourier transform (FFT) feature in brain topography. The deep learning (DL) method that we propose achieves an average accuracy of 99.22% with FuzzyEn and an average accuracy of 96.34% with FFT. These results show that the best effect is to extract fuzzy features as input features from EEG time series and then use a hybrid DNN for classification. Compared with the most advanced methods in this field, significant improvements have been achieved.
Collapse
Affiliation(s)
- Jie Sun
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Rui Cao
- grid.440656.50000 0000 9491 9632College of Software, Taiyuan University of Technology, Taiyuan, China
| | - Mengni Zhou
- grid.261356.50000 0001 1302 4472Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Waqar Hussain
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiayue Xue
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
14
|
Derome M, Tonini E, Zöller D, Schaer M, Eliez S, Debbané M. Developmental Trajectories of Cortical Thickness in Relation to Schizotypy During Adolescence. Schizophr Bull 2020; 46:1306-1316. [PMID: 32133513 PMCID: PMC7505202 DOI: 10.1093/schbul/sbaa020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Investigating potential gray matter differences in adolescents presenting higher levels of schizotypy personality traits could bring further insights into the development of schizophrenia spectrum disorders. Research has yet to examine the morphological correlates of schizotypy features during adolescence prospectively, and no information is available on the developmental trajectories from adolescence to adulthood. We employed mixed model regression analysis to investigate developmental trajectories of cortical thickness (CT) in relation to schizotypy dimensions in a cohort of 109 adolescents from the general population for whom MRI-scans were acquired over a 5-year period, culminating in a total of 271 scans. Structural data were processed with FreeSurfer software, statistical analyses were conducted using mixed regression models following a ROI-based approach, and schizotypy was assessed with the Schizotypal Personality Questionnaire (SPQ). Accelerated thinning was observed in the posterior cingulate cortex in relation to high levels of positive schizotypy, whereas high levels of disorganized schizotypy were associated with a similar trajectory pattern in the anterior cingulate cortex. The developmental course of CT in the prefrontal, occipital, and cingulate cortices differed between adolescents expressing higher vs lower levels of negative schizotypy. Participants reporting high scores on all schizotypy dimensions were associated with differential trajectories of CT in posterior cingulate cortex and occipital cortex. Consistently with prospective developmental studies of clinical risk conversion, the negative schizotypy dimension appears to constitute the most informative dimension for psychosis-related psychopathology, as its cerebral correlates in adolescents most closely overlap with results found in clinical high risk for psychosis studies.
Collapse
Affiliation(s)
- Mélodie Derome
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Emiliana Tonini
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Daniela Zöller
- Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Medical Image Processing Lab, Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Marie Schaer
- Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Genetic Medicine and Development, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Martin Debbané
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Research Department of Clinical, Educational & Health Psychology, University College London, London, UK
| |
Collapse
|
15
|
Pijnenborg GHM, Larabi DI, Xu P, Hasson-Ohayon I, de Vos AE, Ćurčić-Blake B, Aleman A, Van der Meer L. Brain areas associated with clinical and cognitive insight in psychotic disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 116:301-336. [PMID: 32569706 DOI: 10.1016/j.neubiorev.2020.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/04/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
In the past years, ample interest in brain abnormalities related to clinical and cognitive insight in psychosis has contributed several neuroimaging studies to the literature. In the current study, published findings on the neural substrates of clinical and cognitive insight in psychosis are integrated by performing a systematic review and meta-analysis. Coordinate-based meta-analyses were performed with the parametric coordinate-based meta-analysis approach, non-coordinate based meta-analyses were conducted with the metafor package in R. Papers that could not be included in the meta-analyses were systematically reviewed. Thirty-seven studies were retrieved, of which 21 studies were included in meta-analyses. Poorer clinical insight was related to smaller whole brain gray and white matter volume and gray matter volume of the frontal gyri. Cognitive insight was predominantly positively associated with structure and function of the hippocampus and ventrolateral prefrontal cortex. Impaired clinical insight is not associated with abnormalities of isolated brain regions, but with spatially diffuse global and frontal abnormalities suggesting it might rely on a range of cognitive and self-evaluative processes. Cognitive insight is associated with specific areas and appears to rely more on retrieving and integrating self-related information.
Collapse
Affiliation(s)
- G H M Pijnenborg
- Department of Psychotic Disorders, GGZ Drenthe, Dennenweg 9, 9404 LA, Assen, the Netherlands; Department of Clinical and Developmental Neuropsychology and Experimental Psychopathology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - D I Larabi
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, A. Deusinglaan 2, 9713 AW, Groningen, the Netherlands; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - P Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518060, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen 518054, China; Great Bay Neuroscience and Technology Research Institute (Hong Kong), Kwun Tong, Hong Kong
| | - I Hasson-Ohayon
- Department of Psychology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - A E de Vos
- Department of Psychotic Disorders, GGZ Drenthe, Dennenweg 9, 9404 LA, Assen, the Netherlands
| | - B Ćurčić-Blake
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, A. Deusinglaan 2, 9713 AW, Groningen, the Netherlands
| | - A Aleman
- Department of Psychotic Disorders, GGZ Drenthe, Dennenweg 9, 9404 LA, Assen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, A. Deusinglaan 2, 9713 AW, Groningen, the Netherlands; Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518060, China
| | - L Van der Meer
- Department of Rehabilitation, Lentis Mental Health Care, PO box 128, 9470 KA, Zuidlaren, the Netherlands; Department of Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands
| |
Collapse
|
16
|
Chen J, Tan J, Greenshaw AJ, Sawalha J, Liu Y, Zhang X, Zou W, Cheng X, Deng W, Zhang Y, Cui L, Liu C, Sun J, Cheng X, Wu Q, Li S, Mai S, Lan X, Chen Y, Cai Y, Zheng C, Cheng D, Zhang B, Yang C, Li X, Li X, Ye B, Yousefnezhad M, Zhang Y, Zhao L, Soares JC, Zhang X, Li T, Cao B, Cao L. CACNB2 rs11013860 polymorphism correlates of prefrontal cortex thickness in bipolar patients with first-episode mania. J Affect Disord 2020; 268:82-87. [PMID: 32158010 DOI: 10.1016/j.jad.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The β2 subunit of the voltage-gated l-type calcium channel gene(CACNB2) rs11013860 polymorphism is a putative genetic susceptibility marker for bipolar disorder (BD). However, the neural effects of CACNB2 rs11013860 in BD are largely unknown. METHODS Forty-six bipolar patients with first-episode mania and eighty-three healthy controls (HC) were genotyped for CACNB2 rs11013860 and were scanned with a 3.0 Tesla structural magnetic resonance imaging system to measure cortical thickness of prefrontal cortex (PFC) components (superior frontal cortex, orbitofrontal cortex, middle and inferior frontal gyri). RESULTS Cortical thickness was thinner in patients on all PFC measurements compared to HC (p < 0.050). Moreover, we found a significant interaction between CACNB2 genotype and diagnosis for the right superior frontal cortical thickness (F = 8.190, p = 0.040). Bonferroni corrected post-hoc tests revealed that, in CACNB2 A-allele carriers, patients displayed thinner superior frontal thickness compared to HC (p < 0.001). In patients, CACNB2 A-allele carriers also exhibited reduced superior frontal thickness compared to CACNB2 CC-allele carriers (p = 0.016). LIMITATIONS Lithium treatment may influence our results, and the sample size in our study is relatively small. CONCLUSIONS Our results suggest that the CACNB2 rs11013860 might impact PFC thickness in patients with first-episode mania. These findings provide evidence to support CACNB2 rs11013860 involvement in the emotion-processing neural circuitry abnormality in the early stage of BD, which will ultimately contribute to revealing the link between the variation in calcium channel genes and the neuropathological mechanism of BD.
Collapse
Affiliation(s)
- Jianshan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Jiuwei Tan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Andrew J Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeff Sawalha
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Yang Liu
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaofei Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Wenjin Zou
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiaofang Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Wenhao Deng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yizhi Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; General Hospital of Southern Theater Command, Guangzhou, Guangdong, PR China
| | - Liqian Cui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chuihong Liu
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Jiaqi Sun
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiongchao Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; Nanning Fifth People's Hospital, Nanning, Guangxi Zhuang autonomous region, PR China
| | - Qiuxia Wu
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Suyi Li
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Siming Mai
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiaofeng Lan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yingmei Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yinglian Cai
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Chaodun Zheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Daomeng Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Bin Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Chanjuan Yang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xuan Li
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xinmin Li
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Biyu Ye
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | | | - Yamin Zhang
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Liansheng Zhao
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiangyang Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Tao Li
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Bo Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China.
| |
Collapse
|
17
|
Phahladira L, Asmal L, Kilian S, Chiliza B, Scheffler F, Luckhoff HK, du Plessis S, Emsley R. Changes in insight over the first 24 months of treatment in schizophrenia spectrum disorders. Schizophr Res 2019; 206:394-399. [PMID: 30385130 DOI: 10.1016/j.schres.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND While insight in schizophrenia improves with treatment, significant impairments often persist. The degree of persistence is not well characterised. AIMS We assessed patient and clinician-rated changes in insight in acutely ill, minimally treated first-episode schizophrenia spectrum disorder patients over 24 months of standardised treatment with a depot antipsychotic. METHOD This single arm open label longitudinal cohort study included 105 participants with first-episode schizophrenia, schizophreniform or schizoaffective disorder. Insight was assessed at months 0, 6, 12 and 24 using the patient-rated Birchwood Insight Scale (BIS) and clinician-rated global insight item of the Positive and Negative Syndrome Scale (PANSS). Changes in insight over time were assessed using linear mixed-effect models for continuous repeated measures. Relationships between insight and psychopathology, functionality, cognition and quality of life were assessed with regression models. RESULTS There was significant improvement over time for the PANSS insight item (p < 0.0001). However, the only significant improvement for the BIS was with the Need for Treatment subscale (p = 0.01). There were no significant improvements noted for the Symptom Attribution (p = 0.7) and Illness Awareness (p = 0.2) subscales, as well as the BIS Total score (p = 0.6). Apart from depressive symptoms at baseline, there were no significant predictors of patient-rated insight. CONCLUSIONS Clinicians should note that, even when treatment is assured and response is favourable, fundamental impairments in patient-rated insight persist.
Collapse
Affiliation(s)
| | - Laila Asmal
- Department of Psychiatry, Stellenbosch University, South Africa
| | - Sanja Kilian
- Department of Psychiatry, Stellenbosch University, South Africa
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwazulu-Natal, South Africa
| | | | | | | | - Robin Emsley
- Department of Psychiatry, Stellenbosch University, South Africa
| |
Collapse
|
18
|
Xiang J, Tian C, Niu Y, Yan T, Li D, Cao R, Guo H, Cui X, Cui H, Tan S, Wang B. Abnormal Entropy Modulation of the EEG Signal in Patients With Schizophrenia During the Auditory Paired-Stimulus Paradigm. Front Neuroinform 2019; 13:4. [PMID: 30837859 PMCID: PMC6390065 DOI: 10.3389/fninf.2019.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
The complexity change in brain activity in schizophrenia is an interesting topic clinically. Schizophrenia patients exhibit abnormal task-related modulation of complexity, following entropy of electroencephalogram (EEG) analysis. However, complexity modulation in schizophrenia patients during the sensory gating (SG) task, remains unknown. In this study, the classical auditory paired-stimulus paradigm was introduced to investigate SG, and EEG data were recorded from 55 normal controls and 61 schizophrenia patients. Fuzzy entropy (FuzzyEn) was used to explore the complexity of brain activity under the conditions of baseline (BL) and the auditory paired-stimulus paradigm (S1 and S2). Generally, schizophrenia patients showed significantly higher FuzzyEn values in the frontal and occipital regions of interest (ROIs). Relative to the BL condition, the normalized values of FuzzyEn of normal controls were decreased greatly in condition S1 and showed less variance in condition S2. Schizophrenia patients showed a smaller decrease in the normalized values in condition S1. Moreover, schizophrenia patients showed significant diminution in the suppression ratios of FuzzyEn, attributed to the higher FuzzyEn values in condition S1. These results suggested that entropy modulation during the process of sensory information and SG was obvious in normal controls and significantly deficient in schizophrenia patients. Additionally, the FuzzyEn values measured in the frontal ROI were positively correlated with positive scores of Positive and Negative Syndrome Scale (PANSS), indicating that frontal entropy was a potential indicator in evaluating the clinical symptoms. However, negative associations were found between the FuzzyEn values of occipital ROIs and general and total scores of PANSS, likely reflecting the compensation effect in visual processing. Thus, our findings provided a deeper understanding of the deficits in sensory information processing and SG, which contribute to cognitive deficits and symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Cheng Tian
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Ting Yan
- Translational Medicine Research CenterShanxi Medical University, Taiyuan, China
| | - Dandan Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Rui Cao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Xiaohong Cui
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Huifang Cui
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
19
|
A Longitudinal fMRI Research on Neural Plasticity and Sensory Outcome of Carpal Tunnel Syndrome. Neural Plast 2018; 2017:5101925. [PMID: 29348944 PMCID: PMC5733863 DOI: 10.1155/2017/5101925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2017] [Accepted: 09/10/2017] [Indexed: 11/29/2022] Open
Abstract
Peripheral nerve compression is reported to induce cortical plasticity, which was well pictured by former researches. However, the longitudinal changes brought by surgical treatment are not clear. In this research, 18 subjects who suffered from bilateral carpal tunnel syndrome were evaluated using task-dependent fMRI and electromyography assessment before and after surgery. The third digit was tactually simulated by von Frey filaments. The results demonstrated that the pattern of activation was similar but a decreased extent of activation in the postcentral gyrus, inferior frontal lobe, superior frontal lobe, and parahippocampal gyrus after surgery was found. The correlation analysis showed a significant correlation between the decreased number of activated voxels and the improvement of EMG performance. This result implied a potential connection between fMRI measurement and clinical improvement.
Collapse
|
20
|
Asmal L, du Plessis S, Vink M, Fouche JP, Chiliza B, Emsley R. Insight and white matter fractional anisotropy in first-episode schizophrenia. Schizophr Res 2017; 183:88-94. [PMID: 27887780 DOI: 10.1016/j.schres.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
Impaired insight is a hallmark feature of schizophrenia. Structural studies implicate predominantly prefrontal, cingulate, cuneus/precuneus, and inferior temporal brain regions. The cortical midline structures (CMS) are also implicated in functional studies primarily through self-reflective processing tasks. However, few studies have explored the relationship between white matter tracts and insight in schizophrenia, and none in first-episode schizophrenia (FES). Here, we examined for fractional anisotropy (FA) differences in 89 minimally treated FES patients and 98 matched controls, and identified those FA differences associated with impaired clinical insight in patients. We found widespread FA reduction in FES patients compared to controls. Poorer insight in patients was predicted by lower FA values in a number of white matter tracts with a predilection for tracts associated with cortical midline structures (fronto-occipital, cingulate, cingulate hippocampus, uncinate, anterior corona radiata), and more severe depressive symptoms. The association between FA abnormalities and insight was most robust for the awareness of symptoms and illness awareness domains. Our study implicates a network of tracts involved in impaired insight in schizophrenia with a predilection for the CMS. This study is a first step in delineating the white matter tracts involved in insight impairment in schizophrenia prior to chronicity.
Collapse
Affiliation(s)
- Laila Asmal
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa.
| | - Stefan du Plessis
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa
| | - Matthijs Vink
- Departments of Developmental and Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town ZA 8001, South Africa
| | - Bonginkosi Chiliza
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa
| | - Robin Emsley
- Stellenbosch University, Faculty of Medicine and Health Sciences, Psychiatry, PO Box 19063, Tygerberg, Cape Town ZA 7505, South Africa
| |
Collapse
|