1
|
Heyward FD, Liu N, Jacobs C, Machado NLS, Ivison R, Uner A, Srinivasan H, Patel SJ, Gulko A, Sermersheim T, Tsai L, Rosen ED. AgRP neuron cis-regulatory analysis across hunger states reveals that IRF3 mediates leptin's acute effects. Nat Commun 2024; 15:4646. [PMID: 38821928 PMCID: PMC11143326 DOI: 10.1038/s41467-024-48885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.
Collapse
Affiliation(s)
- Frankie D Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Natalia L S Machado
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachael Ivison
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Suraj J Patel
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology & Hepatology, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition and Department of Internal Medicine, UT Southwestern Medical, Center, Dallas, TX, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Minami K, Kami K, Nishimura Y, Kawanishi M, Imashiro K, Kami T, Habata S, Senba E, Umemoto Y, Tajima F. Voluntary running-induced activation of ventral hippocampal GABAergic interneurons contributes to exercise-induced hypoalgesia in neuropathic pain model mice. Sci Rep 2023; 13:2645. [PMID: 36788313 PMCID: PMC9929335 DOI: 10.1038/s41598-023-29849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The exact mechanism of exercise-induced hypoalgesia (EIH) in exercise therapy to improve chronic pain has not been fully clarified. Recent studies have suggested the importance of the ventral hippocampus (vHPC) in inducing chronic pain. We investigated the effects of voluntary running (VR) on FosB+ cells and GABAergic interneurons (parvalbumin-positive [PV+] and somatostatin-positive [SOM+]) in the vHPC-CA1 in neuropathic pain (NPP) model mice. VR significantly improved thermal hyperalgesia in the NPP model. The number of the FosB+ cells was significantly higher in partial sciatic nerve ligation-sedentary mice than in Sham and Naive mice, whereas VR significantly suppressed the FosB+ cells in the vHPC-CA1. Furthermore, VR significantly increased the proportion of activated PV+ and SOM+ interneurons in the vHPC-CA1, and tracer experiments indicated that approximately 24% of neurons projecting from the vHPC-CA1 to the basolateral nucleus of amygdala were activated in NPP mice. These results indicate that feedforward suppression of the activated neurons via VR-induced activation of GABAergic interneurons in the vHPC-CA1 may be a mechanism to produce EIH effects, and suggested that disappearance of negative emotions such as fear and anxiety by VR may play a critical role in improving chronic pain.
Collapse
Affiliation(s)
- Kohei Minami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Katsuya Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.
- Department of Rehabilitation, Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan.
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, Morioka, Japan
| | - Makoto Kawanishi
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kyosuke Imashiro
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takuma Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shogo Habata
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Emiko Senba
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
3
|
Ramamurthy E, Welch G, Cheng J, Yuan Y, Gunsalus L, Bennett DA, Tsai LH, Pfenning AR. Cell type-specific histone acetylation profiling of Alzheimer's disease subjects and integration with genetics. Front Mol Neurosci 2023; 15:948456. [PMID: 36683855 PMCID: PMC9853565 DOI: 10.3389/fnmol.2022.948456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023] Open
Abstract
We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major brain cell types from hippocampus and dorsolateral prefrontal cortex (dlPFC) of subjects with and without Alzheimer's Disease (AD). We confirm that single nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD) show a strong tendency to reside in microglia-specific gene regulatory elements. Despite this significant colocalization, we find that microglia harbor more acetylation changes associated with age than with amyloid-β (Aβ) load. In contrast, we detect that an oligodendrocyte-enriched glial (OEG) population contains the majority of differentially acetylated peaks associated with Aβ load. These differential peaks reside near both early onset risk genes (APP, PSEN1, PSEN2) and late onset AD risk loci (including BIN1, PICALM, CLU, ADAM10, ADAMTS4, SORL1, FERMT2), Aβ processing genes (BACE1), as well as genes involved in myelinating and oligodendrocyte development processes. Interestingly, a number of LOAD risk loci associated with differentially acetylated risk genes contain H3K27ac peaks that are specifically enriched in OEG. These findings implicate oligodendrocyte gene regulation as a potential mechanism by which early onset and late onset risk genes mediate their effects, and highlight the deregulation of myelinating processes in AD. More broadly, our dataset serves as a resource for the study of functional effects of genetic variants and cell type specific gene regulation in AD.
Collapse
Affiliation(s)
- Easwaran Ramamurthy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gwyneth Welch
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jemmie Cheng
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yixin Yuan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Laura Gunsalus
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Andreas R. Pfenning
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Eremenko E, Golova A, Stein D, Einav M, Khrameeva E, Toiber D. FACS-based isolation of fixed mouse neuronal nuclei for ATAC-seq and Hi-C. STAR Protoc 2021; 2:100643. [PMID: 34308377 PMCID: PMC8283150 DOI: 10.1016/j.xpro.2021.100643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The organization of chromatin structure plays a crucial role in gene expression, DNA replication, and repair. Chromatin alterations influence gene expression, and modifications could be associated with genomic instability in the cells during aging or diseases. Here, we provide a modified protocol to isolate fixed neuronal nuclei from a single mouse cortex to investigate the spatial organization of chromatin structure on a genome-wide scale by ATAC-seq (the assay for transposase-accessible chromatin with high-throughput sequencing) and chromatin conformation by Hi-C (high-throughput chromosome conformation capture).
Collapse
Affiliation(s)
- Ekaterina Eremenko
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anastasia Golova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Monica Einav
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
5
|
Berto S, Liu Y, Konopka G. Genomics at cellular resolution: insights into cognitive disorders and their evolution. Hum Mol Genet 2021; 29:R1-R9. [PMID: 32566943 DOI: 10.1093/hmg/ddaa117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
High-throughput genomic sequencing approaches have held the promise of understanding and ultimately leading to treatments for cognitive disorders such as autism spectrum disorders, schizophrenia and Alzheimer's disease. Although significant progress has been made into identifying genetic variants associated with these diseases, these studies have also uncovered that these disorders are mostly genetically complex and thus challenging to model in non-human systems. Improvements in such models might benefit from understanding the evolution of the human genome and how such modifications have affected brain development and function. The intersection of genome-wide variant information with cell-type-specific expression and epigenetic information will further assist in resolving the contribution of particular cell types in evolution or disease. For example, the role of non-neuronal cells in brain evolution and cognitive disorders has gone mostly underappreciated until the recent availability of single-cell transcriptomic approaches. In this review, we discuss recent studies that carry out cell-type-specific assessments of gene expression in brain tissue across primates and between healthy and disease populations. The emerging results from these studies are beginning to elucidate how specific cell types in the evolved human brain are contributing to cognitive disorders.
Collapse
|
6
|
Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1. Nat Commun 2021; 12:1731. [PMID: 33741962 PMCID: PMC7979925 DOI: 10.1038/s41467-021-22003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in KCNC3, which encodes the Kv3.3 potassium channel, cause degeneration of the cerebellum, but exactly how the activity of an ion channel is linked to the survival of cerebellar neurons is not understood. Here, we report that Kv3.3 channels bind and stimulate Tank Binding Kinase 1 (TBK1), an enzyme that controls trafficking of membrane proteins into multivesicular bodies, and that this stimulation is greatly increased by a disease-causing Kv3.3 mutation. TBK1 activity is required for the binding of Kv3.3 to its auxiliary subunit Hax-1, which prevents channel inactivation with depolarization. Hax-1 is also an anti-apoptotic protein required for survival of cerebellar neurons. Overactivation of TBK1 by the mutant channel leads to the loss of Hax-1 by its accumulation in multivesicular bodies and lysosomes, and also stimulates exosome release from neurons. This process is coupled to activation of caspases and increased cell death. Our studies indicate that Kv3.3 channels are directly coupled to TBK1-dependent biochemical pathways that determine the trafficking of cellular constituents and neuronal survival. How the activity of the neuronal Kv3.3 voltage-dependent channel is regulated is unclear. Here, the authors show that the known Kv3.3 channel complex with Hax1, which affects spinal cerebellar ataxia, regulates the enzyme Tank Binding Kinase 1, modulating survival of cerebellar neurons.
Collapse
|
7
|
Isolation of Lineage Specific Nuclei Based on Distinct Endoreduplication Levels and Tissue-Specific Markers to Study Chromatin Accessibility Landscapes. PLANTS 2020; 9:plants9111478. [PMID: 33153046 PMCID: PMC7692515 DOI: 10.3390/plants9111478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
The capacity for achieving immense specificity and resolution in science increases day to day. Fluorescence-activated nuclear sorting (FANS) offers this great precision, enabling one to count and separate distinct types of nuclei from specific cells of heterogeneous mixtures. We developed a workflow to collect nuclei from Arabidopsis thaliana by FANS according to cell lineage and endopolyploidy level with high efficiency. We sorted GFP-labeled nuclei with different ploidy levels from the epidermal tissue layer of three-day, dark-grown hypocotyls followed by a shift to light for one day and compared them to plants left in the dark. We then accessed early chromatin accessibility patterns associated with skotomorphogenesis and photomorphogenesis by the assay for transposase-accessible chromatin using sequencing (ATAC-seq) within primarily stomatal 2C and fully endoreduplicated 16C nuclei. Our quantitative analysis shows that dark- and light-treated samples in 2C nuclei do not exhibit any different chromatin accessibility landscapes, whereas changes in 16C can be linked to transcriptional changes involved in light response.
Collapse
|
8
|
Kaczmarczyk L, Bansal V, Rajput A, Rahman RU, Krzyżak W, Degen J, Poll S, Fuhrmann M, Bonn S, Jackson WS. Tagger-A Swiss army knife for multiomics to dissect cell type-specific mechanisms of gene expression in mice. PLoS Biol 2019; 17:e3000374. [PMID: 31393866 PMCID: PMC6701817 DOI: 10.1371/journal.pbio.3000374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/20/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
A deep understanding of how regulation of the multiple levels of gene expression in mammalian tissues give rise to complex phenotypes has been impeded by cellular diversity. A handful of techniques were developed to tag-select nucleic acids of interest in specific cell types, thereby enabling their capture. We expanded this strategy by developing the Tagger knock-in mouse line bearing a quad-cistronic transgene combining enrichment tools for nuclei, nascent RNA, translating mRNA, and mature microRNA (miRNA). We demonstrate that Tagger can capture the desired nucleic acids, enabling multiple omics approaches to be applied to specific cell types in vivo using a single transgenic mouse line. This Methods and Resources paper describes Tagger, a knock-in mouse line bearing a quad-cistronic transgene that enables the capture of translating mRNAs, mature miRNAs, pulse-labeled total RNA, and the nucleus, all from specific cells of complex tissues.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Vikas Bansal
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashish Rajput
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raza-ur Rahman
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiesław Krzyżak
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Joachim Degen
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Stefanie Poll
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Stefan Bonn
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- * E-mail: (SB); (WSJ)
| | - Walker Scot Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases, Bonn, Germany
- * E-mail: (SB); (WSJ)
| |
Collapse
|
9
|
Wilson RS, Nairn AC. Cell-Type-Specific Proteomics: A Neuroscience Perspective. Proteomes 2018; 6:51. [PMID: 30544872 PMCID: PMC6313874 DOI: 10.3390/proteomes6040051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific analysis has become a major focus for many investigators in the field of neuroscience, particularly because of the large number of different cell populations found in brain tissue that play roles in a variety of developmental and behavioral disorders. However, isolation of these specific cell types can be challenging due to their nonuniformity and complex projections to different brain regions. Moreover, many analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein extracted from specific cell populations. Despite these challenges, methods to improve proteomic yield and increase resolution continue to develop at a rapid rate. In this review, we highlight the importance of cell-type-specific proteomics in neuroscience and the technical difficulties associated. Furthermore, current progress and technological advancements in cell-type-specific proteomics research are discussed with an emphasis in neuroscience.
Collapse
Affiliation(s)
- Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Guérin F, Arnaiz O, Boggetto N, Denby Wilkes C, Meyer E, Sperling L, Duharcourt S. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements. BMC Genomics 2017; 18:327. [PMID: 28446146 PMCID: PMC5405496 DOI: 10.1186/s12864-017-3713-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/20/2017] [Indexed: 12/02/2022] Open
Abstract
Background DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. Results We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. Conclusions We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3713-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric Guérin
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205, France
| | - Olivier Arnaiz
- Institute of Integrative Biology of the Cell, UMR9198 CNRS CEA Univ, Paris-Sud Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Nicole Boggetto
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205, France
| | - Cyril Denby Wilkes
- Institute of Integrative Biology of the Cell, UMR9198 CNRS CEA Univ, Paris-Sud Université Paris-Saclay, 91198, Gif-sur-Yvette, France.,Current address: Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191, Gif-sur-Yvette Cedex, France
| | - Eric Meyer
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Linda Sperling
- Institute of Integrative Biology of the Cell, UMR9198 CNRS CEA Univ, Paris-Sud Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205, France.
| |
Collapse
|
11
|
Khyzha N, Alizada A, Wilson MD, Fish JE. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol Med 2017; 23:332-347. [PMID: 28291707 DOI: 10.1016/j.molmed.2017.02.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a vascular pathology characterized by inflammation and plaque build-up within arterial vessel walls. Vessel occlusion, often occurring after plaque rupture, can result in myocardial and cerebral infarction. Epigenetic changes are increasingly being associated with atherosclerosis and are of interest from both therapeutic and biomarker perspectives. Emerging genomic approaches that profile DNA methylation, chromatin accessibility, post-translational histone modifications, transcription factor binding, and RNA expression in low or single cell populations are poised to enhance our spatiotemporal understanding of atherogenesis. Here, we review recent therapeutically relevant epigenetic discoveries and emerging technologies that may generate new opportunities for atherosclerosis research.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | - Azad Alizada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael D Wilson
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| |
Collapse
|
12
|
Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep 2016; 6:33999. [PMID: 27666089 PMCID: PMC5036045 DOI: 10.1038/srep33999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular heterogeneity is inherent in most human tissues, making the investigation of specific cell types challenging. Here, we describe a novel, fixation/intracellular target-based sorting and protein extraction method to provide accurate protein characterization for cell subpopulations. Validation and feasibility tests were conducted using homogeneous, neural cell lines and heterogeneous, rat brain cells, respectively. Intracellular proteins of interest were labeled with fluorescent antibodies for fluorescence-activated cell sorting. Reproducible protein extraction from fresh and fixed samples required lysis buffer with high concentrations of Tris-HCl and sodium dodecyl sulfate as well as exposure to high heat. No deterioration in protein amount or quality was observed for fixed, sorted samples. For the feasibility experiment, a primary rat subpopulation of neuronal cells was selected for based on high, intracellular β-III tubulin signal. These cells showed distinct protein expression differences from the unsorted population for specific (phosphorylated tau) and non-specific (total tau) protein targets. Our approach allows for determining more accurate protein profiles directly from cell types of interest and provides a platform technology in which any cell subpopulation can be biochemically investigated.
Collapse
|
13
|
Repetto IE, Monti R, Tropiano M, Tomasi S, Arbini A, Andrade-Moraes CH, Lent R, Vercelli A. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases. Front Cell Neurosci 2016; 10:190. [PMID: 27547177 PMCID: PMC4974250 DOI: 10.3389/fncel.2016.00190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole brain and also in discrete regions of interest, with the potential to investigate non-neuronal alterations. Moreover, IF could be used in addition or in substitution to classical stereological techniques or TTC staining used so far, since it is fast, precise and easily combined with complex molecular analysis.
Collapse
Affiliation(s)
- Ivan E. Repetto
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | - Riccardo Monti
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | - Marta Tropiano
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | - Simone Tomasi
- Child Study Center, Yale School of Medicine, New HavenCT, USA
| | - Alessia Arbini
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | | | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| |
Collapse
|
14
|
Affiliation(s)
- Scott Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
15
|
Otsuki L, Cheetham SW, Brand AH. Freedom of expression: cell-type-specific gene profiling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:429-43. [PMID: 25174322 DOI: 10.1002/wdev.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 12/17/2022]
Abstract
Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.
Collapse
Affiliation(s)
- Leo Otsuki
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|